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Abstract Fully supervised deep learning-based methods have created a profound im-
pact in various fields of computer science. Compared to classical methods, supervised
deep learning-based techniques face scalability issues as they require huge amounts
of labeled data and, more significantly, are unable to generalize to multiple domains
and tasks. In recent years, a lot of research has been targeted towards addressing
these issues within the deep learning community. Although there have been extensive
surveys on learning paradigms such as semi-supervised and unsupervised learning,
there are few timely reviews after the emergence of deep learning. In this paper, we
provide an overview of the contemporary literature surrounding alternatives to fully
supervised learning in the deep learning context. First, we summarize the relevant
techniques that fall between the paradigm of supervised and unsupervised learning.
Second, we take autonomous navigation as a running example to explain and com-
pare different models. Finally, we highlight some shortcomings of current methods
and suggest future directions.

Keywords Deep learning - Synthetic data - Domain adaptation - Weakly supervised
learning - Few-shot learning - Self-supervised learning

1 Introduction

Distilling useful information from prior experience is one of the primary research
problems in computer science. Past information contained in the training data is ex-
tracted as a model and used to predict future outcomes in machine learning. In the
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past few years, the advent of deep learning techniques has greatly benefited the areas
of computer vision, speech and Natural Language Processing (NLP). However, su-
pervised deep learning-based techniques require a large amount of human-annotated
training data to learn an adequate model. Although data has been painstakingly col-
lected and annotated for problems such as image classification (

( ); ( )), image captioning ( ( )), instance
segmentation ( ( )), visual question answering ( ( )) and
other tasks, it is not viable to do so for every domain and task. Particularly, for prob-
lems in health care and autonomous navigation, collecting an exhaustive dataset is
either very expensive or all but impossible.

Even though supervised methods excel at learning from a large quantity of data,
results show that they are particularly poor in generalizing the learned knowledge
to new task or domain ( ( )). This is because a majority of
learning techniques assume that both the train and test data are sampled from the same
distribution. However, when the distributions of the train and test data are different,
the performance of the model is known to degrade significantly ( ( );

( )). For instance, take the example of autonomous driving.
The roadside environment for a city in Europe is significantly different from a city in
South Asia. Hence, a model trained with input video frames from the former suffers
significant degradation in performance when tested on the latter. This is in direct
contrast to living organisms which perform a wide variety of tasks in different settings
without receiving direct supervision ( ( ); ( ).

This survey is targeted towards summarizing recent literature that addresses two
bottlenecks of fully supervised deep learning methods — (1) Lack of labeled data in
a particular domain; (2) Unavailability of direct supervision for a particular task in
a given domain. Broadly, we can categorize the methods which aim to tackle these
problems into three sets — (1) Data-centric techniques which solve the problem by
generating a large amount of data similar to the one present in the original dataset; (2)
Algorithm-centric techniques which tweak the learning method to harness the limited
data efficiently through various techniques like on-demand human intervention, ex-
ploiting the inherent structure of data, capitalizing on freely available data on the
web or solving for an easier but related surrogate task; (3) Hybrid techniques which
combine ideas from both the data and algorithm-centric methods.

Data-centric techniques include data augmentation which involves tweaking the
data samples with some pre-defined transformations to increase the overall size of
the dataset. For images, this involves affine transformations such as shifting, rotation,
shearing, flipping and distortion of the original image ( ( ).
Some recent papers also advocate adding Gaussian noise to augment the images in
the dataset. ( ) recommend learning these transforms instead of hard-
coding them before training. Another method is to use techniques borrowed from
computer graphics to generate synthetic data which is used along with the original
data to train the model. In the case when data is in the form of time-series, window
slicing and window warping can be used for augmentation purposes (

(2016)).

Algorithm-centric techniques try to relax the need of perfectly labeled data by

altering the model requirements to acquire supervision through inexact (
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Fig. 1: Learning paradigms arranged in decreasing order of supervision signal. Se-
mantic segmentation of outdoor scene is taken as an example task (1) Fully super-
vised learning requires a lot of annotated data to learn a viable model Cordts et al.
(2015). (2) Synthetically generated instances can be used to compensate for the lack
of real-world data Richter et al. (2016). (3) Knowledge from one real-world dataset
can be transferred to another dataset which does not contain the sufficient amount
of instances. For instance, a model trained on Cityscapes can be fine-tuned with the
data from the Indian Driving Dataset (IDD) Varma et al. (2018). (4) In case pixel-
level labels are expensive to obtain, inexact supervision from polygon-labels can be
exploited to accomplish the task. (5) If only a few instances are available along with
their labels, few-shot learning techniques can be employed to learn a generalizable
model. (6) Finally, unsupervised learning exploits the inherent structure of the unla-
belled data instances

(2015)), inaccurate (Natarajan et al. (2013)) and incomplete labels (Chapelle et al.
(2009)). For most of the tasks, these labels are cheaper and relatively easy to obtain
than full-fledged task-pertinent annotations. Techniques involving on-demand human
supervision have also been used to label selective instances from the dataset (Tong
and Chang (2001)). Another set of methods exploit the knowledge gained while learn-
ing from a related domain or task by efficiently transferring it to the test environment
(Saenko et al. (2010)).

Hybrid methods incorporate techniques which focus on improving the perfor-
mance of the model at both the data and algorithm level. For instance, in urban scene
understanding task, researchers often use a synthetically generated dataset along with
the real data for training. This proves to be greatly beneficial as real-world dataset
may not cover all the variations encountered during the test time i.e. different light-
ing conditions, seasons, camera angles etc. However, a model trained using synthetic
images suffers a significant decrease in performance when tested on real images due
to domain shift. This issue is algorithmically addressed by making the model "adapt”
to the real-world scenario (Zhang et al. (2017d)). Most of the methods discussed in
this survey fall under this category.
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In this paper, we discuss some of these methods along with describing their qual-
itative results. We use tasks associated with autonomous navigation as a case study to
explain each paradigm. As a preliminary step, we introduce some common notations
used in the paper. We follow this by mentioning the radical improvement brought
by supervised deep learning methods in computer vision tasks briefly in Section 1.2.
Section 2 contains an overview of work which involves the use of synthetic data for
training. Various techniques for transfer learning are compared in Section 3. Methods
for weak and self-supervision are discussed in Section 4 and 6 respectively. Meth-
ods which address the task of learning an adequate model from a few instances are
discussed in Section 5. Finally, we conclude the paper discussing the promises, chal-
lenges and open research frontiers beyond supervised learning in Section 7. Figure 1
gives a brief overview of the survey in the context of semantic segmentation task for
autonomous navigation.

1.1 Notations and Definitions

In this section, we introduce some notations which aid the explanation of the paradigms
surveyed in the paper. Let 2" and ¢ be the input and label space respectively. In
any machine learning problem, we assume to have N objects from which we wish
to learn the representation of the dataset. We extract features from these objects
X = (x1,x2,...,xy) to train our model. Let P(X) be the marginal probability over X.
In a fully supervised setting, we also assume to have labels Y = (y1,y2,...,yn) cor-
responding to each of these feature sets. A learning algorithm seeks to find a function
[+ Z — & in the hypothesis space .#. To measure the suitability of the function
f, aloss function [ : % x % — R=? is defined over space .. A machine learning
algorithm tries to minimize the risk R associated with wrong predictions

1 N
R= N,,g’ol(yi’f(xi))

Use of synthetic data has become mainstream in computer vision literature. Note
that even though synthetic data may appear to contain the same entities, we cannot
assume that it has been generated from the same distribution. Hence, we denote it’s
input space as Zynn instead of 2°. However, the label space remains the same.
To elaborate, we have a new domain Zsyni, = {Xsynth, P(Xsynin) } Which is different
from the real domain ¥ = {X,P(X)} as both their input feature space and marginal
distributions are different. Hence, we cannot use the objective predicting function
Soynth + Zsynth — % for mapping 2" to %'

Transfer learning, a term interchangeably used with domain adaptation (DA),
aims to solve this problem. However, the term is not only used to transfer knowl-
edge between different domains but also between distinct tasks. We define a task
as containing the label space % and the conditional distribution P(Y|X), as .7 =
{#,P(Y|X)}. Building on the above notations, we define domain shift (2; # 2,) and
label space shift (.J; # .7;) where %, and ¥, are source and target domains respec-
tively. As an example, using synthetic data and then adapting the learned objective
to real domain falls under domain shift as & # Zsyn. Within the domain adaptation
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literature, methods have been categorized into homogeneous and heterogeneous set-
tings. Homogeneous domain adaptation methods assume that the input feature space
for both the source and target input distribution is same i.e. X; = X;. Heterogeneous
domain adaptation techniques relax this assumption. As a result, heterogeneous DA
is considered a more challenging problem than homogeneous DA.

Although supervised learning considers that all the feature sets x; have a cor-
responding label y; available at the time of training, the labels can be inaccurate,
inexact or incomplete in a real-world scenario. These scenarios collectively fall un-
der the paradigm of weakly-supervised learning. These conditions are particularly
true if the training data has been obtained from web. Formally, we define the feature
set for incomplete label scenario as X = (x1,X2,...,X/,X/41,---Xn) Where Xjapeled =
(x1,%2,...,x7) have corresponding labels Yiabeled = (¥1,2, - - . y;) available while train-
ing but the rest of the feature sets Xypiapeled = (X721, ---,X,) do not have any labels
associated with them.

Other interesting weakly supervised models encompass cases where each in-
stance has multiple labels or a bag of instances have a single label assigned to it.
To formalize for multiple-instance single-label scenario, we assume that each feature
set x; is composed of many sub-feature sets (x;1,X;2,...,% ). Here, x; is called a
“bag” of features and the paradigm is known as multiple-instance learning. A bag
is labeled positive if at least one item x; ; is positive otherwise negative. Although
the above paradigms correspond to a varied amount of supervision, they always as-
sume a huge number of instances X available at the time of training the model. This
assumption breaks down when some classes do not have sufficient instances.

Few-shot learning entail the scenario when only a few (usually not more than
10) instances per class are available at the time of training. Zero-shot learning (ZSL)
is an extreme scenario which arises when no instance is available for some classes
during training. Given the training set with features X = (x,x,...,%,) and labels
Yirain = (1,2, ---,¥n), the test instances belong to previously unseen classes Y5t =
(Ynt1,Yn+2, - - - ,¥m)- Recently, some papers address a generalized ZSL scenario where
the test classes have both seen or unseen labels.

When no supervision signal is available, the inherent structure of the instances is
utilized to train the model. Let X and Y be the feature and label set respectively; as
we do not have P(Y|X), we cannot define the task .7 = {#,P(Y|X)}. Instead, we
define a proxy task Fproxy = {Z,P(Z|X)} whose label set Z can be extracted within
the data itself. For computer vision problems, proxy tasks have been defined based
on spatial and temporal alignment, color, and motion cues.

1.2 Success of supervised learning

Over the past few years, supervised learning methods have enabled computer vision
researchers to train more and more accurate models. For several tasks, these models
have achieved state of the art performance which is comparable to humans. In the
visual domain, accuracy for both structure and unstructured prediction tasks such as
image classification ( ( ); ( );

( ); ( ); ( )), object detection (
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(2014); (2015); (2015); (2016);

( )), semantic segmentation ( ( ); ( );
(2017); (2017); (2017); ( )

( )), pose estimation ( ( ); ( )), action
recognition ( (2013); (2015); (2015);

( ); ( )), video classification ( ( )) and
optical flow estimation ( ( )) have consistently increased allow-
ing for their large-scale deployment. Apart from computer vision, problems in other
domains such as speech recognition ( ( ); ( );

( )), speech synthesis ( ( )), machine translation
( (2014); (2015); (2016); (2017))
and machine reading ( ( )) have also seen a significant improve-

ment in their performance metrices.

Despite their success, supervised learning-based models have a fair share of is-
sues. First of all, they are data hungry requiring a huge amount of instance-label
pairs. To add, a majority of large datasets required to train these models are propri-
etary as they provide an advantage to the owner in training a supervised model for
a particular task and domain. Secondly, when applying a machine learning model in
the wild, it encounters a multitude of conditions which are not observed in the train-
ing data. In these situations, fully supervised methods, despite the super-human level
performance on a particular domain suffer drastic degradation in performance on a
real-world test set as they are biased towards the training dataset.

2 Effectiveness of Synthetic Data

A much better degree of photo-realism, easy-to-use graphics tools such as game en-
gines, large libraries of 3D models and appropriate hardware have made it is possi-
ble to simulate virtual visual environments which can be used to construct synthetic
datasets which are exponentially larger than real-world datasets. One primary advan-
tage of using synthetic data is that the precise ground truth is often available for free.
On the other hand, collecting and annotating data for a large number of problems is
not only a tedious process but also prone to human errors. To add, one can easily vary
factors such as viewpoint, lighting and material properties earning full control over
configurations and visual challenges to be introduced in the dataset. This presents
a major advantage for computer vision researchers as real-world datasets tend to be
non-exhaustive, redundant, heavily biased and partly representative of the complex-
ity of natural images ( ( )). Moreover, some situations are not
possible to be arranged in a real-world setting because of safety issues e.g. a head-on
collision in an urban scene understanding dataset. Last, but not least, having a few
high-profile real-world datasets bias the research community towards the tasks for
which annotations have been provided with these datasets. Thus, graphically gen-
erated synthetic datasets have become a norm in the computer vision community,
particularly for tasks such as medical imaging and autonomous navigation.

In the visual domain, synthetic data has been used mainly for two purposes: (1)
evaluation of the generalizability of the model due to the large variability of synthetic
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(c) Real cars augmented to the KITTI dataset (Alhaija et al. (2018))

Fig. 2: Data collected in real-world setting may not have sufficient diversity in terms
of illumination, viewpoints, etc.. Synthetic data produced through virtual visual mod-
els help to get around this bottleneck. Another way to create additional data for train-
ing is to paste real or virtual objects to real scenes. One advantage of this approach is
that the domain gap between real and synthetically generated data is lesser leading to
better performance on the real dataset.

test examples, and (2) aiding the training through data augmentation for tasks where
it is difficult to obtain ground truth e.g. optical flow or depth perception. A virtual
test bed for design and evaluation of surveillance systems is proposed in Taylor et al.
(2007). Kaneva et al. (2011) and Aubry and Russell (2015) use synthetic data to
evaluate hand-crafted and deep features respectively. Butler et al. (2012) propose
MPI Sintel Flow dataset, a synthetic benchmark for optical flow estimation. Handa
et al. (2014) introduce ICL-NUIM, a dataset for evaluation of visual odometry.

More significantly, synthetic data is utilized for gathering additional training in-
stances, mainly beneficial due to the availability of precise ground truth. There are
various data generation strategies, from real-world images combined with 3D models
to full rendering of dynamic visual scenes. Figure 2 illustrates two common methods
for synthetic data generation. Vazquez et al. (2014) learn the appearance models of
pedestrians in a virtual world and use the learned model for detection in the real-world
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scenario. A similar technique is described for pose estimation ( ( );
( )), indoor scene understanding ( ( )), action recogni-
tion ( ( )) and variety of other tasks. Instead of rendering the entire
scene, ( ) overlay text on natural images consistent with the local 3D
scene geometry to generate data for text localization task. A similar method is used
for object detection ( ( )) and semantic segmentation (
( )) where real images of both the objects and backgrounds are composed to syn-
thetically generate a new scene. One drawback of using synthetic data for training
a model is that it gives rise to “sim2real” domain gap. Recently, a stream of works
in domain randomization ( ( ); ( );

( )) claims to generate synthetic data with sufficient variations such that the
model views real data as just another variation of the synthetic dataset.

Modern game engines are a popular method to extract synthetic data along with
the annotation due to their photo-realism and realistic physics simulation.

( ) present the Virtual KITTI dataset and conduct experiments on multi-
object tracking. SYNTHIA ( ( )) and GTA ( ( )) pro-
vide urban scene understanding data along with semantic segmentation benchmarks.
UnrealCV ( ( )) provides a simple interface for researchers to build
a virtual world without worrying about the game’s API.

Synthetic data for Autonomous Navigation

Autonomous Navigation has greatly benefited from the use of synthetic datasets
as pixel-level ground truth can be obtained easily and cheaply using label propa-
gation from frame to frame. As a result, several synthetic datasets have been cu-
rated particularly for visual tasks pertaining to autonomous navigation (
(2016); (2016); (2016, ); (2017);
( ). ( ) propose a method to augment vir-
tual objects to real road scene for creating additional data to be used during
training the model. Apart from training the models, racing simulators have also
been used to evaluate the performance of different approaches to autonomous
navigation ( (2015); (2017)). (2017)
offers a comprehensive survey of literature pertinent to autonomous driving.

One of the major challenges in using synthetic data for training is the domain gap
between real and synthetic datasets. Transfer learning discussed in Section 3 offers
a solution to this problem. Eventually, through the use of synthetic data, we would
like to replace the expensive data acquisition process and manual labeling of ground
truth into a generic problem of training with unlimited computer-generated data and
testing in the real-world scenario without any degradation in performance.

3 Domain Adaptation and Transfer Learning

As stated in Section 2, a model trained on source domain does not perform well on
a target domain with different distribution. Domain adaptation (DA) is a technique
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Fig. 3: Conventional techniques for domain adaptation. The original model is trained
to classify O and A. However, it is able to classify O and A only after applying
appropriate DA techniques.

which addresses this issue by reusing the knowledge gained through the source do-
main for the target domain. DA techniques have been categorized according to three
criteria: (1) Distance between domains; (2) Presence of supervision in the source and
target domain; (3) Type of domain divergences. Most of the DA techniques assume
that the source and target domain are “nearer” to each other, in the sense that the in-
stances are directly related. In these cases, single-step adaptation is sufficient to align
both the domains. However, if this assumption does not hold true, multi-step adapta-
tion is used where a set of intermediate domains is used to align the source and target
domains. Prevalent literature also classifies DA in supervised, semi-supervised and
unsupervised setting according to the presence of labels in source and target domain.
Nevertheless, there are inconsistencies in the definition within the literature; while
some papers refer to the absence of target labels as unsupervised DA, others define it
as an absence of both the source and target labels. Hence, in this section, we catego-
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rize DA techniques with respect to the type of domain divergences. Section 1.1 gives
out the formal notation and formulations for DA setting.

Earlier works categorized the domain adaptation problem into homogeneous and
heterogeneous settings. Homogeneous domain adaptation deals with the situation
when both the source and target domains share a common feature space 2~ but dif-
ferent data distributions P(X) or P(Y|X). Some traditional methods for homogeneous
domain adaptation include instance re-weighting ( ( )), fea-
ture transformations ( ( ); ( )) or kernel-based tech-
niques that learn an explicit transform from source to target domain (

( ); ( ); ( )). Figure 3 pictorially presents tradi-
tional domain adaptation methods. All the techniques addressing this problem aim
to correct the differences between conditional and marginal distributions between the
source and target domain. Heterogeneous domain adaptation pertains to the condition
when the source and target domains are represented in different feature space. This
is particularly important for problems in the visual domain such as image recogni-
tion ( ( ); ( ); ( )), object detection,
semantic segmentation ( ( )) and face recognition as different
environments, background, illumination, viewpoint, sensor or post-processing can
cause a shift between the train and test distributions. Moreover, a difference between
the tasks also demands the model to be adapted to the target domain task. Mani-

fold alignment ( ( )) and feature augmentation (
( ); ( )) are some of the techniques used for aligning feature spaces
in heterogeneous adaptation. A detailed survey of traditional adaptation techniques is
out of the scope of this survey. We direct readers to ( ) and
( ) for a summary of homogeneous and ( ) and
( ) for a detailed overview of heterogeneous adaptation techniques.
( ( ); ( ); ( )) provide an overview of shal-

low domain adaptation methods on visual tasks. In this paper, we briefly state recent
advances in deep domain adaptation techniques pertaining computer vision tasks.
Taking a cue from the success of deep neural networks for learning a feature
representation, recent DA methods use them to learn representations invariant to the
domain; thus inserting the DA framework within the deep learning pipeline. Earlier
work using deep neural networks only used the features extracted from the deep net-
work for feature augmentation ( ( )) or subspace alignment (

( ); ( )) of two distinct visual domains. Although these meth-
ods perform better than state-of-the-art traditional DA techniques, they do not lever-
age neural networks to directly learn a semantically meaningful and domain invariant
representation.

Contemporary methods use discrepancy-based or adversarial approaches for do-
main adaptation. Discrepancy-based methods posit that fine-tuning a deep network
with target domain data can alleviate the shift between domain distributions (

( ); ( ); ( )). Labels or attribute in-
formation ( ( ); ( )), Maximum Mean Discrepancy
(MMD) ( ( ); ( ), correlation alignment (

( )), statistical associations ( ( )), batch normalization

( ( )) are some of the criterion used while fine-tuning the model.
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Adversarial methods encompass a framework which consists of a label classifier
trained adversarially to the domain classifier. This formulation aids the network in
learning features which are discriminative with respect to the learning task but indis-

criminate with respect to the domain. ( ) introduced DANN architec-
ture which uses a gradient reversal layer to ensure that feature distributions over the
two domains are aligned. ( ) introduce a GAN-based framework in

which the generator tries to convert the source domain instances to those from the tar-
get domain and the discriminator tries to distinguish between transformed source and
target domain instances. ( ( ); ( );

( ); ( )) also focus on generating synthetic target data using
adversarial loss, albeit using it in pixel space instead of embedding space.

( ) use a GAN only to obtain the gradient information for learn-
ing a domain invariant embedding, noting that successful domain alignment does not
strictly depend on image generation. ( ) propose a unified framework
for adversarial methods summarizing the type of adversary, loss function and weight
sharing constraint to be used during training.

Generative Adversarial Network (GAN)

GAN ( ( )) consists of two neural networks; a generator
that creates samples using noise and a discriminator which receives samples
from both the generator and real dataset and classifies them. The two networks
are trained simultaneously with the intention that the generated samples are in-
distinguishable from real data at equilibrium. Apart from producing images,
text, sound and other forms of structured data, GANs have been instrumental
in driving research in machine learning; particularly in the cases where data
availability is limited. Data augmentation ( ( );

( )) using GANSs has resulted in higher performing models than those
which use affine transformations. Adversarial adaptation, a paradigm inspired
by GAN framework, is used to transfer the data from the source to the target do-
main. Other notable applications of GANSs include data manipulation (

( )) , adversarial training ( ( )), anomaly detection (
( )) and adversarial cryptography ( ( ).

Reconstruction based techniques try to construct a shared representation between
the source and target domains while maintaining the individual characteristics of both

the domains intact. ( ) use an encoder which is trained simultane-
ously to accomplish source label prediction along with target data reconstruction.
( ) train separate encoders to account for domain specific and

domain invariant features. Additionally, it uses domain invariant features for clas-
sification while using both kinds of features for reconstruction. Methods based on

adversarial reconstruction are proposed in ( ( ); ( );
( ); ( )) which use a cyclic consistency loss as the recon-
struction loss along with the adversarial loss to align two different domains.
Optimal transport is yet another technique used for deep DA ( ( );

( ). ( ) assign pseudo-labels to the target data
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using the source classifier. Further, they transport the source data points to the target
distribution minimizing the distance traveled and changes in labels while moving the
points.

Visual adaptation has been studied for problems such as cross-modal face recog-

nition ( ( ); ( )), object detection ( ( );
( )), semantic segmentation ( ( ); ( );
( )), person re-identification ( ( )) and image captioning

( ( )). Although deep DA has achieved considerable improvement

over traditional techniques, much of the work in the visual domain has focused on
addressing homogeneous DA problems. Recently, heterogeneous domain adaptation
problems such as face-to-emoji ( ( )) and text-to-image synthesis
( ( ); ( )) have also been addressed using adversarial
adaptation techniques. Another interesting direction of work pertains open set DA
( ( ); ( ); ( )) which loosens the as-
sumption that output sets of both the source and target class must exactly be the same.

( ) address the problem of distant domain supervision transferring the
knowledge from source to target via intermediate domains. An in-depth survey of
deep domain adaptation techniques is presented in ( ).

4 Weakly Supervised Learning

Weakly supervised learning is an umbrella term covering the predictive models which
are trained under incomplete, inexact or inaccurate labels. Incomplete supervision en-
compasses the situation when the annotation is only available for a subset of training
data. As an example, take the problem of image classification with the ground truth
being provided through human annotation. Although it is possible to get a huge num-
ber of images from the internet, only a subset of these images can be annotated due
to the cost associated with labeling. Inexact supervision pertains to the use of related,
often coarse-level annotations. For instance, a fully supervised object localization re-
quires to delineate the bounding boxes; however, usually, we only have image-level
labels. Lastly, noisy or non-ground truth labels can be categorized as inaccurate su-
pervision. Collaborative image tags on social media websites can be considered as
noisy supervision. Apart from saving annotation cost and time, weakly supervised
methods have proven to be robust to change in the domain during testing.

4.1 Incomplete supervision

Weakly supervised techniques pertaining incomplete labels make use of either semi-
supervised or active learning methods. Conventional semi-supervised approaches in-

clude self-training, co-training ( ( ); ( )) and
graph-based methods ( ( )). A discussion on these is out of the
scope of this survey. Interested readers are directed to ( ) for a

detailed overview of semi-supervised learning.
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(a) Original Image (b) Pixel level supervision (He (c) Polygon around the instances
etal. (2017); Chen et al. (2018a))

=N »

mini-truck, scooty, person, palm trees, #car, #india, #palmtrees, #indiancountryside,
rural road, sky #travellinglove

(d) Scribbles (Lin et al. (2016)) (e) Image-level supervision (Pin- (f) Supervision via collaborative
heiro and Collobert (2015)) image tags

Fig. 4: An example of the varying degree of supervision for semantic segmentation
problem. Although pixels-level labels provide strong supervision, they are relatively
expensive to obtain. Thus, recent literature suggests techniques which exploit poly-
gon labels, scribbles, image-level labels or even collaborative image tags from social
media platforms ( Note that hashtags are not only inexact but also an inaccurate form
of supervision).

Active learning methods are used in computer vision to reduce labeling efforts
in problems such as image annotation (Kapoor et al. (2009)), recognition (Vijaya-
narasimhan and Grauman (2014)), object detection (Yao et al. (2012)), segmenta-
tion (Vezhnevets et al. (2012)) and pose estimation (Liu and Ferrari (2017)). In this
paradigm, unlabeled observations are optimally selected from the dataset to query at
the training time. For instance, localizing a car occluded by a tree is more difficult
than another non-occluded car. Thus, the human annotator could be asked to assign
ground truth for the former case which may lead to improved performance for the
latter case. A typical active learning pipeline alternates between picking the most rel-
evant unlabeled examples as queries to the oracle and updating the prior on the data
distribution with the response (Cohn et al. (1996)). Some common query formulation
strategies include maximizing the label change (Freytag et al. (2014)), maximizing
the diversity of selected samples (Elhamifar et al. (2013)), reducing the expected er-
ror of classifier (Roy and McCallum (2001)) or uncertainty sampling (Scheffer et al.
(2001)). A survey by Settles (2009) gives insight into various active learning tech-
niques.

Although both semi-supervised and active learning techniques have been used to
address different problems in the visual domain, there has been an increased interest
towards the latter after the emergence of deep learning based methods. Sener and
Savarese (2018) and Gal et al. (2017) present an effective method to train a CNN
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using active learning heuristics. An approach to synthesize query examples using

GAN is proposed by ( ). ( ) reframe active learning
as a reinforcement learning problem. Also, deep active learning methods have been
used to address vision tasks such as object detection in ( ).

4.2 Inexact Supervision

Apart from dealing with partially labeled datasets, weakly supervised techniques also
help relax the degree of annotation needed to solve a structured prediction problem.
Full annotation is tedious and time-consuming process - contemporary vision datasets
reflect this fact. For example, in Imagenet ( ( )), while 14 mil-
lion images are provided with image-level labels and 500,000 are annotated with
bounding boxes; only 4,460 images have pixel-level object category labels. Thus, the
development of training regimes which learn complex concepts from light labels is
instrumental in improving the performance of several tasks.

A popular approach to harness inexact labels is to formulate the problem in
multiple-instance learning (MIL) framework. In MIL, the image is interpreted as a
bag of patches. If one of the patches within the image contains the object of inter-
est, the image is labeled as a positive instance, otherwise negative. Learning scheme
alternates between estimating object appearance model and predicting the patches
within positive images. As this setup results in a non-convex optimization objective,

several works suggest initialization ( ( )), regularization (
( )) and curriculum learning ( ( )) techniques to alleviate the
issue. Recent works ( ( ); ( )) embed the MIL framework

within a deep neural network to exploit the weak supervision signal.
Structured prediction problems such as weakly supervised object detection (WSOD)
and semantic segmentation have garnered a lot of attention in recent years.

( ) propose an end-to-end WSOD framework for object detection using
image-level labels. Several other techniques have been employed as supervision sig-
nal for WSOD such as object size ( ( )) and count (

( ), click supervision ( ( ,a)) and human verification

( ( )). Similar methods have also been proposed for weakly

supervised semantic segmentation problems ( ( ); ( );
(2016); (2017); (2015);

( )). Figure 4 depicts some weak supervision signals used for semantic

segmentation problem.

4.3 Inaccurate supervision

As curating large-scale datasets is an expensive process, building a machine learning
model which uses web datasets such as YouTube8m ( ( ),
YFCC100M ( ( )) and Sports-1M ( ( )) is one of
the pragmatic ways to leverage the almost infinite amount of visual data. However,
labels in these datasets are noisy and pose a challenge for the learning algorithm.
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Several studies have investigated the effect of noisy instances or labels on the per-
formance of the machine learning algorithm. Broadly, we categorize the techniques
into two sets - the first approach resorts to treating the noisy instances as outliers
and discard them during training ( ( ); ( )). Nev-
ertheless, noisy instances may not be outliers and occupy a significant portion of the
training data. Moreover, algorithms pursuing this approach find it difficult to distin-
guish between noisily-labeled and hard training examples. Hence, methods in this set
often use a small set of perfectly labeled data. Another stream of methods focus on
building algorithms robust to noise ( ( ); ( );

( ); ( )) by devising noise-tolerant loss functions (

( )) or adding appropriate regularization terms ( ( )). For a
comprehensive overview of learning algorithms robust to noise, we refer to

(2014).

Consequently, a plethora of techniques have been proposed to harness the deep
neural networks in a “webly”-supervised scenario. As most of the data on the web is
contributed by non-experts, it is bound to be inaccurately labeled. Hence, techniques
used to address noisy annotations can be applied if the training data is collected from
the web. ( ) propose a two-stage curriculum learning technique
on easier examples before adapting it to web images. ( ) predict the
type of noise in each of the instances and attempt to remove it. Webly supervised
methods have been proposed for many tasks in visual domain such as learning visual

concepts ( ( ); ( )), image classification (
( )), video recognition ( ( )) and object localization (
(2017)).

5 k-shot Learning

One of the distinguishing characteristics of human visual intelligence is the ability to
acquire an understanding of novel concepts from very few examples. Conversely, a
majority of current machine learning techniques show a precipitous decrease in per-
formance if there are an insufficient number of labeled examples pertaining to a cer-
tain class. Few-shot learning techniques attempt to adapt the current machine learn-
ing methods to perform well under a scenario where only a few training instances are
available per class. This is of immense practical importance - for instance, collecting
a traffic dataset might result in only a few instances of auto-rickshaws. However, dur-
ing testing, we would like the model to recognize auto-rickshaws with various scales,
angles and other variations which might not be present in the training set. Earlier
methods such as ( ) use Bayesian learning based generative frame-
work with the assumption that the prior built from previously learned classes can be
used to bootstrap learning for novel categories. ( ) built a Hierarchical
Bayesian model which performs similarly to humans on few-shot alphabet recogni-
tion tasks. However, their method is shown to work only for simple datasets such as
Omniglot ( ( ). ( ) learn to regress from param-
eters of the classifier trained on few images to the parameters of the classifier trained
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on a large number of images. More recent efforts into few-shot learning techniques
can be broadly categorized into metric-learning and meta-learning based methods.

Metric learning aims to design techniques for embedding the input instances to a
feature space beneficial to few-shot settings. A common approach is to find a good
similarity metric in the new feature space applicable to novel categories.

( ) use a deep learning model based on computing the pair-wise distance be-
tween the samples based on Siamese networks following which the learned distance
is used to solve few-shot problems through k-nearest neighbors classification.

( ) propose an end-to-end trainable one-shot learning technique based on co-

sine distance. Other loss functions used for deep metric learning include triplet loss
( ) and adaptive density estimation ( ).

( ) approximate the pairwise distance by training a deep residual

network in conjunction with a generative model.

Meta-learning entails a class of approaches which quickly adapt to a new task
using only a few data instances and training iterations. To achieve this, the model is
trained on a set of tasks such that it transfers the “learning ability” to a novel task. In
other words, meta-learners treat the tasks as training examples. ( ) pro-
pose a model agnostic meta-learning technique which uses gradient descent to train
a classification model such that it is able to generalize well on any novel task given

very few instances and training steps. ( ) also introduce a
meta-learning framework employing LSTM updates for a given episode. Recently, a
method proposed by ( ) also exploit contextual information within

the tasks using Temporal Convolutions.

Another set of methods for few-shot learning rely on efficient regularization tech-
niques to avoid over-fitting on the small number of instances.

( ) suggest a gradient magnitude regularization technique for training a classi-
fier along with a method to hallucinate additional examples for few-shot classes.
( ) also regularizes the dimensionality of parameter search space through

efficiently clustering them ensuring the intra-cluster similarity and inter-cluster diver-
sity.

Literature pertaining to Zero-Shot Learning (ZSL) focuses on finding the repre-
sentation of a novel category without any instance. Although it has a strong sem-
blance to few-shot learning paradigm, methods used to address ZSL are distinct from
few-shot learning. A major assumption taken in this setting is that the classes ob-
served by model during training are semantically related to the unseen classes en-
countered during testing. This semantic relationship is often captured through class-
attributes containing shape, color, pose etc. of the object which are either labeled by
experts or obtained through knowledge sources such as Wikipedia , Flickr etc.

( ) were first to propose a zero-shot recognition model which assumes
independence between different attributes and estimates the test class by combining
the attribute prediction probabilities. However, most of the subsequent work takes
attributes as the semantic embedding of classes and tackles it as a visual semantic
embedding problem ( ( ); ( ); ( );

( )). More recently, word-embeddings ( ( );
( )) and image captions ( ( )) have also been used in place
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Fig. 5: A comparison of supervised learning with ZSL. Features are not available for
C3 and Cy4 at the time of training. However, the availability of attributes or semantic
embeddings for both the train and test classes aid the training of ZSL framework.

attributes as a semantic space. Figure 5 compares the two common approaches to
ZSL with supervised learning.

In ZSL, a joint embedding space is learned during training where both the visual
features and semantic vectors are projected. During testing on unseen classes, near-
est neighbor search is performed in this embedding space to match the projection
of visual feature vector against a novel object type. A pairwise ranking formula is
used to learn parameters of a bi-linear model in ( ) and
( ). Recently, ( ) argue to use the visual space as the embedding
space to alleviate the hubness problem when performing nearest neighbor search in
semantic space. We refer the readers to ( ) for detailed evaluation and
comparison of contemporary ZSL methods.

Some other tasks which have shown promising results in a zero-shot setting are
video event detection ( ( )), object detection ( ( ),
action recognition ( ( )), machine translation ( ( ).

6 Self-supervised Learning

In self-supervised learning, we obtain feature representation for semantic understand-
ing tasks such as classification, detection and segmentation without any external su-
pervision. Explicit annotation pertaining to the main task is avoided by defining an
auxiliary task that provides a supervisory signal in self-supervised learning. The as-
sumption is that successful training of the model on the auxiliary task will inherently
make it learn semantic concepts such as object classes and boundaries. This makes
it possible to share knowledge between two tasks. Self-supervision has a semblance
to transfer learning where knowledge is shared between two different but related
domains. However, unlike transfer learning, it does not require a large amount of an-
notated data from another domain or task. Figure 6 illustrates the difference between
both the paradigms in the context of vehicle detection.

Before the advent of deep-learning driven self-supervision models, significant
work was carried out in unsupervised learning of image representations using hand-
crafted ( ( )) or mid-level features ( ( )). This was fol-
lowed by deep learning-based methods like autoencoders (
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(a) Supervised learning needs the bounding box information corresponding to the object at the time of
training.
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(b) Weakly Supervised Learning using image level captions use semantic embeddings of the sentence to
pre-train the neural network.

(c) Self-supervised Learning uses a pretext task to learn the representation of the objects. In this case, the
task is to learn to generate the luminance value of each pixel in the image given the intensity values.

Fig. 6: Strong supervision vs. Weak Supervision vs. Self-supervision. © and © depict
fully connected and convolutional layers respectively.

(2006)), boltzmann machines (Salakhutdinov and Larochelle (2010)) and variational
methods (Kingma and Welling (2013)) which learn by estimating latent parameters
which help reconstruct the data.

Existing literature pertaining self-supervision relies on using the spatial and tem-
poral context of an entity for “free” supervision signal. A prime example of this is
Word2Vec (Mikolov et al. (2013)) which predicts the semantic embedding of a partic-
ular word based on the surrounding words. In the visual domain, context is efficiently
used by Doersch et al. (2015) to predict the relative location of two image patches as
a pretext task. The same notion is extended in Noroozi and Favaro (2016) by predict-
ing the order of shuffled image patches. Apart from spatial context based auxiliary
tasks, predicting color channel from luminance values (Zhang et al. (2016); Larsson
et al. (2017)) and regressing to a missing patch in an image using generative mod-
els (Pathak et al. (2016)) have also been used to learn useful semantic information
in images. Other modalities used for feature learning in images include text (Gomez
et al. (2017)), motion (Pinto et al. (2016); Pathak et al. (2017)) and cross-channel
prediction (Zhang et al. (2017¢)). Recently, Huh et al. (2018) take advantage of EXIF
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metadata embedded in the image as a supervisory signal to determine if it has been
formed by splicing different images.

For videos, temporal coherence serves as an intrinsic underlying structure: two
consecutive image frames are likely to contain semantically similar content. Each
object within the frame is expected to undergo some transformations in the subse-
quent frames. ( ) authors use relationships between the triplet
of image patches obtained from tracking. ( ) train a network to guess
whether a given sequence of frames from a video are in chronological order.

( ) make the network predict the correct sequence of frames given a shuffled set.
Apart from temporal context, estimating camera motion (

( )), ego-motion ( ( )) and predicting the statistics of ambient
sound ( ( ); ( )) have also been used
as a proxy task for video representation learning.

Self-supervision for Urban Scene Understanding

As solving autonomous navigation takes centre stage in both vision and robotics
community, urban scene understanding has become a problem of utmost inter-
est. More often than not, annotating each frame for training is a tedious job. As
self-supervision gives the flexibility to define an implicit proxy task which may
or may not require annotation, it is one of the preferred methods for addressing
problems such as urban scene understanding. Earlier work in this area includes

( ) where authors estimate the terrain roughness based on
the ’shocks” the vehicle receives while passing over it. ( ) show
that predicting relative depth is an effective proxy task for learning visual rep-
resentations. ( ) propose a multi-modal self-supervised algorithm
for depth completion using LiDAR data along with a monocular camera.

7 Conclusion and Discussions

In the past decade, computer vision has benefited greatly from the fact that neural
networks act as universal approximator of functions. Integrating these networks in
the pre-existing machine learning paradigms and optimizing through backpropaga-
tion has consistently improved performance for different visual tasks. In this survey
paper, we reviewed recent work pertaining to the paradigms which fall between fully
supervised and unsupervised learning. Although most of our references lie in the vi-
sual domain, the same paradigms have been prevalent in related fields such as NLP,
speech and robotics.

The space between fully supervised and unsupervised learning can be qualita-
tively divided on the basis of the degree of supervision needed to learn the model.
While synthetic data is cost effective and flexible alternative to real-world datasets,
the models learned using it still need to be adapted to the real-world setting. Trans-
fer learning techniques address this issue by explicitly aligning different domains
through discrepancy-based or adversarial approaches. However, both of these tech-
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niques require “strict” annotation pertaining to the task which hinders the generaliza-
tion capability of the model. Weakly supervised algorithms relax the need of exact
supervision by making the learning model tolerant of incomplete, inexact and inaccu-
rate supervision. This helps the model to harness the huge amount of data available on
the web. Even when a particular domain contains an insufficient number of instances,
methods in k-shot learning try to build a reasonable model using parameter regular-
ization or meta-learning techniques. Finally, self-supervised techniques completely
eliminate the need of annotation as they define a proxy task for which annotation is
implicit within the data instances.

These techniques have been successfully applied in both structured and unstruc-
tured computer vision applications such as image classification, object localization,
semantic segmentation, action recognition, image super-resolution, image caption
generation and visual question answering. Despite their success, recent models weigh
heavily on deep neural networks for their performance. Hence they carry both the pros
and cons of using these models; cons being lack of interpretability and outcomes
which largely depend on hyperparameters. Addressing these topics may attract in-
creasingly more attention in the future.

Some very recent work combines ideas from two or more paradigms to obtain
results in a very specialized setting. Peng et. al. ( ) address the do-
main adaptation problem when no task-relevant data is present in the target domain.
Inoue et. al. ( ) leverage the full supervision in source and inaccurate
supervision in the target domain to perform transfer learning for object localization
task.

In the coming years, other learning paradigms inspired by human reasoning and
abstraction such as meta-learning ( ); ( ),
lifelong learning ( ) and evolutionary methods may also provide
interesting avenues in research. We hope that this survey helps researchers by easing
the understanding of the field and encourage research in the field.
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