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Abstract—As Deep Neural Network models for face process-1

ing tasks approach human-like performance, their deployment in2

critical applications such as law enforcement and access control3

has seen an upswing, where any failure may have far-reaching4

consequences. We need methods to build trust in deployed5

systems by making their working as transparent as possible.6

Existing visualization algorithms are designed for object recog-7

nition and do not give insightful results when applied‘ to the face8

domain. In this work, we present ‘Canonical Saliency Maps’, a9

new method which highlights relevant facial areas by projecting10

saliency maps onto a canonical face model. We present two kinds11

of Canonical Saliency Maps: image-level maps and model-level12

maps. Image-level maps highlight facial features responsible for13

the decision made by a deep face model on a given image, thus14

helping to understand how a DNN made a prediction on the15

image. Model-level maps provide an understanding of what the16

entire DNN model focuses on in each task, and thus can be used17

to detect biases in the model. Our qualitative and quantitative18

results show the usefulness of the proposed canonical saliency19

maps, which can be used on any deep face model regardless of20

the architecture.21

Index Terms—Deep neural networks, face understanding,22

explainability/accountability/transparency, canonical model.23

I. INTRODUCTION24

DEEP learning achieves state-of-the-art performance in25

most computer vision tasks, surpassing earlier methods26

by a large margin. The performance of deep neural networks27

is improving in leaps and bounds for face processing tasks28

such as face recognition and detection. In 2014, DeepFace [1]29

approached human-like performance for the first time on the30

LFW benchmark [2], a dataset of face images in unconstrained31

settings (DeepFace: 97.35% vs. Human: 97.53%), using a32

training dataset of 4 million images. In recent years, the accu-33

racy has increased up to 99.8% [3], thereby surpassing human34
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performance on the benchmark. Deep face models are now 35

deemed to be real-world ready. They are used in many critical 36

areas by government agencies including law enforcement and 37

access control. Currently, models for face tasks are available 38

from major companies like Microsoft, IBM and Amazon who 39

claim that their models are highly accurate. In this scenario, 40

two crucial questions arise: Do pre-trained models perform 41

as well as they claim, and how do we find the weaknesses 42

existing in these models and improve them. 43

Failures of face models in critical areas have far-reaching 44

and devastating consequences. Inaccuracies in facial recog- 45

nition technology can result in an innocent person being 46

misidentified as a criminal and subjected to unwarranted 47

police scrutiny. Big Brother Watch U.K. released the Face-Off 48

report [4] highlighting false positive match rates of over 49

90% for the facial recognition technology deployed by the 50

Metropolitan police. A recent study [5] demonstrated that 51

although commercial software solutions report high accura- 52

cies (Amazon’s Rekognition reports an accuracy of 97%), they 53

demonstrate skin-type and gender biases that go unreported as 54

the benchmarks themselves are skewed. When performance is 55

reported on public or private databases, they are always subject 56

to the biases inherent in these databases. The algorithms may 57

be then used in the real world in conditions that differ wildly 58

from the ones that they are tested in, causing the algorithms 59

to produce erroneous results. How do we catch such issues at 60

an early stage? High reported accuracy is not enough to deter- 61

mine how an algorithm will perform under real-life conditions. 62

We need to be able to peek inside the algorithms and under- 63

stand how they work. The opaqueness of deep models restricts 64

its usefulness in highly regulated environments (e.g., health- 65

care, autonomous driving), which may require the reasoning 66

of the decisions taken by the deep models to be provided. 67

To build trust in deployed intelligent systems, they need to 68

be transparent, i.e., they should be able to explain why they 69

predict what they predict [6]. Interpretable algorithms allow us 70

to responsibly deploy deep face models in the real world, as 71

they help end users be aware of these models’ characteristics 72

and shortcomings. 73

Several visualization methods have been proposed to 74

increase the interpretability and transparency of deep neural 75

networks. So far, most neural network visualization methods 76

have been created with the task of object recognition in mind. 77

There have been very few works that applied these algo- 78

rithms exclusively to the face domain [7], [8]. The saliency 79

methods of object recognition do not readily translate to 80

the face domain, as the images used for face tasks have 81

different properties from those used for generic object recog- 82

nition. Face images are highly structured forms of input. The 83
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Fig. 1. Are all parts of the face of equal importance for different face classification tasks? In this work, we show that deep models do not give equal
importance to the entire face. Canonical Model Saliency (CMS) maps show parts of the face that play a significant role in decisions made by the deep model.
CMS maps reveal how deep face models work and allow us to detect and diagnose problems inherent to the models, such as biases. For heatmaps, red
indicates a high value while blue indicates a low value (Best viewed in color).

intra-class difference is very small and face tasks are a form of84

fine-grained classification. Input images to face classification85

models are usually pre-processed so that they are centered86

around the face of interest and there is only one face per87

image. Examples of current saliency methods applied to faces88

are given in Figure 2. We observe that most methods highlight89

a large area in the center of the face. This type of heatmap90

may be useful for object recognition when there are multiple91

objects in a single image, but shows only trivial information92

for face images. Since faces are centered in the input image,93

the question ‘where in the image’ is not as relevant as ‘where94

on the face’. In this work, we introduce a simple yet effec-95

tive ‘standardization’ process for visualization of deep learning96

models for face processing, that converts image coordinates to97

face coordinates and thus makes the resultant saliency maps98

more effective in practice. We utilize the structure of faces99

and project the saliency maps onto a standard frontal face100

to obtain ‘Canonical Saliency Maps’ that are independent101

of image coordinates. These canonical saliency maps can be102

further processed to compare images or observe trends.103

To this end, we propose two types of canonical maps:104

Canonical Image Saliency (CIS) maps and Canonical Model105

Saliency (CMS) maps. CIS maps are detailed attention maps of106

input faces projected onto a standard frontal face. CMS maps, on107

the other hand, globally visualize the characteristic heatmap of108

an entire face network, as opposed to an input image. This shows109

the general trend of facial features a network fixates on while110

making decisions. Such a model-level saliency map can only111

be generated using a canonical approach, and not by currently112

available saliency maps. CMS maps highlight areas that are of113

most significance for a given face task across a dataset. Since114

we need only the confidence of the classifier for this purpose,115

these can be generated for any available model or architecture,116

even if the implementation details are not available. Thus, this117

approach may even be used for analyzing commercial models118

that may not reveal their architecture designs.119

In order to validate our contributions comprehensively, we120

study our canonical maps on five different face process-121

ing tasks: face recognition, gender recognition, age recogni-122

tion, head pose estimation and facial expression recognition123

(Figure 1). We use well-known architectures in our studies124

and also compare the fixation patterns of the models for125

human recognition of faces. We also show that our visual-126

ization method helps discovers a bias in gender recognition127

models which rely on eye make-up to make decisions.128

Our key contributions can be summarized as follows. 129

• We present a method to standardize face saliency images 130

and project them from image coordinates to face coor- 131

dinates. This ‘standardization’ produces canonical heat- 132

maps that show the relevance of different facial parts to 133

a deep face task. The new maps are more insightful than 134

the saliency maps produced by current methods and can 135

be used for comparison and observation of trends. 136

• We introduce two types of canonical heatmaps: 137

(i) Canonical Image Saliency maps which highlight the 138

significant facial areas of a specific input image perti- 139

nent to a prediction; and (ii) Canonical Model Saliency 140

maps, which capture global characteristics of an entire 141

deep face model while making predictions across data 142

points, which allows us to understand the network and 143

potentially diagnose problems. 144

• Our algorithms can be performed on any face model even 145

if the implementation is not available. We demonstrate the 146

superior performance of our method using extensive suite 147

of experiments. 148

• We explore the working of deep face models trained for 149

various face tasks having different architectures. We illus- 150

trate how to interpret the canonical maps and demonstrate 151

their diagnostic utility by detecting a bias that arises from 152

using a celebrity face dataset to train a deep network to 153

classify gender. 154

II. RELATED WORK 155

There has been extensive research dedicated to saliency 156

visualization methods in recent years. One of the first efforts 157

to obtain image saliency was by Simonyan et al. [10] 158

which used the magnitude of the gradients to obtain a noisy 159

and scattered saliency map. Zeiler and Fergus [15] and 160

Springernberg et al. [12] subsequently introduced methods 161

to highlight the important details of the image. These visu- 162

alizations were not class-sensitive. Zeiler and Fergus [15] also 163

proposed a method to obtain coarse class-specific saliency 164

maps by occluding parts of the input image and mon- 165

itoring the output of the classifier. Recent works such 166

as CAM [16], GradCAM [6], GradCAM++ [13] and 167

ScoreCAM [14] proposed gradient-based methods to produce 168

coarse, class-sensitive saliency maps that highlights areas of 169

the input image that were influential in the classifier output. 170

Smilkov et al. proposed a technique called ‘SmoothGrad’ [11] 171
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Fig. 2. A comparison of various saliency visualization methods on the VGG-Face model [9] for the task of face recognition. For each image, the target
class of the visualization is the ground truth class. (a) Original image; (b) Vanilla gradients [10]; (c) Smooth-grad [11]; (d) Guided Backpropagation [12];
(e) Guided GradCAM++ [13]; (f) GradCAM [6]; (g) GradCAM++ [13]; (h) ScoreCAM [14]; (i) Occlusion map [15]. Images are taken from the VGG-Face
dataset [9]. Rows (1, 2), (3, 4), (5, 6) and (7, 8) have the same identity. (Best viewed in color).

which produced a smooth version of such maps by averaging172

gradient maps after perturbing the input image with noise.173

Although there have been many methods introduced for174

saliency visualization for general image classification settings,175

such methods do not explicitly address non-trivial fine-grained176

details when used on face images, as shown in Figure 2.177

Columns (b) and (c) in the figure show results of methods178

that use the magnitude of gradients to produce a heatmap.179

These heatmaps are scattered and it is difficult to see the180

details and interpret classification results using them. Guided181

backpropagation, shown in column (d), shows the finer details182

of the face, but is not class-sensitive, thus reducing their utility183

for interpretation. Columns (f), (g) and (h), corresponding184

to GradCAM [6], GradCAM++ [13] and ScoreCAM [14],185

are class-specific, but most commonly highlight the central186

area of a face making them uninformative across different187

face processing tasks. Column (e) represents the results of 188

Guided GradCAM++, obtained by multiplying the output 189

of guided backpropagation with the GradCAM++ heatmap, 190

shows fine details while highlighting the class-discriminative 191

area of the face. Occlusion maps in column (i) of Figure 2 192

seem to give the most informative results for our use case. This 193

method maps the impact that each region of the image has on 194

the classification, in effect mapping out how representative of 195

the class each region is. It produces a more non-trivial heatmap 196

showing finer details than the other heatmaps. The heatmap 197

resolution can also be adjusted by changing the size of the 198

occlusion and the stride, and the method can be used with 199

any architecture and loss function. Our visualization method 200

is hence built on occlusion maps given this inference from our 201

studies on face images. The closest method to ours is [8], which 202

uses occlusion maps generated between pairs of similar-looking 203
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face images to assist humans in telling them apart. They do204

this by aligning two faces using keypoints and systematically205

occluding patches of both faces and recording the change in206

cosine similarity between the faces on a heatmap. The resulting207

heatmaps reflect the degree of difference between the face pairs.208

Unlike this work, our method works on multi-class classification209

tasks and introduces the face canonicalization procedure.210

Our proposed Canonical Model Saliency Maps visualize211

saliency of face networks w.r.t. different regions of the face for212

different face processing tasks. These maps allow us to con-213

duct useful analysis by comparing the facial areas important214

to the network to the areas that are expected to be impor-215

tant to classify the task. However, the challenge herein is -216

how do we obtain the ‘correct’ expectations to compare the217

network’s saliency map to? One may look at human cognition218

as a benchmark for what a deep network should see.219

Extensive research exists on how humans recognize faces;220

important results have been presented recently in [17]. For,221

e.g., humans are known to be good at recognizing low-222

resolution and degraded faces, when compared to machines.223

There is a marked difference in the recognition rate of humans224

when seeing familiar faces when compared to unknown faces.225

The face’s top part, especially the eyebrows, is known to be226

an important cue for human face recognition [17]. Comparing227

our face saliency maps with such insights can tell us when the228

obtained saliency maps of trained networks point to wrong229

cues for classification (see Section V-B for examples.). Our230

results on gender and age agree with some of the earlier con-231

clusions [18], [19], [20], [21] on the usefulness of eyes and232

lips for gender or the eyes and mouth corners for age, but also233

provide new insights such as the importance of eye corners for234

gender due to make-up, in addition to providing a methodology235

for such analysis. We now describe our methodology.236

III. CANONICAL SALIENCY MAPS: METHODOLOGY237

The key aim of our methodology is to create a visualiza-238

tion which highlights the discriminative parts of a face for a239

given task. Our method is based on the assumption that the240

discriminative importance of a part of an input image is pro-241

portional to the drop in confidence of the classifier when the242

part is occluded [15], however on a canonical face representa-243

tion. Like other occlusion-based saliency map methods, given244

an image I ∈ R
WI×HI and the coordinates (i, j), the importance245

of a patch (|i − x| < sz
2 ∀x < WI , |j − y| < sz

2 ∀y < HI) is246

given as follows:247

Si,j = φ(I, c)− φ
(
I � Bi,j, c

)
(1)248

where φ(I, c) is the confidence of class c for image I and249

Bi,j ∈ {0, 1}WI×HI
is a mask such that:250

Bi,j[x]
[
y
] = 0 if |i− x| < sz

2
and |j− y| < sz

2
(2)251

= 1 otherwise (3)252

and sz is the size of the patch, which is a hyperparameter.253

A. Alignment to a ‘Canonical’ Face254

In order to capture the finer details of the parts of an image255

a trained DNN model looks at, we compute our saliency map256

on a standard neutral frontal face image F ∈ R
WF×HF called257

Fig. 3. Procedure of computing Canonical Image Saliency (CIS) map. First,
the input face is densely aligned. Each part of the input face is occluded
with a small patch and the classification confidence is obtained. The drop in
confidence is plotted on the same face location on a neutral face image to
obtain the Canonical Image Saliency map.

the canonical face, which helps compare saliency maps on a 258

standardized platform. 259

We find an one-to-one mapping between the input face 260

image and the canonical face image by fitting a 3D modular 261

morphable model (3DMMM) [22] using the procedure used 262

by PR-Net [23]. In particular, we use a convolutional neu- 263

ral network to regress a UV positional map from the input 264

image, which gives the depth for a set of fixed points on 265

the UV map of the face. For details of this procedure, please 266

see [23]. Let M ∈ R
N×3 be a set of N 3D points representing 267

the 3DMMM. We fit it on the input image I and the canon- 268

ical image F to obtain the set of 2D points MI ∈ R
N×2 and 269

MF ∈ R
N×2 as the projection of M on I and F respectively. 270

Thus, we have a 1:1 dense mapping of points from I to F such 271

that I[MI[n, 1]][MI[n, 2]] refers to the same facial feature as 272

F[MF[n, 1]][MF[n, 2]] ∀n ∈ {1.2, . . . , N}. 273

B. Mapping Discriminative Areas 274

The Canonical Image Saliency (CIS) map is generated by 275

accumulating the drop in confidence at each point of the dense 276

alignment matrix MI and recording it on the corresponding 277

location of F on an intermediate matrix P∗ ∈ R
WF×HF as 278

follows: 279

P∗MF[n,1],MF[n,2] = P∗MF[n,1],MF[n,2] 280

+SMI [n,1],MI [n,2] 281

∀n < N (4) 282

where P∗MF[n,1],MF[n,2] is the patch around the point 283

(MF[n, 1], MF[n, 2]) on the heatmap P, and SMI [n,1],MI [n,2] is the 284

drop in confidence in the patch around point (MI[n, 1], MI[n, 2]) 285

calculated according to Equation (1). Note that self-occluded 286

areas cannot be mapped to the canonical faces. This is accept- 287

able however, as self-occluded regions of a face are not 288

class-discriminative for a given image and face task. 289

C. Density Normalization 290

Note that an equi-spaced grid on a 3-dimensional face may 291

not correspond to equi-spaced grid on a 2D projection of the 292

face. For example, on a frontal face image, the points on the 293

sides of the face may be more spatially concentrated due to 294

the curvature of the face. The heatmap values in these regions 295

will hence be higher due to the concentration. We hence intro- 296

duce a normalization step that keeps track of the number of 297

times a pixel on an image is occluded, when performing the 298

occlusion heatmap on the mesh. Let N ∈ R
WF×HF be a matrix 299
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Fig. 4. Effect of applying density normalization to the heatmap. Without den-
sity normalization, the nose is not highlighted despite it being a discriminative
feature, mainly because the density of points on the nose is low.

which stores the count of times each pixel of P∗ was updated.300

The final CIS map is calculated as follows:301

P = P∗ � N (5)302

where � represents element-wise division. Figure 4 shows the303

effect of density normalization on the CIS map.304

D. From Image Saliency to Model Saliency305

We now discuss how the CIS maps are used to under-306

stand facial features that are important across all images for307

a given model trained for a specific task (for, e.g., the part308

of the face that may be important for gender recognition vs309

another part that may be important for age recognition). We310

call these Canonical Model Saliency (CMS) Maps, which are311

model-level saliency visualizations to highlight facial areas312

that influence the model across all test images.313

Given a test set D consisting of images {I1, I2, I3, . . .} with314

variations in factors such as pose, lighting, or expressions, we315

consider the average CIS map across these test images as the316

CMS map, i.e.,317

V = 1

N

∑

i

Pi ∀I ∈ D (6)318

where Pi is the CIS map of Ii ∈ D. It is possible to combine319

the CIS maps in other ways, but we found that simple averag-320

ing worked well in practice for model-level analysis. Learning321

CMS maps in other ways could be an interesting direction322

of future work. Furthermore, in practice, we observe that it323

requires only a few images to generate a stable CMS map for324

a complete trained model. This suggests that face networks325

consistently rely on a few facial features and the canoni-326

cal visualizations are stable across images. This is shown in327

Figure 5 where we see that the trends become obvious from328

the first random 100 images. After 1000 images, the CMS is329

practically unchanged with the addition of more images.330

Figure 6 shows a comparison between occlusion heatmaps331

of [15] and our CIS maps. Our methodology is summarized332

as follows.333

E. Model Saliency for Non-Classification Tasks334

CMS maps can be generated for any face model which335

has a measure of confidence associated with each input336

image. Our method can be adapted to non-classification mod-337

els by defining an appropriate confidence function. Here, we338

Algorithm 1 Canonical Image Saliency Map
Input: nosep,leftmargin=0.5in,topsep=0pt

• input image I of size WI × HI
• input mesh MI of size N × 3
• frontal image F of size WF × HF
• frontal mesh MF of size N × 3
• model φ: deep model to find saliency where φ(I, c) gives

the confidence of I for class c
• target class C of the input image I
• sz: size of occlusion square

Output: heatmap P of size WF × HF

1: procedure CIS(I, MI, F, MF, φ, C, sz)
2: P← {0}WF×HF

3: N ← {0}WF×HF

4: fsz← fsz× HF
HI

5: for i← 0 to n do
6: I∗ ← I
7: I∗[MI[i, 0] − sz

2 : MI[i, 0] + sz
2 ][MI[i, 1] −

sz
2 : MI[i, 1]+ sz

2 ]← 0
8: xF, yF ← MF[i, 0], MF[i, 1]
9:

10: P[xF − fsz
2 : xF + fsz

2 ][yF − fsz
2 : yF + fsz

2 ]+ =
φ(I, C)− φ(I∗, C)

11: N[xF − fsz
2 : xF + fsz

2 ][yF − fsz
2 : yF + fsz

2 ]+ = 1

12: P[N = 0]← 0
13: N[N = 0]← 1
14: P← P� N
15: return P

define the confidence function for two commonly-used face 339

tasks: zero-shot recognition using nearest neighbor and face 340

verification. 341

1) Zero-Shot Face Recognition: Here, the query image q is 342

assigned the label of the image from the training set whose fea- 343

tures have the highest cosine similarity with the features of the 344

query image [24]. We define the confidence of classification 345

in this setting as follows: 346

Sq,c = A.Q

‖A‖‖Q‖ (7) 347

where c is the ground truth label of q, Q is the feature of q 348

and A is the feature of the closest training set image with label 349

c. This new confidence function can be used in place of the 350

class confidence φ in Equation (1). 351

2) Face Verification: Here, a pair of face images is con- 352

sidered to have the same identity if the cosine similarity 353

between their features is more than a threshold calculated on 354

the training set [24]. We define the confidence in this setting 355

as follows: 356

Sq1,q2,c = c×
(

τ − Q1.Q2

‖Q1‖‖Q2‖
)

(8) 357

where c ∈ {−1, 1} is the verification ground truth label, τ is 358

the verification threshold, and Q1 and Q2 are the features of 359

the image pair q1 and q2. Using this function, we generate an 360

IMS map for each pair of images and calculate the CMS map 361

using Equation 6. 362
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Fig. 5. Ablation study to study the effect of the number of images used to create a CMS map. CMS maps for recognition using 100, 500, 1000, 2000, 5000
and 10000 random CIS maps.

Fig. 6. Column (a) shows Occlusion Maps used for saliency visualiza-
tion (see Section II); Column (b) shows Canonical Image Saliency (CIS)
maps. CIS maps are a projection of occlusion maps onto a canonical frontal
face; Column (c) shows Canonical Model Saliency (CMS) maps. These maps
are generated for a model as a whole and hence do not vary with input;
Column (d) shows the CMS maps reprojected back onto the input face.

IV. EXPERIMENTS AND RESULTS363

We now present our comprehensive experimental results,364

that analyze the effectiveness of canonicalizing saliency maps365

for face processing tasks. First, we explore our saliency366

maps through visual examples in Section IV-A. Second, we367

objectively assess the ability of our visualization to highlight368

discriminative parts of the face in Section IV-B. Third, we369

present the results of a user survey which shows that the370

parts of the face highlighted by our algorithm are important371

for the human perception of facial attributes in Section IV-C.372

Finally, we present extensive ablation experiments and dis-373

cussions on our method in Section V. Unless otherwise men-374

tioned, our experiments are conducted using the VGG-Face375

pre-trained model [9] based on the VGG-16 architecture [25].376

We use a random subset of the CelebA dataset [26] consist-377

ing of 22,000 images (henceforth called CelebA-subset) for378

all our experiments. (Note that these images are only used379

in the model’s test phase, the model by itself is trained on 380

all the training images in the CelebA benchmark). See the 381

Supplementary Section for more details. 382

A. Qualitative Results 383

We compare the saliency maps produced by various meth- 384

ods in Figure 2. As in Section II, most visualizations are not 385

practically useful, and highlight a vague central portion of the 386

face. In Figure 6, we display the visualization methods intro- 387

duced in this work. From simple occlusion maps in column (a), 388

we obtain Canonical Image Saliency (CIS) maps by project- 389

ing the occlusion maps onto a neutral frontal face, as shown 390

in column (b). This ‘canonicalizing’ allows us to collate the 391

CIS maps to create Canonical Model Saliency (CMS) maps as 392

shown in column (c). In column (d), we show that when the 393

CMS maps are reprojected onto the input images, the saliency 394

maps become meaningful for analysis. 395

1) Evaluation of Canonical Model Saliency Maps on 396

Various Face Tasks: For this experiment, we used our algo- 397

rithm on five models trained for the tasks of classifica- 398

tion, expression, head pose, age and gender. We used the 399

VGG-Face [9] pre-trained model, and finetuned it for each 400

of the aforementioned tasks on the CelebA [26] dataset. The 401

ground truth labels for gender are provided with the CelebA 402

dataset. The head pose ground truth was obtained by using 403

PRNet [23], and the age ground truth was obtained using 404

the DEX method [27]. For expression, the ground truth for 405

CelebA was obtained from a model trained on the FER 2013 406

data set [28]. Since both head pose and age are real-valued, 407

we grouped the values into discrete bins to convert them 408

into classification tasks. For pose, the yaw and pitch values 409

were binned into 9 bins ranging from top-left to bottom- 410

right (see Figure 19). Similarly, the real-valued ages obtained 411

from the DEX model were grouped into 10 bins, each hav- 412

ing 10 years. More details of the networks used are given 413

in the Supplementary Section S1. The generated CMS maps 414

are shown in Figure 1. We notice how models of the same 415

architecture trained on different tasks focus on different face 416

areas. For recognition, the eye-nose triangle is important and 417

there is less focus on the mouth or the chin. Gender models 418

surprisingly find the corners of the eyes to be the most dis- 419

criminative facial features. We discuss the implications of this 420

in Section V-B. The nose is a crucial feature for the head pose 421

model and the area between the eyebrows for the expression 422

model. The age model looks at many different facial features. 423

We see that CMS maps are a valuable asset to understand 424

the nature of face tasks and the characteristics of various deep 425
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Fig. 7. Calculating CMS maps for non-classification tasks on the LFW
dataset: (a) CMS map for zero-shot learning of identity using nearest neighbor;
(b) CMS map for face verification.

Fig. 8. Sanity check on our visualization method. We progressively random-
ized the layers of the VGG-16 face model starting with the output layer as
described in [29]. We observe that the CMS map gets progressively random-
ized; our method passes the sanity check. (a) Last layer randomized; (b) Last
two layers randomized; (c) Last three layers randomized; (d) Last four layers
randomized.

models when addressing these tasks. We discuss some of these426

results in more detail in Section V.427

2) Canonical Model Saliency Maps on Non-Classification428

Tasks: In this experiment, we show that CMS maps can be429

generated for non-classification face tasks. We generated CMS430

maps for zero-shot learning of face identities using nearest431

neighbor and face verification of VGG-Face fc1 features on the432

LFW [2] dataset. For the zero-shot learning task, we occluded433

parts of the query image while using Equation (7) as the con-434

fidence function. For the verification task, we occluded the435

same region of both images in a verification pair and used436

Equation (8) as the confidence function. The results are shown437

in Figure 7. In both cases, we see the highlighted facial areas438

are similar to the classification task of recognition in Figure 1.439

3) Sanity Check Using Randomization: Reference [29]440

proposed a sanity check for saliency maps, where the layers441

of a trained model are progressively randomized starting from442

the output layer, and the changes in generated saliency maps443

are observed. A method is said to pass the sanity check if444

progressive randomization increases the randomization of the445

corresponding visualization. We perform a sanity check on our446

visualization using the same procedure, and reports the results447

of this experiment in Figure 8. We observe that as more lay-448

ers get randomized, the visualization gets more randomized.449

Thus, our method passes the sanity check.450

B. Quantitative Results451

We conduct an objective evaluation of the faithfulness of our452

method on two datasets: CelebA and LFW [2] and compare453

it with three popular saliency visualizations: GradCAM [6],454

GradCAM++ [13] and ScoreCAM [14]. Similar to [13], [14],455

we measure the confidence drop of explanation images pro-456

duced by pixel-wise multiplication of the saliency heatmap457

Fig. 9. Since face models are trained to look holistically at the face, they
have more confidence in figure (a) than in figure (b), even though figure (b)
highlights more relevant features. Thus, we use negative saliency maps where
darkening relevant features should cause a larger drop in confidence. This
also ensures that there is enough context for the model to interpret the face
holistically. Another reason for using negative saliency maps is to take care
of cases where a visualization method does not interpret the face correctly,
as in figure (d). Here, the heatmap completely misses the face and is focused
on disparate parts of the image. Using normal explanation maps will result in
almost the original image, which will give a high score in the metrics used.
This is avoided by using negative explanation maps and normalizing the sum
of pixels.

with the base image. In particular, we utilize a ‘negative expla- 458

nation image’ by darkening the relevant areas of the base 459

image. Unlike the task of object recognition, face images have 460

a single object at the center of the image, and models trained 461

on face images focus on different parts of the face image. 462

In this process, saliency maps at times fail to detect the face 463

completely (see Figure 9). Using negative explanation maps 464

addresses such concerns. The negative explanation image E is 465

given by: 466

E = (1− H)⊗ I (9) 467

where H is the heatmap, I is the base image and ⊗ represents 468

pixel-wise multiplication. The heatmaps are first normalized 469

to a range of [0, 1] and the heatmaps for all the methods are 470

standardized to have the same sum of pixels for each image: 471

H′ = h−min(h)

max(h)−min(h)
;H = s

�H′
H′ (10) 472

where h is the original heatmap, s is a scalar which is the 473

same for all heatmaps of the same image, and H is the final 474

heatmap which is used to create negative explanation maps. 475

Normalizing the heatmaps in this way ensures that no visual- 476

ization method gets an advantage of highlighting a large area 477

of the input image, as only the discriminative parts should be 478

highlighted. 479

We adopt the three metrics used in [13] with negative 480

explanation images. 481

Average Drop %: The confidence of an image when passed 482

through a model is expected to decrease when the most 483

discriminative parts are covered. We measure the drop of 484

confidence when compared to the unmodified image as: 485

1

N

N∑

n=1

max

(
0,

M(In)−M(En)

M(IN)

)
× 100 (11) 486

where M(En) and M(In) are the confidence values of the nth
487

explanation image and original image respectively. A high 488

value of Average Drop % indicates that the heatmap accurately 489

highlights the most discriminative parts of the image. 490

% Increase in confidence: In some images, covering the 491

highlighted parts may result in an undesired increase in con- 492

fidence with respect to the original image. We measure the 493
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number of such images using this measure as follows:494

1

N

N∑

i=1

IM(En)>M(In) × 100 (12)495

where I is the indicator function which returns 1 if M(En) >496

M(In) and 0 otherwise. A low score in this metric is better.497

Win %: Here, we compare all the four methods and measure498

which method produces the greatest drop in confidence for a499

given test image. For example, Win % of CMS is calculated500

as follows:501

1

N

N∑

i=1

IM

(
ECMS

n

)
<

(
M

(
EGradCAM

n

)
,502

M
(

EGradCAM++
n

)
, M

(
EScoreCAM

n

))
× 100 (13)503

where the indicator returns 1 if the explanation map produced504

by CMS has the lowest confidence. The sum of Win % across505

all the visualization methods for a single task should add up506

to 100.507

We conduct three experiments for quantitative evaluation.508

First, we calculate the above metrics on VGG-16 for the509

tasks of recognition, gender, age, head pose and expression510

on the CelebA dataset. For fair comparison, we use our maps511

projected back onto the input image (Col (d) of Figure 6).512

Figure 10 shows our results and a comparison with other513

visualization methods. Our method outperforms all other meth-514

ods in all metrics. The Win % shows that for most images,515

removing the explanation map given by our method causes the516

highest drop in confidence (higher the better).517

Secondly, we repeat the experiment on the LFW [2] dataset518

using the VGG-Face network, using the same experimental519

settings as above. We show the results in Figure 11. Here too,520

our method outperforms all other methods by a large margin in521

all quantitative metrics, showing that our method generalizes522

across datasets.523

We also compare our saliency methods on various524

off-the-shelf gender models. We use pretrained models525

from [27], [30], [31] and evaluate our metrics on CelebA-526

subset. More details about these models are given in527

the Supplementary Section S1. Our results are shown in528

Figures 12. Once again, we see that our method outperforms529

all other methods on all metrics. We show the CMS maps530

obtained using the various networks in Figure 13.531

C. User Survey on Perception of Facial Attributes532

We conducted a user survey to evaluate the human inter-533

pretability of our saliency maps as compared to other visu-534

alization methods. In particular, we explored whether the535

discriminative facial areas found by Canonical Model Saliency536

Maps are vital for human perception of facial attributes. We537

focused on the tasks of gender and expression for this study.538

The survey used a total of 96 images, each of which were eval-539

uated by 154 participants not involved in this work. Twelve540

base images for each task were used, for which we gen-541

erated four negative explanation maps corresponding to the542

four saliency visualization methods GradCAM, GradCAM++,543

ScoreCAM and reprojected CMS maps using the Gender544

and Expression models mentioned in Section IV-B. We also545

Fig. 10. Results for Average Drop %, % Increase in Confidence and Win %
of VGG-16 on Celeb-A for the tasks of recognition, gender, age, head pose
and expression.

applied a vignette to each of the explanation images to hide 546

the context information (see Figure 15 for sample images). 547

Each participant was given a binary choice for each image 548

(male-female or happy-sad, depending on the task). Since a 549

better visualization algorithm hides crucial information and 550

makes it more difficult to interpret an image, we use the per- 551

centage of wrong answers as a measure of the goodness of the 552

visualization method. We show some sample survey images in 553

Figure 14. See the Supplementary section for more examples. 554

The results of our survey are given in Figure 15. We see that 555

the percentage of wrong answers marked by the respondents 556

is higher for our method than other methods, indicating that 557

our method performed better at hiding the most crucial and 558

discriminative facial areas. 559

V. ANALYSIS AND DISCUSSION 560

In this section, we present analysis of the proposed method 561

including ablation studies and discussions. 562
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Fig. 11. Results for Average Drop %, % Increase in Confidence and Win % of the explanations generated by Grad-CAM, Grad-CAM++, ScoreCAM and
CMS on LFW for the VGG-16 model.

Fig. 12. Results for Average Drop %, % Increase in Confidence and Win %
of the explanations generated by Grad-CAM, Grad-CAM++, ScoreCAM and
CMS on CelebA for various deep face gender models.

A. Why Model-Level Saliency Maps?563

Canonical Model Saliency (CMS) maps allow us to observe564

patterns and trends in the functioning of deep face models by565

adding the simple yet powerful step of alignment of occlusion-566

based saliency maps to a canonical face model. For example,567

using CMS maps, we observed that the corners of the eyes are568

important for gender classification (Section V-B). This is not569

Fig. 13. We compare CMS maps obtained from various off-the-shelf deep
gender models.

Fig. 14. Samples of figures used in our survey (see Section IV-C.

Fig. 15. Results for user survey on the perception of gender and emotion
on explanation maps. We used 12 base images modified using GradCAM,
GradCAM++, ScoreCAM and CMS. The users had to pick binary labels
for each image (male-female, happy-sad). Each question was answered by
143 people who were not involved in this project.

directly apparent by observing individual, unaligned occlusion 570

maps, as seen in Figure 16. The advantage of this alignment 571

process is in allowing comparison and aggregation of saliency 572

maps. A single occlusion map may contain variations caused 573

by differences in the image setting such as pose, occlusion 574

and lighting, thus not allowing us to understand the whole 575

picture. The process of aggregation averages out the effects 576

of variations in individual images, showing us the parts of the 577

face that are truly important. 578



10 IEEE TRANSACTIONS ON BIOMETRICS, BEHAVIOR, AND IDENTITY SCIENCE

Fig. 16. In this figure, we compare individual occlusion maps of gender
(first row) and recognition (second row) to the respective cumulative model
saliency maps on the right. Individual occlusion maps vary widely and may
have slightly different areas highlighted due to differences in pose, occlusion
and lighting. Thus, it is hard to compare these images and get the big picture
from them. Aggregating heatmaps gets rid of tiny differences caused due
to the conditions in which the photo is taken, allowing us to gain valuable
insights.

B. Effect of Make-Up on Gender Classification579

The CMS maps for the gender model provided interesting580

insights using our method (Figure 1E). We expected the581

heatmap to highlight the areas around the mouth, jaw and582

cheeks, as they contain facial hair cues and different bone583

structure for different genders. However, the map showed that584

the model fixated mostly on eye corners. We hypothesize585

that this is because the model was finetuned on the CelebA586

dataset [26], which consists of images of celebrities who use587

make-up extensively. The model picked up on the cue of eye588

make-up to classify gender. We presume that such a model589

will not work well for a different demographic distribution.590

This may be the reason why many commercial face models591

fail in detecting gender for females and different races [5].592

This indicates the importance of detecting dataset biases as593

they can have a significant impact on the performance of deep594

models. We test our hypothesis with the following qualitative595

experiment. We collect a few images of people with and with-596

out eye make-up from the Internet. These images were passed597

through the gender model and the confidence for ‘male’ and598

‘female’ classification was observed. Our results are presented599

in Figure 17. We observed that in all cases, there was a drop600

of confidence in ‘male’ classification when the men wore601

make-up and a smaller drop in confidence of ‘female’ classifi-602

cation for women without make-up. In some cases, the drop in603

confidence was large enough to flip the original classification604

result. This was especially true for males of Asian origin, espe-605

cially those from the far East. We conclude that eye make-up606

has a significant effect on the performance of such a gender607

model, which is skewed towards people of a certain ethnicity.608

C. Head Pose Model Relies on the Nose609

The shape of the nose changes according to the pose of610

the face (Figure 19A). Generally, the nose is positioned at611

the centre of the face, and its placement on the face changes612

consistently with the 3D orientation of the face. The head pose613

can be detected quite accurately from the shape of the nose614

and the quadrant of the face in which the nose tip resides615

(along with the jawline), especially when there are only nine616

classes, as shown in Figure 19. The nose thus provides the617

strongest cue for the head pose. This is reflected in the CMS 618

map shown in Figure 1D. 619

D. Age Model Uses the Whole Face 620

The CMS map for age (Figure 1F) shows that the cues 621

for age are present in multiple areas of the face. Some of 622

the distinctive features for age may be the tightness of skin 623

around the eyes and jaws, wrinkles and receding hairline. Pre- 624

deep learning methods used the geometry or texture of the 625

face for age prediction [32], thus corroborating our finding on 626

why age-related cues are found all over the face. 627

E. How Occlusion Size Affects Saliency Maps 628

We present a qualitative ablation study to explore the effect 629

of the size of the occluding patch on the generated CIS map. 630

The number of vertices provided by the dense face alignment 631

algorithm is very high and the time required to compute the 632

heatmap at each vertex is large. Hence we use a tunable ‘stride’ 633

parameter to omit vertices at regular intervals. As the size of 634

the occluding patch decreases, a smaller stride is chosen so that 635

gaps don’t appear in the visualization. The stride can be larger 636

for bigger occluding patches without affecting the visualization 637

quality. In Figure 18, we show the result of changing the patch 638

size on the CIS maps generated from the same input image. 639

We observe that as the patch size increases, the map becomes 640

fuzzier but general patterns do not change. Our method pro- 641

vides useful information regardless of the size of the occluding 642

patch, although smaller patches give better resolution. We used 643

a patch of size 15× 15 for generating other saliency maps in 644

this work, as it provides a good balance between heatmap 645

resolution and computation time. 646

F. Why Align to Canonical Face? 647

Here we examine the need for a canonical face instead of 648

using keypoint-based alignment or the image pixel positions. 649

The main advantage of canonical face alignment is that it 650

ensures that the model saliency maps remain accurate while 651

aggregating the individual image saliency maps. If we do not 652

align the heatmaps precisely, the changes in position add up 653

to produce an inaccurate model saliency map. 654

We conduct an ablation study to demonstrate this effect. We 655

use three types of alignment and generate model saliency maps 656

on the LFW dataset: 1) no alignment; 2) keypoint-based align- 657

ment; and 3) canonical face alignment. For the first case, we 658

create image saliency maps by sliding an occlusion window 659

over the entire input image. We repeat the procedure for the 660

second case, but we used LFW images aligned with keypoint 661

alignment [33] as the input instead of the raw LFW images. 662

The third case used the same setting as previous CMS exper- 663

iments. We create the model saliency maps for each case by 664

averaging individual image saliency maps. We generate expla- 665

nation maps and calculate quantitative metrics. The results are 666

shown in Figure 20. Canonical alignment performs better than 667

keypoint-based alignment or no alignment in all cases. We 668

show all three model saliency maps in Figure 21. 669

Using canonical faces also results in lower computation 670

cost, as we know exactly which parts of the image we need 671

to occlude, as opposed to sliding the occlusion patch over the 672

whole image. 673
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Fig. 17. Make-up matters! The figure shows the classification confidence of a gender model on the same person with and without eye make-up. The top
row shows the confidence for ‘female’ classification and the bottom row shows the confidence for ‘male’ classification. The ground truth label is given below
each pair of images.

Fig. 18. Canonical Image Saliency maps generated when the size of the occluding patch is varied. We used a patch size of 15× 15 in all other experiments
in this work.

Fig. 19. Look at the close-ups of the nose tip in this figure. Can you tell the
3D orientation of the face with this information? The nose, along with jawline,
provide a good cue for the face pose. We also observe that the quadrant of
the face area in which the nose tip is found is consistent for the same 3D
orientation.

G. Robustness in Deep Models674

Robustness refers to the property of a model wherein small675

deviations in input images, due to noise or natural variations,676

do not affect the correctness of the model. If a model relies on 677

a small set of cues, it is more likely to go wrong due to input 678

image diversity. Instead, if the model looks at many cues, small 679

variations are less likely to confuse the model. The CMS maps 680

indicate the areas from which deep models pick up cues. The 681

maps thus also allow us to obtain an estimate of the model’s 682

robustness. A model that concentrates on a few facial areas is 683

likely to be less robust than one that focuses on many facial 684

areas. Less robust models are more prone to mistakes when 685

presented with extreme cases of occlusion, lighting and other 686

deviations. We see an example with our trained gender model 687

(Section V-B), where the model is not robust to changes in 688

the face due to make-up. 689

VI. CONCLUSION 690

In this work, we showed that standardization of saliency 691

maps via Canonical Saliency Maps provides usable and inter- 692

pretable results in the face domain when compared to current 693

saliency methods which give trivial outputs for face images. 694

Canonical Saliency Maps highlight the facial areas of impor- 695

tance by projecting occlusion-based heatmaps onto a neutral 696

face. Computing model-level canonical saliency maps enable 697

us to perceive which facial features are important for different 698

face tasks, thereby revealing the strengths and weaknesses of 699

face models. These observations can be compared to human 700

perception, which can show us if the model is behaving 701

in unexpected ways. The maps aid in detecting problems 702

and biases inherent in the model. In particular, by utilizing 703

Canonical Model Saliency maps, we identified a bias in a gen- 704

der model, wherein the model was wrongly using make-up as 705

a cue to classify gender. We confirmed the presence of the 706

bias with additional studies. Such models can cause problems 707

when used in demographics unlike the training dataset, where 708

the patterns of applying make-up are different. 709

Nowadays, deep face models are deployed in critical appli- 710

cations like security and law enforcement – the proposed 711
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Fig. 20. Ablation study on the effect of different types of alignment. Shown are the Average Drop%, % Increase in confidence and Win % for three different
types of alignment on the LFW dataset: 1. Canonical face 2. Keypoint-based alignment 3. No alignment.

Fig. 21. Ablation study on the effect of different types of alignment.
Shown are the model saliency maps for three different types of alignment
on the LFW dataset: (a) No alignment, superimposed on the average image
of LFW; (b) Keypoint-based alignment, superimposed on the average image
of LFW-funneled; and (c) CMS superimposed on the canonical face.

Canonical Saliency Maps allow such systems to be critically712

analyzed before deployment, and thus increase trust. They can713

also be used to predict failures during development and help714

improve the models. We hope that the tools presented in this715

work, while simple, can be very effective in practical use for716

deeper understanding of face models, their biases and failures.717

In future work, we aim to study methods of mitigating the718

problems and biases detected by our visualization methods.719
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