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Abstract Despite many attempts in the last few years,
automatic analysis of social scenes captured by wide-angle
camera networks remains a very challenging task due to the
low resolution of targets, background clutter and frequent
and persistent occlusions. In this paper, we present a novel
framework for jointly estimating (i) head, body orientations
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of targets and (ii) conversational groups called F-formations
from social scenes. In contrast to prior works that have (a)
exploited the limited range of head and body orientations
to jointly learn both, or (b) employed the mutual head (but
not body) pose of interactors for deducing F-formations, we
propose a weakly-supervised learning algorithm for joint
inference. Our algorithm employs body pose as the primary
cue for F-formation estimation, and an alternating optimiza-
tion strategy is proposed to iteratively refine F-formation and
pose estimates. We demonstrate the increased efficacy of
joint inference over the state-of-the-art via extensive experi-
ments on three social datasets.

Keywords Head and body pose estimation · F-formation
estimation · Semi-supervised learning · Convex optimiza-
tion · Conversational groups · Video surveillance

1 Introduction

Major strides in computer vision research have made head
and body pose1 estimation possible even when pedestrians
are captured at prohibitively low-resolution by distant cam-
eras in public spaces. Under such conditions, the scene is
cluttered and facial and body parts appear blurred; also, per-
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1 We use the term pose to refer to orientation in the ground plane (pan)
rather than the articulated spatial configuration of the human body. In
line with several previous works (Benfold and Reid 2011; Chen and
Odobez 2012), we will use the terms pose and orientation interchange-
ably.
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sons tend to move unconstrained in the environment with
(typically) uneven illumination.Recent pose estimation algo-
rithms have been shown to be robust to facial appearance
variations (Chamveha et al. 2013; Yan et al. 2016), and can
also learnwith little training data by exploiting anatomic con-
straints (Benfold and Reid 2011; Chen and Odobez 2012).
Consequently, vision-based algorithms are now equipped to
handle complex phenomena like social interactions.

Being able to determine conversational groups or F-
formations (Ciolek and Kendon 1980) in social scenes
(Fig. 1) can facilitate social computing, surveillance and
robotics. F-formation (FF) is a loose geometric arrangement
of interactors arising naturally in conversational settings. It
is defined by the interactors who are in close proximity,
and orienting their bodies such that each has equal, exclu-
sive and unhindered access to the convex O-space between
them (Ciolek andKendon 1980). For instance, one can expect
vis-a-vis or L-shape FF arrangements when two persons are
interacting as seen in Fig. 1. Many works Cristani et al.
(2011), Vascon et al. (2014) have exploited the fact that FFs
are characterized by the shared physical locations and head,
body orientations of interactors, and characterize an FF via
group members and the O-space center (Ciolek and Kendon
1980).

Analyzing conversational groups in surveillance settings
is highly challenging. Determining head and body pose of
interactors is non-trivial due to (i) low facial resolution
coupled with frequent and extreme (facial and bodily) occlu-
sions, (ii) background clutter and (iii) body pose modeling
owing to clothing variability. Furthermore, employing cues
such as walking direction (Benfold and Reid 2011; Chen and
Odobez 2012) is ineffective for social scenes as FFs denote
relatively static arrangements. State-of-the-art FF detection
methods (Cristani et al. 2011; Vascon et al. 2014) rely on pre-
trained classifiers upon quantizing the range of possible head
movements. Nevertheless, FF discovery is hard when pose
classifiers are not adapted to the considered social scene, and
some works therefore use annotated pose information to this
end.

Addressing the above problems, we propose joint estima-
tion of target head, body orientations and FFs from social
scenes captured in surveillance settings. Different from prior
works that have focused either on (i) joint learning of head
and body pose exploiting human anatomic constraints (Ben-
fold and Reid 2011; Chen and Odobez 2012), or (ii) FF
discovery when positional and head pose information of
interactors are precomputed (Cristani et al. 2011; Vascon
et al. 2014), we present a unified framework to infer both
(i) and (ii). Our model exploits the synergetic interaction-
interactor relationship, i.e., FFs are characterized by mutual
scene locations and head, body pose of interactors, who con-
versely are constrained in terms of the possible range of head
and body orientations they can exhibit, motivating the need

for joint learning. Specifically, our novel learning frame-
work (i) exploits labeled and unlabeled data via manifold
regularization to learn the range of jointly possible head-
body orientations, (ii) exploits positional and pose-based
constraints relating interactors to discover FFs, and (iii) iter-
atively refines pose estimates of interactors based on FF
knowledge and vice-versa.

The salient aspects of our work are the following. (1)
In contrast to prior works, we mainly use targets’ body
orientation for discovering F-formations. While previous
works (Cristani et al. 2011;Vascon et al. 2014) have acknowl-
edged the utility of body pose for deducing FFs, they still
employ head pose as the primary cue for FF discovery given
the difficulty in estimating body pose under extreme occlu-
sions. Nevertheless, using head orientation is fundamentally
spurious as it can frequently change during social interac-
tions. In contrast, body pose is an inherently more stable cue,
and can more accurately define the geometrical FF arrange-
ment (Fig. 1). (2) In order to robustly estimate body pose
under occlusions, our learning framework limits the possible
range of body orientations based on the head pose to achieve
joint head and body pose learning, as in Chen and Odobez
(2012), and tackles varying levels of body occlusion by incor-
porating multiple, occlusion-adaptive regression functions.
Our approach to jointly estimate head, body orientations and
FF is inspired by the coupled head and body pose estimation
framework proposed in Chen and Odobez (2012). However,
we differ from Chen and Odobez (2012) as we couple head
and body pose estimation with F-formation detection. (3)We
explore a novel methodology for FF detection and propose
an algorithm where each target votes for its O-space cen-
ter, thereby indirectly modeling FF discovery as a clustering
problem. (4) Temporal consistency is also enforced to ensure
smoothness in pose and FF estimates over time.

To summarize, the main research contributions of this
work are: (i) We present joint estimation of F-formations
and targets’ head, body orientations in distant social scenes.
Via thorough experiments on three challenging datasets, we
demonstrate the benefits of our joint learning framework
against competing pose and FF detection approaches. (ii)
Different from prior works, we employ body pose as the
primary handle for discovering FFs. Robust computation
of body pose estimates is achieved via coupled learning of
head and body pose, and knowledge gained regarding FFs.
Furthermore, body occlusions are handled via the use of
multiple, occlusion-adaptive pose regressors. (iii) Enforcing
temporal consistencywith respect to estimated pose (classes)
and FF memberships is particularly useful while analyzing
surveillance scenes, where low video resolution and occlu-
sions make target localization and facial feature extraction
challenging and considerably error-prone.

This paper improves over our previous work (Ricci et al.
2015) in the following ways. An in-depth review of related
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Fig. 1 Problem overview (left) social scene from the Coffee break
dataset (Cristani et al. 2011). We jointly estimate conversational groups
and the head, body pose of conversing targets. Exemplar F-formations

are denoted by ellipses connecting feet positions of conversing targets,
and the type of each F-formation is also specified

work is presented to better motivate the need for our frame-
work. Furthermore, the proposed joint inference algorithm is
elaborately detailed along with the associated optimization
procedure, and our experimental evaluation is significantly
extended with the use of a third, considerably more challeng-
ing dataset (as compared to the two used in Ricci et al. 2015).
Remainder of the paper is organized as follows. The fol-
lowing section outlines related work on pose estimation and
social scene analysis to motivate the need for our framework.
Section 3 describes our algorithm and its salient aspects,
and experimental results to demonstrate the benefits of our
approach are presented in Sect. 4. We conclude with key
remarks in Sect. 5.

2 Related Work

Research areas closely related to this work are (i) head
and body pose estimation (HPE and BPE) from surveil-
lance videos, (ii) semi or weakly-supervised learning, and
(iii) detection of face-to-face interactions and conversational
groups from social scenes. Below, we present a review of
each of these topics.

2.1 Head and Body Pose Estimation

Head orientation serves as a useful cue to determine one’s
direction of attention and interest, and therefore, head pose

estimation is of critical importance in studies examining
non-verbal communication, social attention, surveillance and
humanbehavior analysis (Benfold andReid 2011;Chamveha
et al. 2013; Chen and Odobez 2012; Yan et al. 2016;
Robertson and Reid 2006; Heili et al. 2014). Several tax-
onomies have been proposed to categorize prior works in
HPE, which can be found in Murphy-Chutorian and Trivedi
(2009). The categorizations are mainly methodology-based,
butHPEmethods also differ based on their operating domain,
i.e., HPE under low-resolution views acquired from far-
field cameras, high resolution views from near-field cameras,
involving static and moving targets, etc.

In this work, we are expressly interested in HPE from low-
resolution or surveillance videos involving static andmoving
targets. HPE for moving targets is an interesting problem
which presents both challenges and opportunities. Person
tracking, head localization and HPE are inherently hard in
this scenario as targets undergo appearance changes due to
varying camera perspective and scale, illumination and body
articulation as theymove around. However, themotion direc-
tion of moving targets can be effectively used as a proxy for
body or head pose in such scenes.

In Robertson and Reid (2006), efficient gaze determina-
tion is achieved by combining walking direction, obtained
via target tracking and serving as a proxy for body pose,
with head pose computed based on skin characteristics. In
Smith et al. (2008), the authors jointly perform head track-
ing and HPE, and show that knowledge of head pose can
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be used for improving head localization accuracy and vice-
versa. This shared knowledge is exploited to obtain the visual
focus of attention of pedestrians in outdoor scenes. Unsu-
pervised HPE is proposed in Benfold and Reid (2011) by
exploiting weak labels in the form of pedestrians’ walking
direction. A similar idea is also investigated in Chamveha
et al. (2013). Chen and Odobez (2012) compute head pose
by introducing two coupling factors, one between head and
body pose and another between body pose and velocity direc-
tion. Differently, with explicit focus on appearance variations
with scene location (or alternatively target motion), authors
of Yan et al. (2013) partition the monitored scene space into
a dense uniform spatial grid to learn region-specific head
pose estimators along with the scene regions where facial
appearance is more or less stable. Alternatively, an adaptive
framework for multi-view HPE under target motion is pro-
posed by Rajagopal et al. (2014), but this work suffers from
the limitation of having to specify the number of scene par-
titions a priori for learning (as many) region-specific pose
estimators.

When targets in the scene are mostly static, lack of motion
cues makes the HPE problem harder. This is particularly the
case with social scenes (e.g., a cocktail party) (Alameda-
Pineda et al. 2016), where targets are not only static but
also severely occluded owing to clutter. Researchers have
explored novel means to perform HPE in meeting situations.
For instance, in one of the first works to examine round-table
meetings, Voit and Stiefelhagen (2009) use visual informa-
tion from multiple views along with a neural network for
single and multi-view HPE. Their algorithm is applicable to
the CHIL (Butko et al. 2011) and AMI (Carletta et al. 2006)
datasets where interacting targets are seated and captured by
far-field cameras. In Demirkus et al. (2014), a hierarchical
graphical model is proposed, and integrated with tempo-
ral smoothing to achieve improved HPE. The visual focus
of attention modeled via head pose is examined for several
meeting scenes in Ba and Odobez (2006). Some HPE algo-
rithms are designed to explicitly handle occlusions (Meyer
et al. 2015), while others learn person-specific appearance
variations in their model (Yan et al. 2009).

Although estimation of full/articulated body pose has
received much attention (Andriluka et al. 2009; Toshev
and Szegedy 2014; Tompson et al. 2014), very few works
have addressed body pose estimation in surveillance set-
tings. BPE from surveillance video has been studied by few
works (Robertson and Reid 2006; Krahnstoever et al. 2011;
Chen et al. 2011), but they only consider body orientation
as a link between walking direction and head pose, and do
not explicitly estimate body pose. Recent works of Chen and
Odobez (2012) and Liem and Gavrila (2014) demonstrate
the benefits of jointly learning head and body pose. In Chen
and Odobez (2012), this is further extended to social inter-
actions involving 2–3 individuals. Extending this further, we

expressly consider social scenes involving groups of interac-
tors, and such scenes are characterized by little motion and
considerable occlusions. Typically, prior BPE approaches do
notworkwell in these conditions asmostmethods aremonoc-
ular. For instance, experiments in Benfold and Reid (2011)
show poor PE performance when targets are either static or
their velocity is noisy. Similarly, Yan et al. (2016) alleviate
the occlusion problemby consideringmulti-view images, but
do not implement specific strategies for handling body occlu-
sion. Very recently, joint HPE and BPE in social scenes is
considered in Alameda-Pineda et al. (2015). However, addi-
tional information from non-visual sensors (i.e. microphones
and infrared beam detectors) is employed as a form of weak
supervision, thus simplifying the pose estimation task.

2.2 Weakly-Supervised Learning Methods for HPE
and BPE

The joint learning framework we propose shares similarities
with previous semi-supervised learning, transfer learning,
and multi-task learning methods for head and body pose
estimation. We briefly review these ideas and highlight their
similarities and differences with respect to each in the pro-
posed method.

Semi-supervised learning (see Zhu 2005 for a sur-
vey) leverages both labeled and unlabeled data to achieve
improved classification with limited training data. In this
work, given the difficulty in acquiring large amounts of
labeled training data from the monitored social scene, we
employ labeled data derived from an auxiliary dataset to
improve pose estimation performance. Similarities in terms
of appearance features between labeled and unlabeled data
acquired from the social scene are then enforced viamanifold
regularization to jointly learn head and body pose classi-
fiers. A similar idea is exploited in Chen and Odobez (2012)
and Alameda-Pineda et al. (2015), where semi-supervised
learning frameworks for HPE and BPE are proposed. Similar
to Chen andOdobez (2012), we also adopt a semi-supervised
approach to estimate head and body pose. However, our work
is unique on multiple aspects. Firstly, Chen and Odobez
(2012) mainly focus on head and body pose estimation,
while ourmethod focuses on simultaneous estimation of head
and body pose as well as F-Formations in social interac-
tions, which is challenging to analyze as targets are mostly
static and severely occluded. Secondly, F-formations are esti-
mated by adding a further term in the loss function which
simultaneously regularizes BPE. Finally, we include tempo-
ral smoothing and occlusion-specific classifiers that improve
pose and FF estimation performance.

In transfer learning, a classifier is initially built upon
learning from a source dataset, and later adapted to a target
dataset having a different feature distribution. A few transfer
learning approaches have been proposed recently for HPE.
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In Rajagopal et al. (2014), transfer learning techniques are
used to address variations between source and target datasets
owing to the differing range of head orientations and person
motion in the target. Similarly, in Heili et al. (2014) a domain
adaptation technique is used to ‘align’ the underlying struc-
ture of the source and target datasets. In our framework,
we attempt to enforce consistency between head and body
samples extracted from the auxiliary dataset and the social
scene under analysis, which have different attributes—this
can be regarded as knowledge transfer. As detailed in Sect. 4,
our algorithm performs poorly when only the auxiliary data
samples are employed for learning. However, performance
improves considerably when samples from the scene are
additionally utilized, facilitating the model to adapt to the
target scene.

In multi-task learning, several classifiers are learned for
related tasks so that their commonalities aswell as differences
are modeled by the classifiers (e.g., learning pose classifiers
for different views). This procedure requires that the input
and output spaces for all tasks remain the same. For instance,
Yan et al. (2016) address the problem of HPE under tar-
get motion by modeling facial similarities and differences
among neighboring scene regions using multi-task learning.
Our learning framework connects the body pose of inter-
actors with FFs, which are highly functionally related, but
correspond to different input spaces.

2.3 Social Interactions and Conversational Groups

There has been considerable interest in analyzing social inter-
actions and social scenes of late. Marin-Jimenez et al. (2014)
propose continuous HPE using Gaussian process regres-
sion, and evaluate severalmethodologies for detecting dyadic
interactions in a video shot. Ba and Odobez (2008) pro-
pose the joint estimation of visual focus of attention (VFOA)
by the use of interaction models and contextual cues. Here,
they exploit the fact that people in a group interaction natu-
rally tend to share VFOA targets. Patron-Perez et al. (2012)
achieve spatio-temporal localization of dyadic interactions
from TV videos using a structured support vector machine,
combining information from pose-based and position-based
descriptors. Choi et al. (2014) recognize group activities
by analyzing the spatial arrangement of group members.
Other works have focused on (a) detecting groups instead
of individuals in static images to overcome partial occlu-
sions (Eichner and Ferrari 2010; Tang et al. 2014) and
(b) leveraging information concerning groups to improve
multi-target tracking performance (Pellegrini et al. 2010;
Leal-Taixé et al. 2014).

Detecting conversational groups or F-formations in social
scenes has generated interest lately due to security, behav-
ioral and commercial applications (Cristani et al. 2011; Setti
et al. 2013; Gan et al. 2013). Cristani et al. (2011) ana-

lyze spatial arrangements and head orientations, and propose
a voting strategy based on the Hough transform to detect
F-formations. This work is extended via multi-scale anal-
ysis in Setti et al. (2013). Social interactions are detected
from ego-centric videos via a correlation clustering algo-
rithm in Alletto et al. (2014). Vascon et al. (2014) detect
FFs by applying a game-theoretic clustering algorithm to an
affinity matrix. This is achieved by first creating a frustum
(a two dimensional histogram capturing social attention) for
each individual using their head orientation and feet posi-
tion. A game-theoretic clustering algorithm is then employed
over the affinity matrix, which is calculated using frustum
overlaps, to detect FF. A more comprehensive study of this
approach is presented in Vascon et al. (2016). Although
bothVascon et al. (2014), Vascon et al. (2016) propose an ele-
gant approach to deal with noise and systematically integrate
temporal information to obtain superior results, availabil-
ity of head pose using either manual or semi-automatic
method is assumed. Our approach differs significantly from
Vascon et al. (2014), Vascon et al. (2016) as we estimate
both head and body pose and detect FFs simultaneously
and without assuming the availability of head pose orien-
tations.

Recently, the effectiveness of the graph-cut approach for
individuating FFs is demonstrated in Setti et al. (2015).
While orientation relationships among interactors have been
exploited for detecting conversational groups, joint estima-
tion of FFs, and the head, body pose of the FF members
has never been attempted. In this paper, we show that joint
learning benefits both pose and FF estimation.

The following section describes the various aspects of our
pose and FF estimation framework in detail.

3 Framework for Analyzing Social Scenes

3.1 Overview

In this section, we describe our approach to jointly infer con-
versational groups and the head and body pose of each target
in a social scene. An overview of our social scene analy-
sis pipeline is presented in Fig. 2. Given a distant video
of a social gathering (e.g., cocktail party), we first apply
multi-target tracking to estimate the feet positions of per-
sons in the scene. Target feet positions are estimated with
the Hybrid Joint Separable-Particle Filter (HJS-PF) multi-
target tracking approach (see supplemetarymaterial formore
elaborate description of how HJS-PF is deployed for our
purpose) described in Hu et al. (2015), and are used for
head localization and cropping via a 3D head-plus-shoulder
model registered through shape matching as in Yan et al.
(2016). Each target’s body region is determined as the por-
tion between head and feet coordinates.
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Fig. 2 Overview of our social scene analysis framework

We also estimate the extent of occlusion for each tar-
get by accounting for shape-projections of targets closer
to the camera. In practice, we associate a binary occlusion
mask to each of the computed body crops. Camera calibra-
tion information is used for tracking, head/body localization,
as well as for occlusion detection. We then extract visual
descriptors (HOG descriptors as detailed in Sect. 3.4) for the
head and body regions. Targets’ positions, head and body
features along with occlusion masks are input to our joint
learning algorithm that outputs (i) head and body pose and
(ii) F-formation membership for each target as described
below.

3.2 Problem Setting

We consider a NT -frame video depicting NK persons
involved in a social gathering. Each target k is character-
ized by a time-dependent triplet (xBkt , x

H
kt , pkt ), providing

for each frame t the body and head descriptors denoted
by xBkt ∈ XB and xHkt ∈ Xh respectively, and the target’s
feet position pkt ∈ R

2. Here, XB and XH represent the
feature spaces associated to body and head samples respec-
tively. We use HOG descriptors to characterize the head and
body patches (see Sect. 3.4 for more details). The target’s
feet positions are obtained using tracking and registration.
Information regarding all video targets are collected in a

set S = {(xBkt , xHkt , pkt ) : k ∈ 〈NK 〉, t ∈ 〈NT 〉}kt , where
〈N 〉 = {1, . . . , N } for notational convenience.

The goal of the inference task is to estimate the body pose
αB
kt ∈ [0, 2π), the head pose αH

kt ∈ [0, 2π) and the conver-
sational group membership zkt ∈ 〈NK 〉 of each target k at
each frame t . As in previous works considering a low res-
olution setting (Yan et al. 2016; Rajagopal et al. 2014), we
estimate only the head and body pan.2 Analogous to clus-
tering methods, F-formations are determined by all targets
sharing the membership zkt (i.e., two targets k and h belong
to the same group at frame t if zkt = zht ). Singleton conver-
sational groups represent non-interacting targets.

In addition to the social scene information provided by
S, we exploit annotated training sets TB = {(x̂Bi , yBi )}NB

i=1 ⊆
XB × Y and TH = {(x̂Hi , yHi )}NH

i=1 ⊆ XH × Y to enhance
the head and body pose estimation capabilities of our model.
Each training sample in T�, where � ∈ {B,H}, is a descrip-
tor x̂�

i for head/body with an associated pose label y�
i . The

pose labels are NC -dimensional binary vectors3 with a single
non-zero entry indexing an angle in α = [α1, . . . , αNC ]� ∈
[0, 2π)NC (i.e.,Y ∈ {0, 1}NC , where NC denotes the number
of quantized angles).

2 The head and body angles are orientations in the ground plane.
3 Most available datasets on head and body pose estimation in low
resolution settings only provide quantized pose annotations.
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For convenience, we also define a re-parametrization of α

in terms of a matrix of 2-dimensional vectors:

A =
[
cosα1 · · · cosαNC

sin α1 · · · sin αNC

]
. (1)

In the following, symbol � is used as a placeholder for H or
B.

3.3 Jointly Inferring Pose and F-Formations

The inference problem that we face is semi-supervised,
as we have both annotated data from T = (TB, TH) and
non-annotated observations S from the social scene under
analysis. The head and body pose annotations fromT implic-
itly provide a prior for estimating the pose of targets in S.
F-formation annotations are not used during learning, and
are therefore discovered in an unsupervised manner.

In order to exploit the distribution of descriptors corre-
sponding to annotated data and scene targets, we introduce
two regression functions fB and fH for the body and head
pose respectively, which are two unknowns in our model.
Intuitively, f� : X� → R

NC provides for each sample in X�,
a prediction for the pose label inY that is relaxed to a real vec-
tor inRNC . The output of f� can be used to linearly combine
the columns of A in (1), which are a vectorial representation
of the discretized angles in α. The resulting 2-dimensional
vector A f�(x�

kt ) ∈ R
2 can finally be cast in polar coordi-

nates to recover the pose angles α�
kt corresponding to x�

kt in
S.

Assignment of targets to FFs is modeled indirectly by let-
ting each target vote for the center of the FF he/she belongs
to. In practice, we introduce a latent 2-dimensional vector ckt
for each target k ∈ 〈NK 〉 and frame t ∈ 〈NT 〉, which intu-
itively represents the voted FF center for target k in frame t .
We assume these centers, which will be additional unknowns
of our model, to be stacked into a 2 × NK NT -dimensional
matrix C. We denote by C = R

2×NK NT , the set of all such
matrices. Given C , the corresponding F-formation assign-
ments zkt can be easily recovered as shown in Hocking et al.
(2011). Intuitively, two targets k and h are considered mem-
bers of the same group, i.e., zkt = zht , if their voted centers
ckt and cht for the O-space center are close enough. We use a
very small value (1e-6) to merge two clusters and we verified
empirically that values from 1e-3 to 1e-6 are suitable to our
purpose.

Our goal is to jointly infer the head and body poses and
F-formations, i.e., to find pose regressors and center votes
that minimize the following loss, given T and S:

min LP ( fB, fH; T ,S) + LF ( fB,C;S)

s.t. fB ∈ FB, fH ∈ FH, C ∈ C
(2)

where F� is the space of pose regressors f� (details on pose
regressors spaces are given in Sect. 3.4). The loss in (2) has
two terms. The first term, LP , enforces pose regressors to
reflect the distribution of annotated samples in T under a
regularization that also accounts for the manifold of unla-
beled samples in S. The second term, LF , enforces the body
pose estimates of the targets in S to be consistent with the FF
center votes given by C . Given the optimal solution to (2),
we recover the head/body pose α�

kt and FF assignment zkt of
each target at every frame as discussed above.

We now describe LP and LF in detail.

3.3.1 Pose-Related Loss Term

The pose-related loss term LP decomposes into three terms:

LP ( fB, fH; T ,S) =
∑

�∈{H,B}
L�( f�; T�,S)+LC ( fB, fH;S).

(3)

The first two loss terms LH and LB penalize pose regressors
errors with respect to the annotated training sets under har-
monic regularization, also accounting for the data manifold
of S. To this end, we introduce two graph-based manifolds
GH and GB for the available head and body samples. For
each � ∈ {H,B}, the graph is defined as G� = (V�, E�, ω�),
where V� comprises all body/head samples (depending on �)
from T� and S, the first N� being samples from T� and the
rest from S. In total, V� contains N� + NK NT elements, the
i th one denoted by v�

i ∈ X�. For all annotated samples in
V�, i.e., ∀i ∈ 〈N�〉, we indicate the corresponding pose label
by y�

i . The set E� ⊆ 〈|V�|〉2 indexes pairs of neighboring
vertices, while ω�

i j ≥ 0 is a non-negative weight indicating
the strength of the (i, j)-edge connection. More details will
be given in Sect. 3.4.

Given GH and GB, we define the loss term L� as

L�( f ; T�,S) = 1

N�

N�∑
i=1

‖ f (v�
i ) − y�

i ‖2M + λR‖ f ‖2F�

+ λU
1

|ω�|0
∑

(i, j)∈E�
ω�
i j‖ f (v�

i ) − f (v�
j )‖2M ,

(4)

where ‖ · ‖F� is a semi-norm for the function space F�, |ω|0
is the number of edges with non-zero weights and ‖a‖M =√
a�Ma is a semi-norm on RNC induced by the symmetric,

positive semi-definite matrix M ∈ R
NC×NC , which accounts

for the semantic mapping from the pose label vectors ∈ R
NC

to angles in α (see, Sect. 3.4).
The first term in L� measures the prediction error of

f ∈ F� with respect to the annotated training set; the sec-
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ond term regularizes f in the respective function space; the
last term performs harmonic regularization of f with respect
to the manifold of data samples in T� and S. Finally, we
have two free non-negative parameters λR and λU to bal-
ance the contribution of the regularization terms. Note that
losses akin to (4) are typically encountered in the context of
semi-supervised learning (Zhu and Goldberg 2009).

The last term in (3) enforces consistency between head
and body poses predicted on S by penalizing configurations
violating human anatomic constraints (e.g., head and body
oriented in opposite directions):

LC ( fB, fH;S) = λC
1

NK NT

NK∑
k=1

NT∑
t=1

‖ fB(xBkt )− fH(xHkt )‖2M ,

(5)

where λC is a free, non-negative parameter. The pose related
loss terms in (3) is similar to the objective function used
in Chen and Odobez (2012). However, in Chen and Odobez
(2012) the F-formation-related loss term described in the fol-
lowing subsection is not considered.

3.3.2 The F-Formation-Related Loss Term

The second term of the objective function in (2) is specifi-
cally defined to exploit the relationship between targets’ body
orientation and F-formations. Our purpose is to exploit the
targets’ group membership for refining body pose estimates
as group members tend to orient towards the O-space cen-
ter and, conversely, to accurately detect FFs from body pose
estimates of interacting targets.

The following loss term depends on a body regressor fB ∈
FB, and on a matrix of votes C ∈ C concerning F-formation
center for each target and at each frame:

LF ( fB,C;S)

= 1

NK NT

[
λF

NK∑
k=1

NT∑
t=1

‖ckt − ( pkt + DA fB(xBkt ))‖22

+ γc

NK∑
k,h=1

NT∑
t=1

‖ckt − cht‖1 + λT

NK∑
k=1

NT∑
t=2

‖ckt − ck(t−1)‖1
]

,

(6)

where ‖ · ‖p is the p-norm, and λF , D, γc and λT are non-
negative, free parameters.

Since interactors typically orient their bodies towards the
O-space center, we expect the center vote of each target at
each frame to be located D units from the target in the direc-
tion predicted by the body pose regressor, where D denotes
the expected target distance from a hypotheticalO-space cen-
ter (akin to previous works Cristani et al. 2011; Vascon et al.
2014). The body orientation for the kth target at frame t inR2

is obtained as A fB(xBkt ), since the output of f is the predicted
pose label. Hence, the ideal FF center position ckt for each
target is given by pkt + dkt , where dkt = DA fB(xBkt ). This
is accounted by the first term in (6). The second term induces
a spatial clustering of the center votes of all targets at each
frame, which is regulated by the parameter γc: large values of
γc tend to favor the concentration of the votes into few cluster
points, while low values reduce the mutual influence of the
targets’ votes. Computed cluster centroids represent putative
O-space centers of FFs in the scene. Note that the 1-norm
induces the centroids of targets belonging to the same FF
to merge. This effect may not be achieved with other norms
such as the L2-norm. Finally, the third term enforces tempo-
ral consistency of the targets’ center votes, given the fact that
FFs do not change rapidly over time. It is worth nothing that
in (6), no information regarding group membership (zkt ) is
employed to force clustering votes of only associated targets.
The general formulation employed may therefore result in a
biased cluster centroid estimate pointing to the scene center.
However, this biasing rarely happens in practice when the
value of γc is properly chosen, and does not hinder accurate
recognition of conversational groups.

In contrast to other prior works which use head orienta-
tions to infer FFs,wepropose a coupled inference framework.
The loss term LF allows for coupled estimation of body pose
and O-space centroids via the center votes of targets (Fig. 3).
Indeed, we exploit the fact that body pose is a more sta-
ble cue than head pose for inferring FFs, and this reflects via
improved FF and body pose estimation accuracy as discussed
in Sect. 4.

3.4 Implementation Details

Wemodel each regressor f� as a generalized, linear function
parametrized by a matrix Θ ∈ R

NC×M� , i.e.

f�(x;Θ) = Θ��(x), (7)

where �� : X� → R
M� is a feature mapping. The set of all

regressors f � is thus given by

F� = { f�(x;Θ) : Θ ∈ R
NC×M�}, (8)

In light of the surjection between parameters Θ ∈ R
NC×M�

and regressors f� ∈ F�, we can re-write the minimization in
(2) with variables ΘB ∈ R

NC×MB and ΘH ∈ R
NC×MH , by

substituting f� with its definition in (7) and by taking the fol-
lowing seminorm on the space F�: ‖ f (·;Θ)‖F� = ‖Θ‖F ,
where ‖ · ‖F denotes the Frobenious norm. Note that the fea-
ture mapping �� can be specified by implicitly defining a
kernel function, as in kernel methods. We consider a linear
kernel in our experiments.
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Fig. 3 (Left) O-space of the F-formation involving three targets k, r
and q and their body pose. (Center) direction vectors d(.) obtained via
body pose regressor are shown using blue arrows, while c(.) (yellow
points) denote voted center locations. By minimizing (2), we refine

body pose and F-formation estimates to arrive at the least loss config-
uration (right), where the voted centers for each target cluster at the
O-space centroid. For sake of simplicity, we illustrate the minimization
of (2) for a single frame t and for λT = 0 (Color figure online)

To facilitate comparisons with previous works (Chen and
Odobez 2012; Rajagopal et al. 2014), we consider HOG fea-
tures to describe the head and body regions. Head crops are
first normalized to 20×20 pixels and HOG features are com-
puted over 4 × 4 cells. Similarly, body images are resized
to 80 × 60 pixels, and HOG features are extracted over
4 × 4 cells. Similar to previous works (Chen and Odobez
2012; Rajagopal et al. 2014) and consistent with annota-
tions for most datasets in a low-resolution setting, we set
NC = 8.

The graph-based data manifoldsG� = (V�, E�, ω�), used
in (4) for harmonic regularization of pose regressors, are
defined such that head/body samples similar in appearance
should correspond to similar pose. Specifically, (i, j) ∈ E� if
the i th sample v�

i ∈ V� is among the k-nearest neighbors of
the j th sample v�

j ∈ V� under the standard Euclideanmetric.
Moreover, temporal smoothing is enforced by imposing that
(i, j) ∈ E� if samples v�

i and v�
j correspond to samples x�

kt
and x�

kt ′ in S, where |t − t ′| = 1, i.e., they correspond to the
same target in contiguous frames. Also, we do not impose
any preference over edges and set a constant strength equal
to one, i.e., ω�

i j = 1. The metric matrix M adopted in (4) and

in (5) is defined as M = A�A, and the parameters λR , λU ,
λC , λF , λT and γc are fixed using a validation set. Details
are provided in Sect. 4.

3.5 Optimization

By taking (8) as the regressors’ space and by rewriting the
minimization in (2) in terms ofΘ� as mentioned in Sect. 3.4,
we obtain a convex optimization problem with variables
(ΘB,ΘH,C), which can be reformulated as a Quadratic Pro-
gram (QP). The convexity is implied by the fact that we have
a sum of positively-rescaled terms being the composition of a
norm (or semi-norm) with an affine function of the variables
to be optimized. Accordingly, any local solver can be used
to find a global solution, irrespective of the initial starting
point.

The optimization strategy we propose involves alternating
updates of ΘB, ΘH and C. Before delving into details, we
introduce the following matrices: X� = (x�

11, . . . , x
�
NK NT

),

X̂� = (x̂�
1, . . . , x̂

�
N�), Y� = ( y�

1, . . . , y
�
N�) and V� =

(X̂�, X�). Moreover, let L� denote the Laplacian matrix of
the graph G� defined in Sect. 3.3, and let:

E� = λR I + (X̂� X̂
�
� + λUV�L�V�� + λCX�X�� ) ⊗ M,

F� = M
[
Y� X̂

�
� + λCΘ�X�X��

]
,

where (�, �) ∈ {(H,B), (B,H)}, ⊗ is the Kronecker product
and I is a properly-sized identity matrix. In the following,
we briefly describe our iterative optimization framework.
Detailed derivations can be found in the “Appendix”.

Update of ΘH The optimization problem in (2) is quadratic
and unconstrained in ΘH. Accordingly, the update rule that
we find by setting the first-order derivatives to zero has the
following closed-form:

vec(ΘH) ← E−1
H vec(FH),

where vec(·) denotes vectorization of a matrix.

Update of ΘB Similarly, the update for ΘB is given by

vec(ΘB) ←
[
EB + λF D

2XBX�
B ⊗ A�A

]−1
vec(G),

where G = FB + λF DA�(C − P)X�
B .

Update of C Computing a minimizer of (2) with respect to
C (withΘ� fixed) is equivalent to finding a minimizer of LF

with respect to C, as LP does not depend on C . The result-
ing optimization problem can be solved efficiently with the
alternating direction method of multipliers (Chi and Lange
2015).
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Occlusion Left Occlusion Right Occlusion Bottom Reject

Fig. 4 The different occlusion categories illustratedwith samples from
the Cocktail Party dataset. White pixels show the occlusion mask gen-
erated by a tracked foreground target. Red rectangles show the regions
associated to the assigned category (for left/right category we consider

the left-/right-half of the crop, while for the bottom category we use
half of the torso area which covers the bottom-most 70% of the crop
area) (Color figure online)

3.6 Handling Occlusions

We now show how the proposed framework can be extended
to integrate information about body occlusions. In previ-
ous approaches (Mathias et al. 2013; Wojek et al. 2011),
a convex combination of the occlusion-specific classifier
scores is considered at test time. Following a similar idea,
we partition the body samples extracted from the social
scene into four groups according to the detected level of
occlusion, namely (i) fully visible and occlusion (ii) to the
left, (iii) to the right, (iv) at the bottom. To determine the
occlusion category of a sample we first generate an occlu-
sion mask using a coarse shape model (see supplementary
material) and considering the target position obtained by
visual tracking and camera calibration information. A region
is considered occluded if at least 50% of its pixels are
masked. The sample is assigned to the category group with
the highest occlusion level. If the occlusion level is above
80% of the entire mask the sample is rejected. Figure 4
shows the regions used to determine the level of occlu-
sion and illustrates the different occlusion categories with
real samples. Based on the detected level of occlusion, we
propose to learn multiple occlusion-specific regression func-
tions for body pose estimation and invoke the appropriate
model in Eq. (6). In this work, we consider O = 4 dif-
ferent pose regressors f oB , o = 1, . . . , O , one for each
group.

Similarly, we generate four sets of virtual samples from
the auxiliary training dataset, creating artificial occlusions.
In this way, solving (2) with the proposed iterative approach
(see, Sect. 3.5) reduces to solving a set of O independent
optimization problemswhile learning f oB and fH. Conversely,
while learning C, the appropriate occlusion-specific regres-
sor f oB is invoked for each sample xBk,t , according to its
occlusion level.While our approach canbe also used tomodel
head occlusions,we consider only body occlusions to (i) limit
computational costs, and (ii) address the fact that body pose
estimation is more severely impeded by ambient occlusions
as compared to head pose.

4 Experimental Results

In this section, we demonstrate the effectiveness of the
proposed approach and present the results of our experimen-
tal evaluation, conducted on three publicly available social
datasets.

4.1 Datasets

We considered three benchmark datasets, namely the Cock-
tail Party (CP) (Zen et al. 2010), Coffee Break (CB) (Cristani
et al. 2011) and the recently proposed SALSA (Alameda-
Pineda et al. 2016) for our evaluation. Figure 5 shows one
sample frame extracted from each of these datasets and
Table 1 gives details about the datasets used in this paper.
Brief descriptions of these three datasets follow.

The Cocktail Party dataset (Zen et al. 2010) contains
a 30-min video recording of a cocktail party in a 30m2

room involving six subjects. The social event is recorded
using four synchronized wall-mounted cameras at 15Hz
(512 × 384 pixels, jpeg). Target positions are logged via a
multi-camera tracker, while head and body orientations are
manually assigned to one of NC = 8 class labels denot-
ing a quantized 45◦ head/body pan, for those frames where
FF annotations are available. However, consistent with prior
works (Cristani et al. 2011; Vascon et al. 2014), we only used
video data from a single camera for pose and FF estimation.
FF annotations are available every five seconds resulting in
a total of 320 frames for evaluation.

The Coffee Break dataset (Cristani et al. 2011) depicts a
social event and comprises a maximum of 14 targets, orga-
nized in groups of 2-3 persons. Target positions are given
and have been obtained by processing the sequences with
a visual tracking algorithm. Moreover, the dataset provides
annotation only for head poses quantized into four orien-
tations with respect to the image plane. We enriched the
ground-truth by annotating both the head and body samples
using a fine-grained quantization of orientations with respect
to the ground plane. The dataset consists of two sequences
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Fig. 5 Sample frames extracted from the considered datasets: (left) Cocktail Party, (center) Coffee Break and (right) SALSA

Table 1 Datasets used in this paper

Dataset Length (min) Resolution #Annotated frames Head, body pose FF #Targets

DPOSE – 1024 × 768 50,000 Yes No 16

Cocktail party (CP) 30 512 × 384 320 Yes Yes 6

Coffee break (CB) – 1440 × 1080 120 Yes Yes 14

SALSA 60 512 × 384 1200 Yes Yes 18

with annotations for 45 and 75 frames in the two sequences.
The actual duration of the sequences is not known. The FF
annotations are possibly interleaved.

SALSA (Alameda-Pineda et al. 2016) is a recent and chal-
lenging dataset comprising of two recordings of a social event
(30 min each) involving 18 participants. The first of the two
videos covers targets interacting during a poster presenta-
tion session, while the second depicts a cocktail party, where
targets freely move around a table with food and beverages.
Both sequences are extremely challenging for visual analysis
due to low-resolution of the targets’ faces, background clutter
and persistent occlusions (SALSA also contains sensor data
logged from sociometric badges worn by targets, which is
not utilized in this work). The social scene in SALSA is visu-
ally captured by four synchronized cameras at (1024 × 768
resolution) operating at 15Hz. Targets are tracked using a
multi-camera tracker. Also, manual annotations are avail-
able every three seconds, indicating ground position, head
and body orientation of each target as well as FFs, thus lead-
ing to 1200 frames for evaluation.

FF annotations are stated as a partition of the tar-
get identities set. Target Ids within the same partition
belong to an F-formation. For instance, annotation given as
{{1, 2}, {3, 4}, {5}} indicates that target ids 1 and 2 belong to
an FF, while 3 and 4 belong to another FF and 5 is a singleton.
Pre-processing steps are applied to each dataset as described
in Sect. 3.1 (camera calibration, required by our method, is
provided with each dataset). For sake of completeness, we
also report the histograms of ground truth group cardinal-
ities for different datasets in Fig. 6. The plots demonstrate
that SALSA dataset is richer with a wide range of group
cardinalities.

Coffee Break dataset comes with its own tracking annota-
tions and we use them for fair comparison with previously-
published results. For Cocktail Party and SALSA datasets,
we exploit the multi-view recordings available for tracking
with our implementation of HJS-PF multi-camera person
tracking.4 Also, ground positions of subjects are determined
with the tracker. Finally, data from only one view is used for
HPE, BPE and F-formation estimation.

We additionally used samples extracted from the DPOSE
dataset (Rajagopal et al. 2014) as auxiliary labeled data
for training. DPOSE contains multi-view video sequences
depicting a target freely moving in a room monitored by
four synchronized cameras with overlapping field of view.
In the dataset there are 16 different subjects. Head pose mea-
surements (pan, tilt and roll) are available as acquired using
inertial sensors, while body pose is not annotated. Therefore,
in our experiments the body pose in each frame was deter-
mined using the walking direction as in Benfold and Reid
(2011).

4.2 Experimental Setup

Algorithm Parameters The parameters of the algorithm
were tuned using a small validation set consisting of random
samples amounting to 5% of each dataset. The best values
we obtained, namely λU = 0.5, λF = 0.2, λC = 0.2 and
λR = 0.1, were fixed for all our experiments. The parameter
D, which indicates the O-space radius on the ground plane,

4 Details on tracking canbe found in the supplementarymaterial. Track-
ing data for Cocktail Party and SALSA datasets are made available at
tev.fbk.eu/datasets/cp and tev.fbk.eu/datasets/salsa respectively.
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Fig. 6 Histogram of number of groups found in different datasets used in this paper. a Cocktailparty, b SALSA, c Coffeebreak - Seq1,
d Coffeebreak - Seq 2

was set equal to 0.5 meters in the experiments on Cock-
tail Party and Coffee Break, while it was set to 0.6 meters
for SALSA. This is consistent with previous approaches
(Cristani et al. 2011; Vascon et al. 2014), and with soci-
ological studies (Ciolek and Kendon 1980) which fix an
upper bound of about 1.2 meters for the typical distance
between interacting targets in casual/personal relations. Dif-
ferent temporal smoothness constraints were enforced for
the three datasets due to social dynamics and frequency of
annotated frames. Specifically, the CB and SALSA datasets
are sparsely annotated, with high temporal distance between
annotated frames. Therefore, the temporal parameter λT was
set to low value of 0.01 for those datasets, while we used
a higher one, namely 0.1 for CP. The clustering parameter
was set to γc = 0.2 for the experiments on Coffee Break
and Cocktail Party datasets and γc = 0.5 for SALSA. As
shown in Fig. 10, values in the range [0.2, 0.5] provide the
best performance. A sensitivity analysis study is provided in
Sect. 4.3.
Performance Evaluation To evaluate head and body pose
accuracy, we used the mean angular error (in degrees) as
commonly used in previous works in Chen and Odobez
(2012). To transform the NC -dimensional output of our
algorithm (ŷi , i = 1, . . . , NC ) to a real-valued angle, we
compute the weighted average. Specifically, given a sample

x�
kt from the social scene, the associated head/body pose α�

kt
is recovered by computing α�

kt = atan2(a�
sin, a

�
cos), where

a� = [a�
cos, a

�
sin]T = A f�(x�

kt ). FF estimation accuracy
was evaluated using the F1-score as per the standard protocol
formulated by previous works (Cristani et al. 2011; Vascon
et al. 2014). The F1-score is computed as F1 = 2Pr Re

Pr+Re and

precision and recall are defined as follows: Pr = T P
T P+FP

and Re = T P
T P+FN . To compute the true positives T P in

each frame, we consider a group as correctly estimated if at
least T · |G| members are accurately determined, where |G|
is the cardinality of the group G and T = 2/3. The number
of false positives FP and false negatives FN rates are derived
by subtracting TP from the cardinality of the detected groups
and of the ground truth groups respectively.
Computational Cost Analysis Our algorithm runs on a
desktop with a quad-core Intel processor (3.3 GHz) and
8GB RAM. The complexity of the tracking algorithm has a
quadratic upper bound on the number of targets.With 50 par-
ticles for each target, a C++ implementation runs in real-time
for CP and at 7 fps for SALSA dataset. The computational
complexity of the head/body localization modules is linear
in the number of targets. The joint head/body pose and FF
estimation approach is coded in MATLAB (not optimized)
and takes on average about 0.1 sec per frame.
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Table 2 Average head and body
pose estimation error (degrees)

Method Cocktail party Coffee break SALSA

Head Body Head Body Head Body

AUX (λU = λF = λC = λT = 0) 58.2 65.3 64.3 68.6 58.3 62.4

AUX + SS (λF = λC = λT = 0) 51.3 54.7 56.8 58.6 55.3 59.6

AUX + SS + H/B (λF = λT = 0) 49.4 53.6 52.8 55.6 51.2 54.3

AUX + SS + H/B + FF (λT = 0) 46.5 50.3 46.6 49.4 50.9 51.2

AUX + SS + H/B + FF + T 45.8 48.2 45.3 47.4 50.7 50.2

Chen and Odobez (2012) 48.3 51.7 56.1 57.3 50.2 54.3

Table 3 Performance on
F-formation detection
(F1-score)

Cocktail party Coffee break SALSA

AUX (λU = λC = λT = 0) 0.79 0.78 0.58

AUX + SS (λC = λT = 0) 0.80 0.82 0.63

AUX + SS + H/B (λT = 0) 0.82 0.84 0.66

AUX + SS + H/B + T 0.85 0.85 0.67

4.3 Results and Discussion

4.3.1 Evaluating Head Pose, Body Pose and F-Formation
Estimation Performance

We firstly evaluate the effectiveness of our joint estimation
framework on head and body pose estimation (HPE and
BPE). Table 2 shows the average HPE, BPE errors on the
three considered datasets. The maximum PE error for all
datasets is obtainedwhen the objective function only involves
the loss term corresponding to auxiliary labeled data (AUX).
However, incorporating data from the analyzed social scene
(AUX+SS) and coupling head and body pose learning (AUX
+ SS + H/B) as in (5) considerably reduces pose estima-
tion error. Thereafter, integrating the FF term in (6) further
improves pose estimates. This improvement confirms the
benefit of jointly estimating body pose of interactors and
FFs. Including additional information concerning temporal
consistency (T) further reduces PE error, implying that all
cues considered in this work are beneficial.

The positive impact of joint learning on F-formation esti-
mation can be noted from Table 3.

This is consistent with our expectation that accurate BPE
of interacting targets can aid detection of FFs. Similar to
what is observed in Table 2, using unlabeled samples from
the social scene in addition to auxiliary data is beneficial.
Incorporating additional information such as H/B coupling
and temporal consistency in our framework further improves
F1-score. It is worth noting that, as expected, both pose and
FF estimation are worse for the challenging SALSA dataset
as compared to the others, due to the large number of targets
and variety of FF configurations observed.

In order to investigate the highest FF detection perfor-
mance using our formulation, we designed an experiment

CP CB SALSA
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Fig. 7 F1-scores computed with manually annotated data on the CP,
CB and SALSA datasets. GT denotes ground truth

to detect conversational groups considering only the F-
formation-related loss term and using (i) only the target
position (human annotation), (ii) the head pose ground truth
and (iii) the body pose ground truth. The results of this exper-
iment are given in Fig. 7.

Setting (i) is equivalent to putting D = 0 and it clearly
yields poor results, indicating that feet positions are not suf-
ficient to detect FF accurately (e.g. two targets standing back
to back belong to different FFs while being close by). Set-
tings (ii) and (iii) were implemented by using the true target
positions for pkt and the head and body pose ground truth
instead of A fB(xBkt ) in (6). We see a significant increase
in FF detection performance when pose cues are utilized
along with positional information, with maximum perfor-
mance achieved using position and body pose cues. This
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Fig. 8 SALSA dataset. Distribution of (left) head and (right) body pose estimation errors
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Fig. 9 SALSA dataset. Average (left) head and (right) body pose estimation errors for different class labels. The eight classes from 1 to 8 refer to
angular bins [90, 135), [135, 180), [180, 225), [225, 270), [270, 315), [315, 360), [0, 45), [45, 90) in degrees respectively

confirms our intuition that body pose is a more stable cue
as compared to head pose for detecting FFs.

It is also interesting to analyze the head and body pose esti-
mation errors in detail. For our experiments on the SALSA
dataset, the bar diagram in Fig. 8 shows the distribution of
errors for 1000 random unlabeled samples. It is clear that for
most of the samples the estimation error is below 45◦ (corre-
sponding to predicting the neighboring class). This analysis
confirms our claims that our approach is appropriate for the
analysis of social scenes: a pose estimation error lower than
45◦ is enough to detect conversational groups in moderately
crowded social scenes, such as poster sessions, cocktail par-
ties or museum visits. This makes our approach suitable to
be employed in tasks such as the study of group dynam-
ics or detection of social attractors (Alameda-Pineda et al.
2015). Figure 9 also shows that, if we consider the average
errors for samples of a specific class, nearly frontal samples
(i.e. classes 4 and 5) are typically better classified. While
this is not surprising for head pose estimation, due to better
distinctive facial features, we believe that a similar behav-
ior observed for body samples is mostly due to the coupling
term.

Finally, Table 4 analyzes the performance of our approach
on the CP and CB datasets upon incorporating multiple,
occlusion-specific classifiers (we do not report on SALSA
as the occlusion rate—per-target average is 22%, see Table
2 in Alameda-Pineda et al. 2016—is too severe for this anal-
ysis to provide a basis for conclusion). Our results indicate
that the use ofmultiple occlusion-adaptive regressors reduces
head and body pose estimation error, while the improvement
in terms of FF detection are rather moderate.

4.3.2 Sensitivity Analysis

We conduct a sensitivity study to analyze the impact of the
different hyper-parameters on estimation performance. First,
we examine the effect of parameters γc and D on F-formation
detection accuracy. Figure 10 (left) shows the F1-score at
varying γc. Low γc values preclude clustering of target posi-
tions and result in only singleton groups being discovered,
thereby resulting in low F1-scores. Conversely, large γc val-
ues cause multiple FFs to merge as all O-space centroids
are constrained to be proximal in such cases (see Eq. (6)),
which again adversely impacts detection performance. Inter-
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Table 4 Performance
improvement with occlusion
handling strategy

Method Cocktail party Coffee break

HP Error BP Error FF F1 HP Error BP Error FF F1

Our approach 45.8◦ 48.2◦ 0.85 45.3◦ 47.4◦ 0.85

Our approach (with occlusions) 44.5◦ 46.6◦ 0.85 44.2◦ 46.9◦ 0.86
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estingly, it can be noted fromFig. 10 that for all three datasets,
γc values in the range [0.2, 0.5] produce the best perfor-
mance. In our experiments we set γc = 0.2 for Coffee Break
and Cocktail Party datasets and γc = 0.5 for SALSA. We
also analyze the variation of performance when the parame-
ter D changes. As shown in previousworks (Setti et al. 2013),
D indicates the typical O-space radius on the ground plane
and it is generally set to a value of 0.5 meters. Our experi-
ments (Fig. 10, right) confirm previous findings. Values of D
in the range [0.5, 0.6] produce the best performance, while
the F1-score degrades for smaller and larger values.

We also evaluate the impact of the parameters on the head
and body pose estimation errors. We present our analysis of
these parameters on the Cocktail Party dataset. Figure 11
(left) show the results at varying values of λU , λC and λF .

Specifically, considering samples from the social scene sig-
nificantly decreases the head and body pose estimation errors
(λU ≥ 0). The parameter λC also plays an important role.
Small values of λC improve the performance with respect to
the case of not imposing any head and body coupling (λC ≥
0). However, as expected, when the importance of the cou-
pling term increases, accuracy deteriorates (i.e., tight bonds
between body and head orientations are detrimental). Sim-
ilarly, enforcing constraints on body pose according to the
conversational groups configuration (λF ≥ 0) is beneficial
but the performance also degrades when these constraints are
too limiting. Similar observations can be made analyzing the
performance on F-formation detection (see, Fig. 11 (right)).

Finally, we analyze the contribution of the temporal con-
sistency term in (6). We report the performance at varying
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Table 5 Performance on varying parameter λT

λT Cocktail party Coffee break SALSA

HP Error BP Error FF F1 score HP Error BP Error FF F1 score HP Error BP Error FF F1 score

0.01 46.1◦ 50.4◦ 0.82 45.3◦ 47.4◦ 0.85 50.7◦ 50.2◦ 0.67

0.1 45.8◦ 48.2◦ 0.85 46.3◦ 49.1◦ 0.83 51.3◦ 50.3◦ 0.67

1 48.2◦ 50.3◦ 0.82 49.2◦ 53.2◦ 0.82 53.6◦ 54.4◦ 0.65

values of λT . Table 5 shows the results of our experiments.
As discussed above, the relative importance of temporal con-
sistency with respect to other terms in (6) is linked to the
frame rate and to the dynamics of the social scene. There-
fore, small values of λT guarantee the best performance for
CB and SALSA,whileλT = 0.1 is the optimal choice for CP.

4.3.3 Comparison with State-of-the-Art Methods

We compare our approach with the state-of-the-art for joint
head and body pose estimation (Chen and Odobez 2012)
in Table 2. To enable this comparison, we implemented the
method in Chen and Odobez (2012) in MATLAB. It is worth
noting that other recent approaches (Chamveha et al. 2013;
Yan et al. 2016; Benfold and Reid 2011) operating on a low
resolution setting only consider headpose anddonot estimate
body pose. The algorithm from Chen and Odobez (2012) is
similar to the AUX + SS + H/B setting in our approach, as
both these methods focus on coupled learning of head and
body pose. However, the small variation in the performance
could be ascribed to the use of different optimization tech-
niques to learn the parameters (we adopt an iterative convex
optimization method, whereas Chen and Odobez 2012 uses a
closed-form solution based on Sylvester equation). However,
our algorithm performs significantly better than (Chen and
Odobez 2012) when the social context is taken into account,
as alternative cues (e.g., velocity direction) are ineffective
when targets are mostly static and heavily occluded.

A comparison with state-of-the-art F-formation estima-
tion approaches for the two datasets is presented in Table 6.
These include frustrum-based [IRPM (Bazzani et al. 2013),
IGD (Tran et al. 2013)], Hough transforms-based [HVFF
lin Cristani et al. (2011), HVFF ent (Setti et al. 2013), HVFF
ms (Setti et al. 2013)], Graph Cut (GC) (Setti et al. 2015)
and Game-theoretic (Vascon et al. 2014) methods. The per-
formance of different methods on the CP and CB datasets
are taken from the original papers, while for the SALSA
dataset we provide results obtained from code made publicly
available by the authors. As shown in the table, we obtain
state-of-the-art results on all datasets, clearly outperform-
ing competing methods on the SALSA dataset. It is worth
noting that some previous works use orientation annotations
available with datasets, and do not automatically estimate
the pose. Moreover, most previous approaches are based on
sampling techniques, therefore the performance may vary
significantly for different runs.

4.4 Qualitative Results

Figures 12 and 13 depict qualitative results generated using
our approach for theCP andCBdatasets. Specifically, Fig. 12
(top) shows one sequence where our method correctly esti-
mates the head and body pose of all targets, and all FFs are
also correctly detected. Figure 12 (bottom) depicts a chal-
lenging situation where our method fails: the head and body
pose of the yellow target is wrongly estimated in the middle
frame owing to extreme occlusion. Similarly, Fig. 13 shows

Table 6 F-Formation estimation performance comparison

Method Cocktail party Coffee break SALSA

Precision Recall F1 Precision Recall F1 Precision Recall F1

IRPM (Bazzani et al. 2013) 0.67 0.65 0.66 0.68 0.50 0.57 – – –

IGD (Tran et al. 2013) 0.81 0.61 0.70 0.69 0.65 0.67 – – –

HVFF lin (Cristani et al. 2011) 0.59 0.74 0.65 0.73 0.86 0.79 0.59 0.62 0.61

HVFF ent (Setti et al. 2013) 0.78 0.83 0.80 0.81 0.78 0.79 0.60 0.61 0.61

HVFF ms (Setti et al. 2013) 0.81 0.81 0.81 0.76 0.86 0.81 0.62 0.64 0.63

GC (Setti et al. 2015) 0.84 0.86 0.85 0.85 0.91 0.88 0.64 0.67 0.65

Game-Th. (Vascon et al. 2014) 0.86 0.82 0.84 0.83 0.89 0.86 0.59 0.63 0.62

Our method 0.87 0.83 0.85 0.84 0.88 0.86 0.66 0.68 0.67
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Fig. 12 Qualitative results on Cocktail Party dataset: estimated head pose (arrows), body pose (pie on the ground) and F-formations (connections
on the ground)

Fig. 13 Qualitative results on Coffee Break dataset: estimated head pose (arrows), body pose (pie on the ground) and F-formations (connections
on the ground)

some results from the more challenging CB dataset. Evi-
dently, the head and body orientations ofmost targets are cor-
rectly estimated, facilitating reliable FF detection therefrom.

5 Discussion and Conclusions

This paper proposes a novel framework to jointly estimate
the head and body pose of targets, and geometric forma-
tions involving interacting targets known as F-formations
from social scenes. Our approach exploits the synergetic
interactor-interaction relationship in social scenes, i.e., the
body orientations of interactors facilitate discovery of FFs,
and conversely, knowledge of FFs enables robust inference
of the interactors’ body pose. In contrast to many works that
have examined either joint head and body pose estimation
from pedestrian scenes, or FF discovery from social scenes,

our joint learning accomplishes these twin goals via a single
objective function.

The objective function, formulated as a convex function
that guarantees a unique global solution, incorporates (i) a
loss penalizing prediction errorswith respect to the annotated
auxiliary dataset, while also enforcing consistency in appear-
ance with unlabeled examples acquired from the social scene
under manifold regularization, (ii) a loss penalizing head and
body pose predictions violating human anatomic constraints,
thereby enabling coupled head and body pose learning, and
(iii) the FF-related loss term which facilitates discovery of
FFs based on the body pose of interactors, and refines targets’
body pose estimates based on the detected FFs. Minimiz-
ing each of the above losses is found to improve head and
body pose estimates as well as FF detection performance on
three benchmark social datasets, demonstrating the efficacy
of our joint learning approach. Furthermore, the use of mul-
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tiple occlusion-adaptive classifiers and temporal consistency
in our model allows to handle bodily occlusions, and noise
associated with low-resolution videos.

Theproposed approach for handlingocclusionwas inspired
by previous works (Mathias et al. 2013; Wojek et al. 2011)
and it has been devised as a first attempt to tackle this chal-
lenging problem in the context of F-formations detection.
Table 4 shows that an occlusion handling strategy can indeed
provide some benefits. However the limitations of occlusion
handling become evident in the most challenging contexts,
such as that of SALSA dataset that has an average per-target
occlusion rate of 22% (cf. Table 2 in Alameda-Pineda et al.
2016). We believe that future works should be devoted to
devise more effective strategies to address this problem in
complex natural scenarios like that of SALSA dataset.

Future research will also focus on extending the proposed
methodology from monocular videos to multi-view settings,
and on devising strategies to incorporate additional cues
obtained from wearable sensors (e.g., infra-red, blue-tooth
and accelerometer), such as to alleviate problems associ-
ated with vision-based multi-target tracking and social scene
analysis, similar to Alameda-Pineda et al. (2016), Alameda-
Pineda et al. (2015).

Inspired by the recent successes of deep learning mod-
els applied to computer vision tasks, another future research
direction will be replacing handcrafted features, such as
HOG, with more robust head and body representations
derived fromConvolutional Neural Networks. For instance, a
first attempt could be to input head and body patches to a pre-
trained CNNmodel (e.g., Krizhevsky et al. 2012) and use the
activations from the last fully connected layers directly as a
replacement to HOGdescriptors used in this paper. However,
since the head and body image crops from far field views are
typically of very low-resolution, pre-computedCNN features
may not necessarily improve the classification performance.
Therefore, presuming the availability of a large scale pose
annotated dataset, a better way would be to train a CNN
model from scratch for head and body pose estimation and
use it to predict pose labels on the target dataset with or with-
out fine tuning. Other modules of the proposed framework,
e.g.the multi-camera multi-target tracking algorithm and the
F-formation detection approach, can be also redesigned con-
sidering deep learning models.

6 Appendix: Derivation of Update Rules for ΘH
and ΘB

Consider the body and head regressors defined in Sect. 3.4.
The update rules for ΘH and ΘB that we provide in Sect. 3.5
are obtained by setting to zero the partial derivative of the
objective function in (2) with respect to Θ� with � ∈ {B,H},

and by solving the resulting equations, which are given
by

l
∂

∂ΘH
LH( fH(·; ΘH); T ,S) + ∂

∂ΘH
LC ( fB(·; ΘB), fH(·; ΘH);S) = 0

(A)

l
∂

∂ΘB
LB( fB(·; ΘB); T ,S) + ∂

∂ΘB
LC ( fB(·; ΘB), fH(·; ΘH);S)

+ ∂

∂ΘB
LF ( fB(·; ΘB),C;S) = 0 (B)

where we have replaced LP in (2) with its definition in (3).
The L� term is given by

L�( f�(·;Θ�); T�,S) =
N�∑
i=1

‖Θ�v�
i − y�

i ‖2M + λR‖Θ�‖2F

+ λU
∑

(i, j)∈E�
ω�
i j‖Θ�(v�

i − v�
j )‖2M ,

and its derivative with respect to Θ� is

∂

∂Θ�
L�( f�(·; Θ�); T ,S)

= 2M(Θ� X̂� − Y�)X̂
�
� + 2λRΘ� + 2λU MΘ�V�L�V��

= 2MΘ�(X̂� X̂
�
� + λUV�L�V�� ) + 2λRΘ� − 2MY� X̂

�
� .

Term LC is given by

LC ( fB(·; ΘB), fH(·; ΘH);S) = λC

NK∑
k=1

NT∑
t=1

‖ΘBxBkt − ΘHxHkt‖2M ,

and its derivative with respect to Θ� is

∂

∂Θ�
LC ( fB(·;ΘB), fH(·;ΘH);S)

= 2λCM(Θ�X� − Θ�X�)X��
= 2λCMΘ�X�X�� − 2λCMΘ�X�X�� ,

where (�, �) ∈ {(H,B), (B,H)}.
Term LF is given by

LF ( fB(·;ΘB),C;S) = λF

NK∑
k=1

NT∑
t=1

‖ckt

− ( pkt + DAΘBxBkt )‖22 + const,

where “const” indicates terms not depending on ΘB, and its
derivative with respect to ΘB is

∂

∂ΘB
LF ( fB(·;ΘB),C;S)

= 2λF DA�(DAΘBXB + P − C)X�
B

= 2λF D
2A�AΘBXBX�

B + 2λF DA�(P − C)X�
B .
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By replacing the computed gradient terms in (A), and after
few algebraic manipulations, we obtain

MΘH(X̂H X̂
�
H + λUVHLHV�

H + λCXHX�
H ) + λRΘH − FH = 0,

and by vectorizing both sides we get

EHvec(ΘH) = vec(FH) �⇒ vec(ΘH) = E−1
H vec(FH).

By replacing the computed gradient terms in (B), and after
few algebraic manipulations, we obtain

MΘB(X̂B X̂
�
B + λUVBLBV�

B + λCXBX�
B ) + λRΘB

+ λF D
2A�AΘBXBX�

B − G = 0,

and by vectorizing both sides we get

(EB + λF D
2XBX�

B ⊗ A�A)vec(ΘB) = vec(G) �⇒
vec(ΘB) = (EB + λF D

2XBX�
B ⊗ A�A)−1vec(G).
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