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Abstract: Annotations are critical for machine learning and developing Computer Aided Diagnosis (CAD) algorithms. Good per-
formance of CAD is critical to their adoption, which generally rely on training with a wide variety of annotated data. However, a
vast amount of medical data is either unlabeled or annotated only at the image-level. This poses a problem for exploring data
driven approaches like deep learning for CAD. Data augmentation is a popular solution in addressing this need but has limitations
in adding real variability in the data. In this paper, we propose a novel crowd sourcing and synthetic image generation for training
deep neural net-based lesion detection. The noisy nature of crowdsourced annotations is overcome by i) assigning a reliability
factor for crowd subjects based on their performance and experience and ii) requiring region of interest markings rather than
pixel-level markings from the crowd. A generative adversarial network-based solution is proposed to generate synthetic images
with lesions to control the overall severity level of the disease. We demonstrate the reliability of the crowdsourced annotations and
synthetic images, independently and also by presenting a solution for training the DNN with data drawn from a heterogeneous
mixture of annotations, namely, very limited number of pixel-level markings by experts, crowdsourced ROI markings and synthet-
ically generated data. Experimental results obtained for hard exudate detection from color fundus images show that training with
processed/refined crowdsourced data/ synthetic images is effective as detection performance in terms of sensitivity improves by
25%/27% over training with just expert-markings.

1 Introduction

The latest paradigm shift of machine learning towards Deep Learn-
ing (DL) is spurred by its success on many longstanding computer
vision tasks. This has motivated exploration of DL in wide rang-
ing medical applications from disease detection [1] to segmentation
[2]. Since DL is a data driven framework, its success is contingent
on abundance of training data with expert annotations. Acquisi-
tion of expert annotations has always been difficult in the medical
domain given the tedium of the task and the priority patient care
takes over the annotation task. Data augmentation (via geometric
transformations) for robust training is a popular solution adopted by
the computer vision community. However, this has limitations in the
medical domain as it does not introduce any real variability that is
essential for robust learning of abnormalities, normal anatomy etc.
We examine this problem of sparsity of annotated data and explore 2
different avenues for solutions: (i) crowdsourcing and (ii) synthesis.

Crowdsourcing has been shown to be reliable [3–5] and useful
to train classifiers [6]. Annotations have been crowd-sourced from
fundus images, endoscopy and MRI of brain [3–5] for image level
classification and reference correspondence. They have also been
used to segment a surgical instrument from Laparoscopic images [6].
An active learning framework with crowdsourcing serves to reduce
the burden on the crowd as it allows only low confident samples
predicted by a model to be given to the crowd. Atlas forests were
updated in [7] based on crowd refined annotations (on instrument
boundary) to generate a new atlas. A convolutional neural network
(CNN) was trained in [8] and the crowdsourced mitosis candidates
(in a patch of size 33× 33) were merged with an aggregation layer
for updating the model. Crowd annotations are inherently noisy and
hence merging them to derive a single ground truth (GT) is a key
issue. Methods ranging from simple Majority Voting (MV) [6] to a
stochastic modeling using Expectation Maximization [4] and intro-
ducing an aggregation layer in a CNN [8] have been proposed in
literature.

A second avenue that is free of human annotation is the synthesis
route. Image synthesis has been attempted to generate digital brain

phantoms [9] and whole retinal images [10] using complex mod-
eling. These have been aimed at aiding denoising, reconstruction
and segmentation solutions. Recently, simulation of brain tumors
in MR images [11] has also been explored to aid CAD algorithm
development.

With the advent of DL, modeling of complex structures and syn-
thesizing images has become easier with a class of neural networks
called generative adversarial networks or GAN [12]. GAN is an
architecture composed of two networks, namely, a generator and a
discriminator. Functionally, the generator synthesizes images from
noise while the discriminator differentiates between real and syn-
thetic images. GAN have recently been explored for a variety of
applications: detection of brain lesions [13], predicting CT from
MRI images [14], synthesize normal retinal images from vessel
mask [15], segmenting anatomical structures such as vessels [16]
and optic disc/cup [17].

In this paper, we take up the problem of DR lesion detection
from color fundus images and explore the use of the aforemen-
tioned 2 avenues to aid the development of robust CAD solution.
Our contribution is three fold:

• We consider crowdsourcing as an independent (of model learning)
activity and propose a scheme wherein only regions of interest (ROI)
are marked by the crowd to reduce the burden. A solution for merg-
ing crowd annotations is proposed based on assigning a Reliability
factor (RF) for each subject of the crowd. This leverages abundant
availability of image-level annotations to assess the subjects.
• We propose a GAN for generating images with pathologies in a
controlled manner.
• Finally, we illustrate how a heterogeneous mixture of annotations
derived from experts, crowd and through synthesis can address the
data sparsity problem .

The rest of the paper is organized as follows: §2 describes the
method of collecting crowd annotations, aggregating the annota-
tions, generation of synthetic images and developing a DL solution
for hard exudate (HE) detection. §3 describes the datasets used,
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implementation details and evaluation metrics used in the assess-
ment of the proposed solution. §4 describes the experiments and
results, finally conclusion is given in §5.

2 Methods

As a part of the pre-processing step, given retinal images are cor-
rected for non-uniform illumination using luminosity and contrast
normalization [18].

2.1 Crowdsourcing annotations

2.1.1 Subjects and tasks: A total of 11 engineering students
volunteered to be ’crowd’ members/subjects. Four of these were
familiar with fundus images (Lk) while the rest were not famil-
iar with any medical images (Lnk). The task given to the crowd
subjects was twofold: i) determine whether the given image is nor-
mal/abnormal and ii) if abnormal, mark the ROI containing HE. A
free hand annotation tool (Paint.Net ∗) was provided for the task.
Fig. 1 shows a screenshot of the annotation tool.

2.1.2 Materials: 100 images were given to each subject. Of the
100, 6 images were from DIARETDB1 [19] which provides ROI
markings from 4 experts. The remaining 94 (70 with HE and 24
with no lesions) were from MESSIDOR [20] which provides anno-
tations only at the image-level. Thus, each of the 100 images that
was selected for crowdsourcing has a label (normal/abnormal) and
only 6 have additional information about locations of abnormalities.
A sample image with HE is shown in Fig. 2 along with relevant
landmarks.

Fig. 1: Screenshot of annotation tool. Lesions area marked with
black boundary by a subject

2.1.3 Processing Crowd Annotations: Our crowdsourcing
exercise produced 11 annotations for each of the 100 images. These
need to be integrated to derive a single annotation for every image.
Merging the annotations via simple majority voting (MV) is likely
to produce noisy annotation. Hence, a more elaborate procedure was
designed for merging and GT derivation. This began with assigning
a reliability factor (RF) to every subject i, shown in Fig. 3. Ideally,
RF should rely on 2 factors: experience and performance of a sub-
ject. Experience can be determined via explicit queries. Performance
needs to be assessed preferably by benchmarking against experts. A
scheme was designed to reward a subject for good performance at
both local ROI level (based on performance on the 6 images from
DIARETDB1) and image-level and image-level (based on known
labels of all 100 images). A score is given for each of these factors
and the final RF is computed as a weighted sum of these scores. The

∗http://www.getpaint.net/download.html

Fig. 2: Fundus image with labeled regions: 1 and 2 are zones of
interest centered on macula and 3 is the optic disc.

reliability factor RF for the ith subject was defined as :

RF (i) = β1S1(i) + β2S2(i) + β3S3(i), (1)

where Sj ε [0, 2] are scores described in detail next; βi ε [0, 1] are
the weights. It is possible to use Expectation maximization type of
technique to find the optimal weights. In our experiments, weights
were explicitly chosen to be 0/1 to evaluate the impact of individual
factors on RF.

Scoring performance at an image-level: The crowd annotation for
an image is binary (normal or abnormal) which is unlike the expert
annotation for MESSIDOR. The latter encodes the location of HE
(standard grading [20]): 0 indicating a normal image, 1 if the lesions
are outside a circular region (of diameter equal to optic disc) sur-
rounding the macula and 2 if they are inside this circular region.
Hence, we assign a score S1 to a subject not only based on correct
labeling of normal images but rewarding them when their ROI is in
the correct zone. S1 is designed to be based on the True Positive
Rate (TPR) and False Positive Rate (FPR) (Eq. 12) for each subject.
The ROI location of an ith subject is compared with the zonal labels
(j) from MESSIDOR and the score S1(i) is calculated as follows:

S1(i) =

∑2
j=0(TPRj(i)− FPRj(i) + 1)

3
, (2)

Scoring performance at local level: The local level performance
is assessed and a score S2 is assigned using the 6 images from
DIARETDB1. Once again this is based on the TPR/FPR calculated
by comparing the ROI marked by a subject with that of (consensus
among 3) experts as follows:

S2(i) = TPR(i)− FPR(i) + 1, (3)

Scoring experience level: This data is gathered with an explicit
query on subject’s familiarity with medical images in general and
fundus image in particular. A score of 2 is assigned to subjects
familiar with fundus images and the rest are assigned 1.

S3(i) = 1(unfamiliar) or 2(familiar), (4)

Merged output : The merged output H annotation of the crowd is
obtained as a weighted (by RF) sum of individual subject annotations
for each image j:

Hj =

11∑
i=1

RF (i)Iji, (5)

Here, Iji is the annotated mask for the jth image by the ith subject.
The majority voting based merging is when RF (i) = 1, ∀i in the
above equation.H map is finally binarised by thresholding.
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(a) (b)

Fig. 3: Scheme for (a) RF computation for each subject (b) Aggregation of annotations using RF

Fig. 4: Proposed GAN architecture for generation of abnormal retinal images.

2.1.4 DNN for aggregation of crowd annotations: We pro-
pose an alternate strategy to aggregate crowd annotations using
DNN to train different models with different crowd annotations as
ground truth. The performance of the subject is assessed based on
the model performance on images which have local-level and image-
level markings from the expert. In this strategy, the weights (β) are
assigned by the DNN to different factors based on the performance
of the subjects.

In this approach, we chose U-net to train the models. Let Ci be a
subject and Iijbe the local annotation (image level annotation) given
by the subject i on image j. Here, iε {1, 2, · · · , 11} as there are 11
subjects and jε {1, 2, · · · , 76} as 70 abnormal images from MESSI-
DOR and 6 images from DIARETDB1 are considered for training.
Each U-net (Ui) is trained to detect hard exudates using the above
76 images for training and the corresponding crowd annotations Iij
as ground truth. As there are 11 subjects we obtain a total of 11 U-
net models. Now, each of the U-net model Ui is tested on DMED
and DRiDB images to obtain pixel wise classification. The SN and
PPV values are calculated for each model by comparing against the
local ground truth marked by experts. Further, the pixel level annota-
tions are converted to image level annotations to asses performance
at image level. The RF for each subject is given based on these values

as:

RF (i) =
SN(i) + PPV (i)

2
, (6)

2.2 GAN for Synthesis of Retinal Images with Pathologies

A second route we explore for deriving annotations is synthesis
using a GAN made of a discriminator and a generator. A GAN learns
a model as follows: the discriminator iteratively reduces its misclas-
sification error by more accurately classifying the real and synthetic
images while the generator aims to deceive the discriminator by
producing more realistic images. GAN-based synthesis of Normal
retinal images has been demonstrated in [15] (from a vessel mask)
with a single U-net for the generator and a 5-layer convolutional neu-
ral network for the discriminator. The U-net architecture consists of
a contracting and an expansive path. The contracting path is simi-
lar to a typical CNN architecture, whereas in the expanding path,
max-pooling is replaced by up-sampling. There are skip connections
between contracting and expanding paths to ensure localization. The
U-net is modified in terms of the number of filters at each convolu-
tional layer. The number of filters at each stage are reduced to half
to simplify computations.

Our interest is in synthesis of images with HE to serve as exem-
plars for different stages of DR, which is based on the locations and
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density of HE. Hence, we designed a GAN architecture (shown in
Fig.4) with a generator consisting of two parallel networks: one with
a vessel mask as input and another with a lesion mask as input. The
output of the networks, based on the U-net architectures, are merged
and fed to a third U-net architecture which generates the whole reti-
nal image with lesions. The generator thus maps from vessel (vi)
and lesion (li) masks to a retinal image (ri) using a mapping func-
tion. A 5-layer convolutional neural network as in [15] is used for
the discriminator to distinguish between the real and synthetic sets
of images, with each set consisting of vessel and lesion masks along
with retinal images.

The overall loss function that is to be optimized is chosen as a
weighted combination of 3 loss functions: Ladv , LSSIM and L1 as
defined below in eqns.7-10 to produce sharp and realistic images.

(i) The adversarial loss function Ladv is defined as

Ladv(G,D) = E(v,l),r∼pdata((v,l),r)[log(D((v, l), r))]

+ Ev,l∼pdata(v,l)[log(1−D((v, l), G(v, l)))],
(7)

where E(v,l),r∼pdata
represents the expectation of the log-

likelihood of the pair ((v, l), r) being sampled from the under-
lying probability distribution of real pairs pdata((v, l), r), while
pdata(v, l) is the distribution of real vessel and lesion masks.

(ii) The Structure Similarity (SSIM) [21] index is useful in quan-
titatively measuring the structural similarity between two images (r,
G(v,l)). It also has been shown to perform well for reconstruction
and generation of visually pleasing images.

SSIM(p) =
2µrµG(v,l) + C1

µ2r + µ2
G(v,l)

+ C1
·

2σrG(v,l) + C2

σ2r + σ2
G(v,l)

+ C2
, (8)

where (µr , µG(v,l)) and (σr ,σG(v,l)) are the means and standard
deviation computed over patch centered on pixel p, C1 and C2 are
constants. The loss LSSIM can be computed as:

LSSIM = 1− 1

N

∑
pεP

SSIM(p̃), (9)

where p̃ is the center pixel of a patch P in the image I.
(iii) The loss function L1 is used mainly to reduce artifacts and

blurring and is defined as

L1 = E(v,l),r∼pdata((v,l),r)(‖r −G(v, l)‖1), (10)

The overall loss function to be minimized is taken to be

L(G,D) = Ladv + λ1L1 + λ2LSSIM , (11)

where λ1 and λ2 control the contribution of the L1 and LSSIM loss
functions respectively.

2.3 CAD Solution for Hard Exudate Detection

The U-Net [22] was chosen to build a CAD solution for HE detec-
tion. This solution will be referred to as CADH. A standard architec-
ture was chosen as the aim is to demonstrate that the crowdsourced
annotations and synthetic images (generated by our proposed GAN)
are a reliable resources in training even a basic U-net.

Fig. 5: Different sources of training data for CADH.

2.3.1 Preprocessing: Fundus images suffer from non-uniform
illumination due to image acquisitions, camera limitations etc. This
is corrected using luminosity and contrast normalization [18]. The
optic disc region in every image is masked out and inpainted. Fundus
extension is applied to remove the black mask region and all images
are normalized to have zero mean and unit variance.

2.3.2 Data Augmentation: Data augmentation is done by
applying random transformations to the images. This included ran-
dom rotation between -25o to 25o, random translation in vertical /
horizontal directions in the range of 50 pixels, and random horizontal
/ vertical flips. For fairness, the number of images used for data aug-
mentation are chosen to be equal to crowdsourced images/ Synthetic
images.

3 Implementation details

3.1 Datasets

Four public datasets, namely, (DRiDB [23], DMED [24], MESSI-
DOR and DIARETDB1) were used in this work. DMED has pixel
level annotations (from 1 expert) whereas DIARETDB1 (4 experts)
and DRiDB (1 expert) have ROI markings. The consensus mark-
ing of 3 experts was used to derive a binary mask in the case of
DIARETDB1. The obtained binary mask was overlapped on the
image and thresholded to get pixel level lesion mask. Images from
all datasets were cropped and resized 512x512 before feeding them
to GAN or CADH.

3.2 DNN for aggregation of crowd annotations

The training of each U-net consisted of 70 abnormal images from
MESSIDOR and 6 abnormal images from DIARETDB1 given to
the crowd for annotation. After augmentation it accounts to a total
of 152 images for training with the corresponding crowd annotations
as ground truth. The testing consists of 84 abnormal images, 31 from
DRiDB and 53 from DMED.

3.3 DNN for HE detection

Testing of CADH was done with DIARETDB1 (42 images). Train-
ing of CADH was done with the following datasets: expert annota-
tions of DRIDB (31 images) and DMED (53 images); crowdsourced
annotations of MESSIDOR (70 images). Additionally, annotations
from synthetic images generated from GAN were also used which is
described next.

3.3.1 Training Data for GAN: Training of the GAN requires
both lesion and vessel masks. The lesion mask for the training data
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Table 1 Assessment of the scheme for Label Aggregation

TPR0 FPR0 TPR1 FPR1 TPR2 FPR2 Accuracy
I (β2 = 0, β3 = 0) 100 1.7 87.9 3.3 90.9 6.6 86.2
I + L (β3 = 0) 100 15.3 100 16.6 93.9 0 97.8
I + E (β2 = 0) 100 7.57 97 0 87.9 0 90
I + L + E 100 6 100 0 87.9 0 91.8
MV (RF (i) = 1∀i) 89.3 3.5 78.8 5.2 91 13.5 75.7

*I and L denote image and local level performance and E denotes experience of subjects. MV denotes majority voting. All values are in %

Table 2 Statistical significance value for label aggregation

Baseline Combination p-value
MV I 0.3404
MV I+L 0.0527
MV I+L+E 0.4127
MV I+E 0.4345

Table 3 Statistical significance value for different combination pairs of label aggregation

Baseline Combination p-value
I I+L 0.067
I I+L+E 0.7072
I I+E 0.70
I+E I+L 0.0358
I+L+E I+E 0.442
I+L+E I+L 0.0595

are available from experts but vessels mask are available only for
DRiDB. It is tedious and time consuming to mark the vessels in
each of the retinal images. Hence, vessel masks were derived using
a vessel segmentation method [25] which has proved to be robust to
pathologies.

The synthetic retinal images were generated using GAN as fol-
lows. The required vessel and lesion masks were sourced from
images selected randomly from DMED and DRiDB. The lesion
masks were modified using the same random transformations such as
flipping the lesions sector wise, flipping horizontally and vertically,
rotations and translations. Retinal images containing HE are graded
with severity levels as in [20]. The lesions masks were derived to
provide exemplars for each level using these rules. The position of
lesions in each category were maintained by masking out few lesions
or adding new lesions from another lesion mask randomly.

3.4 Computing Details

The models were implemented in Python using Keras with Theano
as backend and trained on a NVIDIA GTX 970 GPU, 4GB RAM.
Training was done with random initialized weights for 2000 epochs
by minimizing the loss function using Adam optimizer. For model
parameters, learning rate was initialized to 2× 10−4 for GAN and
1× 10−5 for CADH. A batch size of 4 was considered for both the
cases and other parameters were left at default values. Class weights
were outlined as the inverse ratio of the number of positive samples
to negative samples and modified empirically.

4 Evaluation metrics

Several experiments were conducted to assess the relative merits of
crowdsourcing and synthesis of annotated data for training CADH.
The merit was determined based on the HE detection performance.
Crowd Annotations: Crowdsourced annotations was assessed with

Fig. 6: Crowd annotation performance

TPR, FPR and accuracy as evaluation metrics. As the image-level
labels available from the experts is for 3 classes (labeled i: 0, 1 and
2), TPR, FPR and accuracy were calculated as follows:

TPRi =
Nii∑2
j=0Nij

,

FPRi =

∑2
j=0,j 6=iNij∑2

j=0,j 6=iNij +
∑2
k=0,6=i

∑2
j=0,6=iNjk

,

(12)

Accuracy =

∑2
i=0Nii∑2

i=0

∑2
j=0Nij

, (13)

Here Nmn denotes the number of images with disagreement, the
crowd label is m and the expert label is n.

Aggregation of crowdsourced annotations: The label aggre-
gation is assessed using TPR, FPR in respective zones and also
accuracy. The statistical significance of the aggregated labels against
baseline is also calculated by using p-value.

Assessment of generated synthetic images: The synthesized
images were evaluated quantitatively and qualitatively (5 sample
results are shown in Fig. 10). The mean and standard deviation of
the Qv score described in [26] was computed over all images (42
abnormal) in DIARETDB1.

Assessment of CADH: The performance of CADH was evaluated
using Sensitivity (SN) and Positive Predictive Value (PPV) which
are defined as follows: SN = TP

TP+FN and PPV = TP
TP+FP . To

evaluate against the given local annotations by experts, the pixel wise
classification was converted to region wise detection by applying
connected component analysis and requiring at least 50% (but not
exceeding more than 150%) overlap with manually marked regions
to identify true positive detections (TP); else it is false positive (FP).
If a region is marked by the expert but was not detected by the model
then it is a False negative (FN). The area under the SN vs PPV curve
(AUC) is also taken as a measure of performance.
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Fig. 7: Sample image and crowd annotations. (a) original image (b
to l) markings by 11 subjects overlaid on the image.

5 Results

5.1 Crowdsourced annotations

Crowdsourced data: The average time taken by subjects to mark
ROI for 100 images was around 90 minutes. The task was conducted
in two sessions of 50 images each. Hence, a total of 1100 mark-
ings were obtained in a span of two days. Sample retinal image and
respective eleven crowd annotations is shown in Fig. 7. The anno-
tation performance is presented as a box plot in Fig. 6 for the 3
zonal labels/classes. The mean accuracy obtained was 70% and the
class-wise TPR/FPR figures were: 89.6%/6.9% for Normal/class0;
80.7%/11.29% for class1 and 77.69%/10.7% for class2. These indi-
cate that the crowd is good at correctly identifying normal images
and detects HE in the large zone 1 more accurately than much
smaller -+zone 2 (size of Optic disc) suggesting a bias towards the
larger zone. Since lesions in zone 2 require immediate referral, urg-
ing subjects to scrutinize this zone may be advisable.

Aggregation of labels: The impact of the factors that con-
tribute to the proposed RF (see Eq.1) was studied by setting
βi-0/1. The obtained TPR and FPR are listed in Table. 1. The
baseline is taken as majority voting in the following discussion.
When only image-level performance is considered for the RF,
there is a 10% improvement in accuracy which is boosted to 22%
with the addition of performance at the local level. This is note-
worthy as performance at local level is known only for 6% of
the images given to the crowd. The aggregation result of dif-
ferent annotations considering different factors is shown in Fig.

Fig. 8: The result of aggregation of the subject annotations
considering different factors: I - Image level performance, L - Local

level performance and E - Experience of the subject. Majority
Voting is taken as baseline when none of the above information is

available

8. The aggregation of annotations using DNN gave an overall
accuracy of 97% with TPR0 − 100%, FPR0 − 12%, TPR1 −
100%, FPR1 − 17%, TPR2 − 92% and FPR2 − 0%.

The statistical significance of different aggregations as compared
to the baseline MV is shown in Table. 2. This shows that I+L is sta-
tistically significant compared to other combinations. The p-value
is also reported for different pair of combinations to estimate the
importance of each factor (Table. 3). We can infer that I+L can be
considered as the alternate hypothesis, rejecting I+E and I+L+E.
Experience does not seem to be beneficial for this experiment as
performance suffers and also the statistical significance is less. This
may be due to the fact that crowd was made of students and hence
experience is really not meaningful.

5.2 Synthetic Image Generation (GAN)

Two sample retinal images (with HE) generated by the proposed
GAN model are shown in Fig.10. The first two columns show the
vessel and lesion masks given as input to the GAN. The next two
columns show the synthesized and the corresponding real images.
The synthesized images appear realistic yet differ from the real
images in terms of background color, texture and illumination.
Lesion locations are roughly similar but sizes are different as lesion
masks are not results of exact segmentations of lesions.

The mean/ standard deviation of Qv computed over all images
(42) with pathologies in DIARETDB1 are 0.074/0.017 and over all
the synthetic images generated from vessel and lesion mask from
DIARETDB1 is 0.082/0.02. These values are nearly equal indicating
synthetic and real images are similar.
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Table 4 HE detection performance with crowdsourced data and synthetic data for training (E-Expert, A-Augmentation, S-Synthetic and C-Crowd)

Source of training data (No. of images) (T-total no. of images) SN(%) PPV(%) AUC
E (84) (T-84) 90 60.3 0.750
E (84) + A (70) (T-154) 89.8 61.6 0.765
E (84) + S (70) (T-154) 90 64 0.821
E (84) + C (I+L) (70) (T-154) 90.1 71.5 0.869
E (84) + C (MV) (70) + A (154) (T-308) 90 84.6 0.839
E (84) + C (I) (70) + A (154) (T-308) 90 85 0.879
E (84) + S (70) + A (154) (T-308) 90 82 0.894
E (84) + C (I+L) (70) + A (154) (T-308) 90.1 90.4 0.932
E (84) + C (70) + S (70) + A (224) (T-448) 89.8 92.0 0.942
E (84) + C (70) + S (140) + A (294) (T-588) 90 92.8 0.95
E (84) + C (140) + S (140) + A (364) (T-728) 89.7 93.4 0.956

5.3 CADH for Hard Exudate Detection

The utility of crowd sourcing and synthesizing annotations for CAD
development was tested separately with 4 CADH models derived
by training with different training sets. Denoting the set of real
images with expert annotations as E, the crowdsourced annotations
as C (Experiment-1) and the set of synthetic images generated by
GAN with the corresponding lesion masks as S (Experiment-2),
the variants of the training set considered were : (i) only E, (ii)
E with data augmentation (E+A), (iii) E and C (S), (iv) E, C (S)
with data augmentation (E+(C (S))+A). For an SN of 90%, the com-
puted PPV and AUC values are reported in Table. 4 for Experiment-1
and Experiment-2. The SN vs PPV curve is shown in Fig. 9(a) for
Experiment-1 and Fig. 9(b) for Experiment-2. The DNN output for
HE detection and the corresponding expert annotations is shown in
Fig. 11.

Based on the figures in the table, we observe the following. Data
augmentation helps improve the AUC and PPV by about 2% each,
whereas, inclusion of C (S) helps improve AUC by 15.8 (9.5)% and
PPV by 18.5 (6.7)%. Finally, when the expert and crowdsourced
annotations are augmented and added to the training set, there is
a further improvement in AUC by 24.5 (19)% and in PPV by 50
(37)%.

Setting PPV to 70% results in SN values ranging from 70% to
96% (Fig. 9); which is a 37% improvement in SN (similar level of
improvement as that of PPV when SN is set constant at 90%). Thus,

we conclude that C (S) are very effective in boosting the performance
of CADH.

Most recent approaches for HE detection report at the image-level
(normal or has HE) rather than at a local level. The exception is [27]
where a deep learning based approach is reported to have anF1 score
of 0.78 with SN and PPV of 78% each on 50 images from DRIDB
dataset.

6 Conclusion

In this paper, we have explored two options to address sparsity of
annotated medical data which is critical for developing DL based
CAD solutions. Crowdsourcing is an alternate source of annota-
tion, but can be effective only if measures are taken to improve the
reliability of annotations. The proposed RF concept aid weighted
merging of annotations with good performance rewarded with a
higher weight; it was shown that it is possible to assess the ’good-
ness’ of a performance with very little cost (getting the crowd to
annotate a small set of images previously annotated by experts).
GAN-based synthesis is another alternative. A GAN solution was
proposed to generate the retinal images with HE using vessel and
lesion masks. This approach gives user a greater control as retinal
images can be synthesized with any type of severity, by providing
the corresponding lesion mask.

Our experiment results indicate that overall, the crowdsourced
annotations and synthetic data (by themselves or in combination)
are reliable for developing DL-based CAD solutions. Specifically,

(a) Experiments-1 (b) Experiments-2

Fig. 9: Performance of Deep Neural Net (SN vs PPV) for hard exudate detection
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annotations via crowdsourcing data proved to be more effective than
via synthesis (a PPV of 90% versus 82% for SN of 90%). How-
ever, crowdsourcing also involves manual work and hence comes at
a higher cost. Combining the data from crowd and synthetic sources
is a good compromise as it was seen to improve the performance
(to 92% PPV). Synthetic data can be easily generated in abundance.
The effect of changing the relative proportion of synthetic data in the
training set can be seen from the results in the last two rows of Table
4. They suggest that increasing the proportion of synthetic data can
boost the performance though the quantum of improvement appears
small. The reasons for the same could be that the lesion masks were
randomly chosen and hence the actual variability in data was not
captured in training. A better scheme to ensure this variability could
yield better improvement. Based on the encouraging results, future
work can be directed towards exploring such solutions for other
abnormality detection problems as well other modality images.
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Fig. 10: Results of GAN-based image synthesis. From left to right: vessel mask, lesion mask, synthetic image. From top to bottom: first two
sample images fall under zone 1 and the last three images fall under zone 2.
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Fig. 11: (a) Sample images (b) ground truth marked by experts (c) DNN output for HE detection.
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