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Abstract—Studying free-standing conversational groups (FCGs) in un-
structured social settings (e.g., cocktail party ) is gratifying due to the
wealth of information available at the group (mining social networks)
and individual (recognizing native behavioral and personality traits)
levels. However, analyzing social scenes involving FCGs is also highly
challenging due to the difficulty in extracting behavioral cues such as
target locations, their speaking activity and head/body pose due to
crowdedness and presence of extreme occlusions. To this end, we
propose SALSA, a novel dataset facilitating multimodal and Synergetic
sociAL Scene Analysis, and make two main contributions to research
on automated social interaction analysis: (1) SALSA records social
interactions among 18 participants in a natural, indoor environment
for over 60 minutes, under the poster presentation and cocktail party
contexts presenting difficulties in the form of low-resolution images,
lighting variations, numerous occlusions, reverberations and interfering
sound sources; (2) To alleviate these problems we facilitate multimodal
analysis by recording the social interplay using four static surveillance
cameras and sociometric badges worn by each participant, compris-
ing the microphone, accelerometer, bluetooth and infrared sensors.
In addition to raw data, we also provide annotations concerning in-
dividuals’ personality as well as their position, head, body orientation
and F-formation information over the entire event duration. Through
extensive experiments with state-of-the-art approaches, we show (a) the
limitations of current methods and (b) how the recorded multiple cues
synergetically aid automatic analysis of social interactions. SALSA is
available at http://tev.fbk.eu/salsa.

Keywords—Multimodal group behavior analysis, Free-standing conver-
sational groups, Multimodal social data sets, Tracking, Speaker recogni-
tion, Head and body pose, F-formations, Personality traits.

1 INTRODUCTION

HUMANS are social animals by nature, and the im-
portance of social interactions for our physical

and mental well-being has been widely acknowledged.
Therefore, it is unsurprising that social interactions have
been studied extensively by social psychologists in a
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Fig. 1. Analysis of round-table meetings (left, adopted
from Mission Survival dataset [6]) has been attempted
extensively– orderly spatial arrangement and sufficient
separation between persons enable reliable extraction
of behavioral cues for each person from such scenes.
Exemplar SALSA frame (right) showing FCGs– varying
illumination, low resolution of faces, extreme occlusions
and crowdedness makes AASI highly challenging (best-
viewed in color and under zoom).
variety of contexts. Fundamental research on social in-
teractions was pioneered by Goffman [1], whose symbolic
interaction perspective explains society via the everyday
behavior of people and their interactions. Face-to-face
conversations are the most common form of social inter-
actions, and free-standing conversational groups (FCGs)
denote small groups of two or more co-existing persons
engaged in ad-hoc interactions [2]. FCGs emerge natu-
rally in diverse social occasions, and interacting persons
are characterized by mutual scene locations and poses
resulting in spatial patterns known as F-formations [3]1.
Also, social behavioral cues like how much individuals
speak and attend to others are known to be correlated
with individual and group-specific traits such as Ex-
traversion [4] and Dominance [5].

Automated analysis of social interactions (AASI) has
been attempted for over a decade now. The ability to
recognize social interactions and infer social cues is
critical for a number of applications such as surveillance,
robotics and social signal processing. Studying unstruc-
tured social scenes (e.g., a cocktail party) is extremely
challenging since it involves inferring (i) locations and
head/body orientations of targets (persons) in the scene,
(ii) semantic and prosodic auditory content correspond-
ing to each target, (iii) F-formations and persons interact-

1. A F-formation is a set of possible configurations in space that
people may assume while participating in a social interaction.
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ing at a particular time (addresser and addressee recog-
nition), (iv) attributes such as the big-five personality
traits [7] from the above social behavioral cues.

Some of the aforementioned problems have been ef-
fectively addressed in controlled environments such as
round-table meetings (Fig. 1 (left)), where behavioral
cues concerning orderly arranged participants can be
reliably acquired through the use of web-cameras and
close-talk microphones. However, all of them remain
unsolved in unstructured social settings, where only
distant surveillance cameras can be used to capture
FCGs [3], and microphones may be insufficient to clearly
recognize the speaker(s) at a given time instant due to
scene crowding. We are expressly interested in analyzing
FCGs (Fig. 1 (right)) in this work.

To address the challenges involved in analyzing FCGs,
we present SALSA, a novel dataset2 facilitating multi-
modal and Synergetic sociAL Scene Analysis. In contrast
to social datasets studying round-table meetings [6], [8],
or examining FCGs on a small scale [9], [10], SALSA
contains uninterrupted recordings of an indoor social
event involving 18 subjects over 60 minutes, thereby
serving as a rich and extensive repository for the behav-
ioral analysis and social signal processing communities.
In addition to the raw multimodal data, SALSA also
contains position, pose and F-formation annotations over
the entire event duration for evaluation purposes, as well
as information regarding participants’ personality traits.

The social event captured in SALSA comprised two
parts: (1) a poster presentation session, and (2) a cocktail
party scene where participants freely interacted with each
other. There were no constraints imposed in terms of
how the subjects were to behave (i.e., no scripting) or
the spatial layout of the scene during the recordings.
Furthermore, the indoor environment where the event
was recorded was prone to varying illumination and
reverberation conditions. The geometry of F-formations
is also influenced by the physical space where the social
interaction is taking place, and the poster session was
intended to simulate a semi-structured social setting
facilitating speaker labeling as described in Section 5.4.
While it is reasonable to expect observers to stand in a
semi-circular fashion around the poster presenter, none
of the participants were instructed on where to stand
or what to attend. Finally, as seen in Fig. 1 (right), the
crowded nature of the scene and resulting F-formations
gave rise to extreme occlusions, which along with the
low-resolution of faces captured by surveillance cam-
eras, make visual analysis extremely challenging. Also,
crowdedness poses difficulties to audio-based analysis
for solving problems such as speaker recognition. Over-
all, SALSA represents the most challenging dataset for
studying FCGs to our knowledge.

To alleviate the difficulties in traditional audio-visual
analysis due to the challenging nature of the scene, in ad-

2. The SALSA dataset (raw data, annotations and associated code) is
available at http://tev.fbk.eu/salsa.

dition to four wall-mounted cameras acquiring the scene,
sociometric badges [11] were also worn by participants to
record various aspects of their behavior. These badges
include a microphone, an accelerometer, bluetooth and
infrared (IR) sensors. The microphone records auditory
content that can be used to perform speaker recogni-
tion under noisy conditions, while the accelerometer
captures person motion. Bluetooth and IR transmitters
and receivers provide information regarding interacting
persons, and are useful for inferring body pose under
occlusions. Cumulatively, these sensors can synergeti-
cally enhance estimation of target locations and their
head and body orientations, face-to-face interactions, F-
formations, and thereby provide a rich description of
FCGs’ behavior. Through the SALSA dataset, we make
two main contributions to AASI research:
• Firstly, we believe that the challenging nature of

SALSA will enable researchers to appreciate the
limitations of current AASI approaches, and spur
focused and intensive research in this regard.

• We go beyond audio-visual analysis for studying
FCGs, and show how multimodal analysis can alle-
viate difficulties posed by occlusions and crowded-
ness to more precisely estimate various behavioral
cues and personality traits therefrom.

The paper is organized as follows. Section 2 reviews
prior unimodal and multimodal approaches to AASI,
while Section 3 highlights the limitations of traditional
AASI approaches and datasets, motivating the need for
SALSA. Section 4 describes the SALSA dataset, and
the synergistic benefit of employing audio, visual and
sensor-based cues is demonstrated via experiments in
Section 5. We finally conclude in Section 6.

2 LITERATURE REVIEW
This section reviews the state-of-the-art in social behavior
analysis with specific emphasis on methods analyzing
FCGs. We will first discuss unimodal approaches (i.e.,
vision-, audio- and wearable sensor-based) and then
describe expressly multimodal approaches.

2.1 Vision-based approaches
Challenges pertaining to surveillance scenes involving
FCGs addressed by vision-based methods include detec-
tion and tracking of targets in the scene, estimation of
social attention direction and detection of F-formations.
We describe works that have examined each of the above
problems as follows.

Given the cluttered nature of social scenes involving
FCGs, detecting and tracking the locations of multiple
targets is in itself a highly challenging task. Multi-target
tracking from monocular images is achieved through the
use of a dynamic Bayesian network in [12]. As extreme
occlusions are common in social scenes involving FCGs
(see Fig. 1), employing information from multi-camera
views can enable robust tracking. The color-based parti-
cle filter tracker proposed in [13] for multi-target tracking
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with explicit occlusion handling is notable in this regard.
Of late, tracking-by-detection [14] combined with data
association using global appearance and motion opti-
mization [15] has benefited multi-target tracking. Some
works have further focused on identity-preserving track-
ing over long sequences [16]. These methods assume a
sufficiently large number of high-confidence detections
which might not always be available with FCGs due to
persistent long-term occlusions, although recent works
have focused on the detection problem under partial oc-
clusion [17], [18]. Multi-target tracking is further shown
to improve by incorporating aspects of human social
behavior [19], [20], as well as with activity analysis [21].
However, F-formations are special groups, characterized
by static arrangements of interacting persons constrained
by their locations and head/body orientations.

Social attention determination in round-table meet-
ings, where high-resolution face images are available,
has been studied extensively. Vision-based approaches
typically employ head pose as a proxy to determine
social attention direction [22]. In comparison, head pose
estimation (HPE) from blurry surveillance videos is
much more difficult. Visual attention direction of moving
targets is estimated by Smith et al. [12] using position
and head pose cues, but social scenes or occlusions are
not addressed here. Some works have exploited the rela-
tionship between walking direction and head/body pose
to achieve HPE from surveillance videos under limiting
conditions where no labeled training examples are avail-
able, or under occlusions [23], [14]. Focus-of-attention
estimation in social scenes is explicitly addressed by
Bazzani et al. [24], who model a person’s visual field in
a 3D scene using a subjective view frustum.

Recently, the computer vision community has showed
some interest in the detection and analysis of dyadic
interactions [25], [26] and more general groups [27], [28],
[29]. Also, the interest on detecting social interactions
and F-formations from video has intensively grown.
Cristani et al. [30], [31], [32] employ positional and
head orientation estimates to detect F-formations based
on a Hough voting strategy. Bazzani et al. [24] gather
information concerning F-formations in a social scene
using the Inter-relation pattern matrix. F-formations are
modeled as maximal cliques in edge-weighted graphs
in [33], and each target is presumed to be oriented
towards the closest neighbor but head/body orientation
is not explicitly computed. Gan et al. [34] detect F-
formations upon inferring location and orientation of
subjects using depth sensors and cameras. Setti et al. [9]
propose a graph-cuts based framework for F-formation
detection based on the position and head orientation
estimates of targets. Based on experiments performed on
four datasets (IDIAP Poster [33], Cocktail Party [10], Coffee
Break [30] and GDet [24]), their method outperforms six
state-of-the-art methods in the literature.

2.2 Audio-based approaches

Studying interactional behavior in unstructured social
settings solely using audio or speech-based cues is ex-
tremely challenging, as FCGs are not only characterized
by speaking activity, but also by non-verbal cues such
as head and body pose, gestural and proxemic cues.
Furthermore, classical problems in audio analysis be-
come extremely challenging and remain unexplored in
crowded indoor environments involving a large number
of targets. Indeed, current methodologies for speaker
diarization [35], sound source separation [36] or local-
ization [37] address scenarios with few persons. Nev-
ertheless, a few studies on audio-based detection of
FCGs have been published. Wyatt et al. [38] tackle the
problem of detecting FCGs upon recognizing the speaker
using temporal and spectral audio features. Targets are
then clustered to determine co-located groups on the
basis of speaker labels. More recently, FCG detection
and network inference is achieved in [39] employing a
conversation sensing system to perform speaker recogni-
tion, and F-formations are detected based on proximity
information obtained using bluetooth sensors.

2.3 Wearable-sensor based approaches

Wearable sensors can provide complementary behavioral
cues in situations where visual and speech data are
unreliable due to occlusions and crowdedness. Hung et
al. [40] detect FCGs in social gatherings by measuring
motion via an accelerometer. With the increased usage
of smartphones, mobile sensor data have also become
a viable choice for analysis of social interactions or
more complex social systems [41]. Via mobile phones,
proximity can be inferred from Wifi and bluetooth [42].
However, the spatial resolution of these sensors is limited
to only a few meters, and the co-location of mobile
devices does not necessarily indicate a social interaction
between the corresponding individuals. Therefore, Cat-
tuto et al. [43] propose a framework that balances scala-
bility and resolution through a sensing tier consisting
of cheap and unobtrusive active RFID devices, which
are capable of sensing face-to-face interactions as well
as spatial proximity over different scale lengths down to
one meter or less. Nevertheless, we note that many of
these works address relatively less crowded scenarios,
not comparable in complexity to SALSA.

2.4 Multimodal approaches

Multimodal approaches to social interaction have essen-
tially examined small-group interactions such as round-
table meetings, and mainly involve audio-visual analysis
as detailed below. Examples of databases containing
audio-visual recordings and associated annotations are
the Canal9 [44], AMI [8], Mission Survival [6], Free Talk
[45] and the Idiap WOLF [46] corpora. In addition, the
IMADE [47] and UEM [48] technological frameworks for
recording of multimodal data to describe social scenes
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Fig. 2. Existing datasets facilitating F-formation detection.
Frame border colors encode sensing modalities.

involving FCGs are available. All these data collection ef-
forts have inspired inter-disciplinary research in the field
of human behavior understanding and led to the emer-
gence of the social signal processing community [49].
Several of these databases have been utilized for isolating
traits relating to an individual (e.g., big-five personality
traits [50]) or a group (such as dominance [51]).

Choudhury and Pentland [11] initiated behavior anal-
ysis using wearable sensors by developing the Sociome-
ter. Recently, Olguı́n et al. [52] proposed the Sociometric
badge, which stores (i) motion using an accelerometer,
(ii) speech features (rather than raw audio), (iii) position
information and (iv) proximity to other individuals using
a bluetooth sensor, and (v) face-to-face interactions via
an infrared sensor. Sociometric badges have been used to
capture face-to-face communication patterns, examine re-
lationships among individuals and model collective and
organizational behavior [53], detect personality traits and
states [50], and predict outcomes such as productivity
and job satisfaction [54]. Another notable AASI work
employing multi-sensory information is that of Matic et
al. [55], who estimate body orientation and inter-personal
distance via mobile data and speech activity to detect
social interactions.

3 SPOTTING THE RESEARCH GAP

While human behavior has been studied extensively in
controlled settings such as round-table meetings, achiev-
ing the same with FCGs is way more difficult as close
audio-visual examination of targets is precluded by the
crowded and occluded nature of the scene. We carried
out an extensive analysis of previous AASI data sets
focusing on FCGs; they have mainly been used to ad-
dress two research problems: (1) Detecting F-formations
and (2) Studying individual and group behavior from
multiple sensing modalities.

The vast majority of works addressing F-formation
detection are vision-based. Fig. 2 presents snapshots of
datasets used for F-formation detection, and positions

Fig. 3. Datasets for social interaction analysis: the first
five consist on round-table meetings and span over hours,
while the last four study social networks/behavior and
span over days/months.

them with respect to the number (denoted using #)
of annotated frames and scene targets. Among them,
SALSA is unique due to its (i) multimodal nature, (ii)
extensive annotations available over a long duration and
(iii) challenging nature of the captured scene.

Figure 3 depicts the datasets used for individual
and group behavioral analysis. While the first group
(light-gray) consists of audio-visual recordings spanning
over hours acquired under controlled settings, the sec-
ond group (dark-gray) comprises datasets acquired over
days/months for studying social networks and group
relationships. SALSA again stands out as it records infor-
mation from both static cameras and wearable sensors,
leading to a previously non-existent and highly infor-
mative combination of sensing modalities. This section
details some of the limitations of current AASI ap-
proaches regarding F-formation detection and individual
and group behavior analysis, thereby throwing light on
how SALSA can spur critical research in these respects.

3.1 Human tracking and pose estimation
Human tracking and pose estimation in a social context
is challenging for several reasons. Firstly, a person’s
visual appearance can change considerably across the
scene due to camera perspective and uneven illumi-
nation, as well as with pose and posture. Secondly,
large and persistent occlusions are frequent in such
scenes, which corrupt subsequent observations. Thirdly,
integrating auditory information to aid localization and
orientation estimation is also difficult due to its inter-
mittent nature and the adverse impact of reverberations
and interfering sources. Beyond inherent complexity, the
state-of-the-art is further challenged when raw audio-
visual data cannot be recorded for processing or scene-
specific optimization, e.g., due to privacy concerns.
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Accurate FCG behavior analysis requires the correct
assignment of observations to sources (targets) over the
long run. Identity switches during tracking can corrupt
the extraction of aggregated features that develop over
time to infer personality traits, functional roles, or in-
teraction networks, and long-term identity-preserving
multi-target tracking is still unachievable. Furthermore,
existing appearance-based pose estimation methods are
not adapted to highly cluttered scenes with large and
persistent occlusions. Finally, from the computational
perspective, multi-target approaches are not able to ro-
bustly and efficiently scale to large groups.

3.2 Speech processing
While numerous research studies have attempted speech,
speaker and prosodics recognition under controlled con-
ditions, several issues arise when auditory information
is captured via mobile microphones in crowded indoor
scenes. Firstly, regular indoor environments are prone to
reverberations, which adversely affect many sound pro-
cessing techniques. Secondly, intermittence of the speech
signal necessitates speaker diarization prior to process-
ing. Thirdly, the speech signal is also spatially sparse,
and source separation techniques are usually required
to segment speaker activity. Currently, there are no algo-
rithms addressing source separation or diarization in the
presence of a large number of sound sources and uncon-
trolled conditions. While multimodal approaches have
addressed these problems via audio-visual processing,
they still cannot work with large groups of people and
crowded indoor environments involving unconstrained
and evolving interactions.

3.3 F-formation detection
Detecting F-formations in unconstrained environments
is a complex task. As F-formations are characterized by
mutually located and oriented persons, robust tracking
and pose estimation algorithms are necessary. However,
both multi-target tracking and head/body pose estima-
tion in crowded scenes are difficult as discussed earlier.
Even under ideal conditions, F-formation shapes are
influenced by (i) the environment’s layout, i.e., room
shape, furniture and other physical obstacles, (ii) scene
crowdedness and (iii) attention hotspots such a poster,
painting, etc. While existing methodologies typically as-
sume that F-formation members are placed on an ellipse,
robust F-formation detection requires accounting for the
above factors as well. Also, most algorithms are visually
driven, and few multimodal approaches exist to this end.

3.4 Inferring personality traits
Works seeking to recognize personality traits from in-
teractive behavior have traditionally relied on the vi-
sual and auditory modalities. Target position and pose,
prosodic and intonation inference, face-to-face interac-
tion detection, bodily gestures and facial expressions are
commonly used for assessing the big-five personality

traits. Most prior works study these behaviors in the
context of round-table meetings, where participants are
regularly arranged in space, and therefore their positions
and body orientations are known a priori. Under these
conditions, behavior analysis algorithms deliver pre-
cise estimates concerning interactional behavior, thereby
facilitating personality trait recognition. Nevertheless,
there are very few works that studied personality infer-
ence from unstructured interactions involving FCGs.

Assessing the personality traits of a large number
of interacting persons in crowded scenarios, where the
group structure evolves progressively, is a highly chal-
lenging task. In such cases, people constantly leave and
join groups, and therefore groups are created, split, and
merged. An in-depth analysis should take the group dy-
namics into account in addition to the evolving physical
arrangements and occasional conversations. Given that
personality inference is a sophisticated and subtle task,
the right combination of cues extracted from different
modalities can lead to a robust assessment.

3.5 The raison d’être of SALSA
Upon analyzing the state-of-the-art in behavior analysis
and personality inference, we conclude that: (i) Even
if multimodal analysis has been found to outperform
unimodal approaches and provide a richer representa-
tion of social interplays, some key tasks are not yet
addressed in a multimodal fashion, e.g.pose estimation
and F-formation detection; (ii) Social interactions have
been studied under controlled settings, and there is a
paucity of methods able to cope with unconstrained
environments involving large groups, crowded spaces
and highly dynamic interactions, and (iii) Most existing
approaches have independently studied the different
behavioral tasks – while it is known that bidirectional
links between the tasks exist, these links have been rarely
exploited. For instance, knowing the head and body
orientations of individuals can help in the estimation of
F-formations and vice-versa. Similarly, F-formation de-
tection clearly benefits from accurate tracking algorithms,
which at their turn can be influenced by the robust
detection of F-formations. In order to foster the study
of the aforementioned challenges, we recorded SALSA,
whose description is presented in the next section.

4 THE SALSA DATA SET
In order to provide a new and challenging evalua-
tion framework for novel methodologies addressing the
aforementioned challenges, we introduce the SALSA
(Synergetic sociAL Scene Analysis) dataset. SALSA rep-
resents an excellent test-bed for multimodal human
behavior understanding due to the following reasons.
Firstly, all behavioral data were collected in a regular
indoor space with the participants only requiring to
wear portable and compact sociometric badges which
ensured naturalistic social behavior. Secondly, due to
the unconstrained nature of the scene, the recordings
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TABLE 1
Description of the sensors used in SALSA. STFT

denotes short-time Fourier transform.
Sensor Output Freq. (Hz)
Vision 4 synchronized images 15

Audio Amplitude stats & STFT 2 & 30

Infra-red Detected badge’s ID 1

Bluetooth Detected badge’s ID 1/60

Accelerometer Body motion 20

contain numerous artifacts such as varying illumination,
visual occlusions, reverberations or interfering sound
sources. Thirdly, the recorded event involved 18 persons:
such large social groups have rarely been studied in
the behavior analysis literature. These participants did
not receive any special instructions or scripts prior to
the recording, and the resulting social interactions were
therefore free-willed and hedonistic in nature. Finally,
the social interplay was recorded via four wall-mounted
surveillance cameras and the Sociometric badges3 worn
by the targets. These badges recorded different aspects
of the targets’ social behavior such as audio or motion
as detailed later. This combination of static cameras
and wearable sensors is scarce in the literature, and
provides a wealth of behavioral information as shown in
Section 5. These four salient characteristics place SALSA
in a unique position among the various datasets available
for studying social behavior, see Figures 2 and 3.

4.1 Scenario and roles
SALSA was recorded in a regular indoor space and the
captured social event involved 18 participants and con-
sisted of two parts of roughly equal duration. The first
part consisted of a poster presentation session, where four
research studies were presented by graduate students.
A fifth person chaired the poster session. In the second
half, all participants were allowed to freely interact over
food and beverages during a cocktail party.

It needs to be noted here that while some participants
had specific roles to play during the poster presentation
session, none were given any instructions on how to
act in the form of a script. Consequently, the interaction
dynamics correspond to those of a natural social inter-
play. Obviously, participants with different roles (chair,
poster presenter, attendee) are expected to have different
interaction dynamics, and these roles were designed to
help behavioral researchers working on role recognition.

4.2 Sensors
The SALSA data were captured by a camera network
and wearable badges worn by targets. The camera net-
work comprised four synchronized static RGB cameras
(1024×768 resolution) operating at 15 frames per second
(fps). Each participant wore a sociometric badge during
the recordings which is a 9 × 6 × 0.5 cm box equipped

3. http://www.sociometricsolutions.com/

Fig. 4. Five annotated F-formations represented via con-
nections between feet positions (crosses) of interacting
targets. Corresponding O-spaces are denoted by the col-
ored convex shapes.

with four sensors, namely, a microphone, an infrared
(IR) beam and detector, a Bluetooth detector and an
accelerometer. The badges are battery-powered and store
recorded data on a USB card without the need for any
wired connection, thus enabling natural social interplay.
Table 1 presents an overview of the five sensors used.

4.3 Ground truth data
Annotations
In order to fulfill the requirements expected of a sys-
tematic evaluation framework, SALSA provides ground-
truth annotations, which were performed either manu-
ally or semi-automatically over the entire event duration.
The annotations were produced in two steps. In the
first step, using a dedicated multi-view scene annota-
tion tool, the position, head and body orientation of each
target was annotated every 45 frames (3 seconds). To
speed up the annotation process, the total number of
targets was divided among three annotators. A target’s
position, head and body orientation were annotated by
a first annotator and then double-checked by the second.
Discrepancies between their judgments were resolved by
a third annotator. All annotators were clearly instructed
on how to perform the annotations. To facilitate the
annotation task, markings from the previous annotated
frame were displayed so that only small modifications
were needed.

In the second step, annotated positions and head/body
orientations were used for deducing F-formations. An-
notations were again performed every 45 frames and
we employed the following criteria for detecting F-
formations: an F-formation is characterized by the mu-
tual locations and head, body orientations of interacting
targets, and is defined by the convex O-space they
encompass such that each target has unhindered access
to its center. A valid F-formation was assumed if the
constituent targets were in one of the established pat-
terns, or had direct and unconstrained access to the O-
space center in case of large groups (refer to [30] for
details). Figure 4 illustrates five annotated F-formations
around four posters (target feet positions are marked
with crosses) and corresponding O-spaces. Considering
the two groups in the foreground, the F-formation in



7

Fig. 5. Distributions of the big-five personality traits.
front of the poster on the right does not include the FCG
with two targets on the left, since neither of them have
access to the center of the larger group.

Personality data
SALSA also contains big-five personality trait scores of
participants to facilitate behavioral studies. Prior to data
collection, all participants filled the Big Five personality
questionnaire [7]. The Big Five questionnaire owes its
name to the five traits it assumes as constitutive of per-
sonality: Extraversion– being sociable, assertive, playful
vs. aloud, reserved, shy; Agreeableness– being friendly
and cooperative vs. antagonistic and fault-finding; Con-
scientiousness– being self-disciplined, organized vs. in-
efficient, careless; Emotional Stability– being calm and
equanimous vs. insecure and anxious; and Creativity– be-
ing intellectual, insightful vs. shallow, unimaginative. In
the questionnaire, each trait is investigated via ten items
assessed on a 1–7 Likert scale. The final trait scores were
computed according to the procedure detailed in [56],
and the distributions of these traits over the 18 targets
are presented in Figure 5.

5 EXPERIMENTS ON SALSA
This section is devoted to evaluate the performance of
state-of-the-art methodologies for different behavioral
tasks on SALSA. In order to ensure reproducibility of
results, we will provide (i) the dataset, (ii) the software
used to produce the obtained results and (iii) a detailed
description of the experiments. While the data and the
software will be made available online, a complete de-
scription of the conducted experiments can be found in
the supplementary material.

5.1 Multimodal synchronization
One critical issue when recording with several inde-
pendent devices is synchronization, as the same event
is labeled by independent sensors with different times-
tamps. In the case of SALSA, we had to synchronize the
eighteen badges worn by targets to the camera network.
Assuming that there is no drift, we need to find the time-
stamp mapping between each sociometric badge and the
camera network. This problem reduces to determining

0.6

0.4

0.2

0
0'          15'         30'         45'         60' 0'          15'         30'         45'         60' 0'          15'         30'         45'         60'

Fig. 6. Synchronization procedure: Similarity scores for
badge/target IDs 5, 10 and 16 as a function of the time-
shift– a clear peak can be observed for all badges.

the time-shift for each badge so that events are simulta-
neously observed by the badge and the camera network.

Using the position and body pose annotations, we de-
termined the set of potential infra-red detections, times-
tamped with respect to the cameras. By computing the
similarity score between the potential and actual infra-
red detections, we robustly estimated the temporal shift
between each badge and the camera network. Computed
scores for three of the badges, as a function of the shift
are shown in Figure 6. We can observe a clear peak
in the badge’s similarity score at the optimal time-shift.
Computational details and obtained plots for all badges
can be found in the supplementary material.

5.2 Visual tracking of multiple targets
Despite many advances in computer vision research,
tracking individuals is still a unsolved problem. In the
particular case of SALSA, person tracking is challenging
due to the presence of extreme and persistent occlu-
sions. Some targets are difficult to distinguish from oth-
ers using appearance features, and identity-preserving
tracking required for multimodal behavior interpretation
is further hindered by non-uniform scene illumination
even when multiple views are available. State-of-the-
art tracking-by-detection methods feature global appear-
ance optimization [16], but require a sufficiently dense
number of high-confidence detections across the whole
sequence. However, target detection by itself is extremely
challenging in such scenes even if leveraged through
learning a set of detectors adapted to different occlusion
levels [17]. We therefore considered a sequential Bayesian
tracking approach without appearance model adapta-
tion. The Hybrid Joint-Separable particle filter (HJS-PF)
tracker [13] was specifically developed for systematic
occlusion handling at frame-level, and has been applied
to tracking in social scenes [10], [50], [32].

HJS-PF represents targets’ states in the scene based on
ground locations, and applies a multi-target color like-
lihood with a first-order dynamical model to propagate
a particle-set approximation of the posterior marginals
for each target. In particular, the tracker exploits camera
calibration information and a coarse 3D shape model
for each target to explicitly model occlusion in the joint
likelihood. While exact joint tracking is intractable with
increasing number of targets (exponential blow-up in-
duced by the curse-of-dimension), it is shown in [13] that
single-target marginals can be updated under explicit
occlusion reasoning with quadratic complexity, making
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Fig. 7. Tracking on Part 1 - Poster (top row) and Part 2 - Party (bottom row). Best viewed in color.

the tracking of all 18 SALSA targets feasible. Further-
more, to prevent marginals from overlapping when tar-
gets have similar appearance– a frequent failure mode
leading to identity switches – a Markov Random Field
(MRF) defined over the targets’ positions is added in the
propagation. At each HJS-PF iteration, the propagation
is solved via message-passing and the update combines
HJS-PF likelihoods from each view independently. With
a final resampling, the a posteriori particle representation
is obtained for each target. Details can be found in the
supplementary material.

We report HJS-PF tracking results on SALSA follow-
ing the Visual Object Tracking Challenge (VOT 2013-14)
evaluation protocol. The color model for each target was
manually extracted from the initial part of the sequence
where the target was free of occlusions, prior to tracking.
These models were used for the whole sequence and
were not re-initialized or adapted during tracking. HJS-
PF was initialized for each target with the first available
annotation, and tracking was performed at full frame
rate (15 Hz) with 320×240 resolution, while evaluation
was done every 3 sec (or every 45 frames) consistent with
the annotations. If the position estimate was over 70 cm
from its reference, it was counted as a failure and the
tracking of that target was re-initialized at the reference.
Otherwise, the distance from the reference was accumu-
lated to compute precision. In Table 2, the average pre-
cision (average distance from the references), per-target
failure rate (% of failures over 20K annotations), and
frames-to-failure count (number of subsequent frames
successfully tracked) are reported for the (i) first 30K
frames (Poster), (ii) the remaining 25K frames (Party)
and (iii) the total 60 minute recording. Our multi-thread
implementation used in these experiments tracks the 18
targets using 50 particles per target at 7 fps on a 3 GHz
PC. While overall precision is high considering space
dimensionality, low image-resolution and high occlusion
rate (cf. last row of table; to our best knowledge no
comparable dataset exists for tracking evaluation), a

TABLE 2
Mean tracking statistics and per-target occlusion rates for

the four views.

Poster Party All

Precision (cm) 15.2 ± 0.1 20.1 ± 0.1 17.3 ± 0.1
Failure rate (%) 2.6 ± 0.1 9.6 ± 0.3 5.7 ± 0.2
Frames-to-failure 1644 ± 63 439 ± 12 759 ± 21

Occlusion (%) 28,35,22,26 25,28,49,27 27,32,34,27

sensible increase in failure rate is observed for the Party
session. Indeed, in FCGs, persons tend to occupy every
available space and exhibit a relaxed body posture such
that they are hardly visible in some of the camera views.
Also, targets more often bend their bodies to grab food
and beverages, and illumination varies considerably over
the scene impeding color-based tracking. However, low
failure rate in the Poster session where targets arrange
themselves in a more orderly manner around posters
indicates that occlusion handling is effective with the
HJS-PF filter. A snapshot of the tracking results during
the Poster and the Party scenarios is found in Figure 7.
Based on these results, we identify some key elements
requisite for FCG tracking: (i) perform ground tracking
with explicit occlusion handling at frame level, (ii) ex-
tract discriminative signatures for each target to resolve
identity switches (as in re-identification research), and
(iii) learn the illumination pattern of the scene to adapt
signatures locally to lighting conditions [57] (as in color
constancy research). These may be cast into a global
optimization framework [16] and extended to multi-
modal tracking.

5.3 Head and body pose estimation from visual data
The estimation of the head and body pose is still an im-
portant research topic in the computer vision community.
Specifically, when focusing on estimating the positions
and head and body orientation of individuals in FCGs
monitored by distant surveillance cameras, several chal-
lenges arise due to low resolution, clutter and occlusions.
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TABLE 3
Head and body pose estimation error (degree).

% training data view 1 view 2 view 3 view 4

1% Head 45.7 ± 0.6 47.2 ± 0.3 48.4 ± 0.8 49.5 ± 1.2
Body 49.3 ± 0.5 51.6 ± 0.9 51.2 ± 0.4 54.6 ± 0.8

5% Head 43.6 ± 0.5 46.2 ± 0.3 46.4 ± 0.8 47.5 ± 0.9
Body 47.3 ± 0.5 49.4 ± 0.5 49.9 ± 0.5 52.5 ± 0.7

10% Head 42.2 ± 0.4 45.3 ± 0.3 43.4 ± 0.8 44.9 ± 1.5
Body 45.4 ± 0.5 47.5 ± 0.8 48.7 ± 0.7 51.7 ± 0.5

To demonstrate these challenges on SALSA, we consid-
ered the recent work of Chen et al. [14], which is one
of the few methods that jointly compute head and body
orientation from low resolution images. In a nutshell, this
algorithm consists of two phases. First, Histograms of
Oriented Gradients (HoG) are computed from head and
body bounding boxes obtained from training data. Then,
a convex optimization problem that jointly learns two
classifiers for head and body pose respectively is solved.
Importantly, the classifiers are learned simultaneously,
imposing consistency on the computed head and body
classes so as to reflect human anatomic constraints (i.e.,
the body orientation naturally limits the range of possible
head directions). The approach in [14] leverages informa-
tion from both annotated and unsupervised data via a
manifold term which imposes smoothness on the learned
classification functions, typical of semi-supervised learn-
ing methods. In our experiments, only labeled data were
used for training.

The method proposed in [14] is monocular and consid-
ers 8 classes (corresponding to an angular resolution of
45o) for both head and body classification. Therefore, to
test it on SALSA, we also considered each camera view
separately. In this series of experiments, the target head
and body bounding boxes were obtained by manual
annotation, and a subset of about 7.5K samples was
employed (bounding boxes were not available for targets
going out of the field of view, see supplementary mate-
rial). To compute visual features for both head and body,
we used the UoCTTI variant of HoG descriptors [58].
In our tests, a small percentage of the frames (1%, 5%,
10%) were used for training, while the rest were used for
testing. For performance evaluation, we used the mean
angular error (in degrees) defined in [14] for computing
head and body pose estimation accuracy.

Experiments were repeated ten times with random
training sets, and corresponding average error and stan-
dard deviation are reported in Table 3. Despite many
occlusions and the presence of clutter, a state-of-the-art
pose classification approach achieves satisfactory per-
formance (maximum error of around one class width).
However, it is worth noticing that our experiments were
performed with homogeneous training and test data, in
contrast with the heterogeneous data employed in [14].
We expect a significant decrease in performance when
heterogeneous training data are used for pose estimation.
Also, errors observed for head pose are considerably
smaller than for body pose over all four camera views–

Fig. 8. Mean speaker recognition accuracy with different
methods on SALSA.

this is because body pose classifiers are impeded by
severe occlusions in crowded scenes. Precisely for this
reason, previous works on F-formation detection from
FCGs [30], [32], [59] have primarily employed head
orientation, even though body pose has been widely
acknowledged as the more reliable cue for determining
interacting persons. We believe that devising a multi-
modal approach also employing IR and bluetooth-based
sensors for body pose estimation would be advantageous
as compared to a purely visual analysis, which was one
of the primary motives for compiling the SALSA dataset.

5.4 Speaker recognition

Speaker recognition is a critical and fundamental task
in behavior analysis from FCGs. Processing the auditory
data in SALSA is challenging for several reasons. First,
the recordings were carried out in a regular indoor space
prone to reverberations and ambient noise. Second, 18
persons participated in the event and freely interacted
with one another and therefore, the audio recordings
consist of mixtures of speech signals emanating from
different speakers. Third, the sociometric badges only
retained part of the time-frequency representation, and
thus high-performance speaker recognition is very chal-
lenging on this data. Finally, as relative positions of
the speakers were constantly evolving, the speaker-to-
microphone filter is not only unknown but highly time-
varying, and thus very hard to estimate in practice.
Indeed, current methods for speaker localization [37],
[60] or source separation [36], [61] are not designed for
such a complex scenario.

Classical speaker recognition approaches build on Mel
Frequency Cepstral Coefficients (MFCCs). Computed
from the short-time frequency transform (STFT), MFCC
have been shown to achieve a good balance between
descriptive power, complexity and dimensionality [62].
Four classifiers, namely, support vector machines with
linear (SVM-L) and radial-basis function kernel (SVM-
RBF), Gaussian mixture models (GMM) and random
forests (RF) were employed for MFCC-based speaker
recognition. In addition to the straightforward strategy of
feeding the badge-specific MFCCs to classifiers, we also
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TABLE 4
F-formation detection with ground-truth data.

Head Body
Prec. Rec. F1 Prec. Rec. F1

HVFF lin [30] 0.56 0.72 0.63 0.59 0.74 0.67
HVFF ent [31] 0.63 0.77 0.69 0.66 0.8 0.73
HVFF ms [32] 0.58 0.73 0.64 0.61 0.76 0.68

GC [9] 0.80 0.85 0.82 0.82 0.85 0.83

concatenated the MFCCs extracted from all badges at ev-
ery frame to deal with time varying speaker-microphone
relative locations. We refer to these two strategies as “No
Fusion” (NF) and “Frame-based Fusion” (FBF) respec-
tively. To create ground-truth labels, we annotated by
visual inspection the ID of the speaker within a group
of five persons interacting over a 15-minute duration
during the poster session. We chose this group as the
camera perspective and resolution allowed for reliable
vision-based annotation.

Mean speaker recognition accuracies obtained upon
five-fold cross validation are presented in Figure 8. We
observe that the FBF strategy systematically outperforms
the NF strategy. Focusing on FBF, we observe that RBF-
SVM and random forests perform similarly, while doing
much better than GMM and outperforming linear SVM.
Also, as GMMs are known to be less effective in higher
dimensional spaces, we computed principal components
so as to 90% variance in the FBF setting.

In light of these results, we outline directions for
future work. First, due to the crowded nature of scenes
involving FCGs, auditory analysis is highly challenging.
Due to ambient noise, reverberations and multiple sound
sources, recognizing the speaker from the badge audio
data is challenging per se. Nevertheless, performance
increase observed with the FBF strategy suggests that
a multi-modal approach can be effective, where track-
ing and pose estimates can facilitate multi-microphone
based speech analysis. Finally, examining the badge data
closely, most non-zero STFT coefficients are in the first
nine frequency bins (< 300Hz). Therefore, algorithms
attempting speaker recognition on SALSA should design
features to exploit this frequency range.

5.5 F-formation detection
Detecting F-formations by visual observing crowded
scenes is a challenging task. Several factors such as low
video resolution, occlusions and complexities of human
interactions hinder robust and accurate F-formation de-
tection. We first considered four state-of-the-art vision-
based approaches for individuating FCGs in SALSA.
Specifically, we adopted (i) Hough voting [30] (HVFF-
lin), (ii) its non-linear variant [31] and (iii) multi-scale
extensions [32] (denoted as HVFF-ent and HVFF-ms) and
(iv) the graph cut approach [9] as associated codes are
publicly available4.

These approaches take the targets’ positions and head
pose as input, and compute F-formations independently

4. http://profs.sci.univr.it/∼cristanm/ssp/

for each frame. In particular, the Hough-voting methods
work by generating a set of virtual samples around each
target. These samples are candidate locations for the
O-space center. By quantizing the space of all possible
locations, aggregating samples in the same cell and
finding the local maxima in the discrete accumulation
space, the O-space centers and F-formations therefrom
are identified. Oppositely, in the graph-cut algorithm, an
optimization problem is solved to compute the O-space
center coordinates.

We first evaluated the above F-formation detection
approaches using ground-truth position and head and
body pose annotations, and considered all the annotated
frames. F-formation estimation accuracy is evaluated
using precision, recall and F1-score as in [30]. In each
frame, we consider a group as correctly estimated if at
least T · |G| of the members are correctly found, and
if no more than 1 − T · |G| non-members are wrongly
identified, where |G| is the cardinality of the F-formation
G and T = 2/3. Results are reported in Table 4. Even the
most accurate approach, i.e. the graph-cut method, only
achieves a F1-score of about 0.83, clearly demonstrating
the need of devising more sophisticated algorithms for
detecting F-formations in challenging datasets such as
SALSA. Moreover, it is worth noting that our results are
consistent with the observations in previous works such
as [30], i.e., using the body pose is more advantageous
than using head orientation for detecting a group of
interacting persons.

In a second series of experiments, we evaluated the
graph-cut approach using automatically estimated head
and body orientations from the multi-sensor badge data.
Specifically, we considered annotations for the target
positions, and estimated head and body pose from visual
data with the method proposed in [14]. In these ex-
periments, HoG features extracted from head and body
crops for the four camera views were concatenated and
provided as input to the classifiers. In this series of
experiments, we only considered a subset of frames
where all the targets were in the camera field of view.
To train the coupled head-body pose classifier, we used
1% of the available samples as training data. Experiments
were repeated ten times and the average performance is
reported. We also integrated information from IR and
audio sensors. Audio and IR are sparse observations,
whilst visual data are available at every time-stamp. The
likelihood of target n addressing m was estimated from
audio and IR data. The maximum likelihood points to the
person with whom m (the addressee) is more likely to
interact. The audio and IR observations correspond to the
direction of the addresser (n). For integrating multiple
angles, we simply considered their weighted average.
Weights were tuned so as to maximize algorithm per-
formance on a small validation set.

The results of our experiments are reported in Fig. 9.
Clearly, when the head and body pose are automati-
cally computed from visual analysis, the performance
significantly decreases with respect to the use of ground-
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Fig. 9. F-formation detection results (F1 score). Head and
body pose were automatically estimated from visual, infra-
red and audio data.

truth (GT) annotations5. Furthermore, by combining in-
formation from multiple modalities, we obtain a modest
improvement with respect to using only visual data.
Specifically, while jointly employing visual and infra-
red data is advantageous with respect to exclusively em-
ploying the visual data, the integration of audio sensors
provides minimum benefit. Finally, it is worth noting that
a decrease in performance with respect to the ground-
truth is also due to the angle quantization process. This
can be observed by comparing the four leftmost bars in
Fig. 9. Therefore, casting head and body pose estima-
tion as a classification task (as typical of related works,
where four/eight pose classifiers are used) appears to be
insufficient for robustly detecting F-formations. Instead
of considering classifiers, our experiments suggest that
a better strategy entails casting head and body pose
estimation as a regression task.

5.6 Interaction networks and personality traits
The SALSA behavioral data also allow for investigating
the relationship between social dynamics and higher-
level behavioral determinants such as personality traits.
In this section, different from traditional works that have
correlated audio-visual behavioral cues with the big-
five traits, we show how the sociometric badge data
can also be utilized for the same. To this end, we
built three networks based on i) infra-red (IR) hits; ii)
audio correlations6; and iii) group compositions from
video-based F-formation annotations (GT). To account
for the dynamics, we selected windows of 60 and 120
seconds, and proceeded to build a multimodal graph
for each window. For infra-red, the graph represent-
ing the n-th window has an edge between the target
pairs whose badges detected an infra-red hit during the
time period defined by n. For audio, we employed the
correlations and added an edge between two targets if

5. Note that the accuracies with GT data reported in Fig. 9 are
different from those presented in Table 4 since only a subset of frames
is used in these experiments. In these considered frames, the scene is
crowded since all 18 targets are inside the field of view.

6. We computed the correlation between the badge STFT coefficients
(normalized by the energy of the recording badge).

the corresponding correlation value is above a thresh-
old (empirically set to 0.95). From the video data, we
added an edge between two targets when they were
detected as being part of the same group. Furthermore,
we also built a static multimodal graph which encoded
the entire sequence (equivalent to setting the window’s
duration equal to the sequence’s duration). From these
networks, we extracted three basic classes of structural
characteristics, i.e., centrality, efficiency, and transitivity,
and investigated how these characteristics are related to
personality traits.

Inspired by previous studies [63], [64], [65], [66], we
extracted the three standard measures of centrality pro-
posed by Freeman: degree, betweenness, and closeness cen-
trality [67]. These centrality measures can be divided into
two classes: those based on the idea that the centrality of
a node in a network is related to how close the node is to
the other nodes (e.g., degree and closeness centrality), and
those based on the idea that central nodes stand between
others playing the role of intermediary (e.g., betweenness
centrality). Furthermore, we computed the network con-
straint [68] for each individual; this measure provides
an indication on how much the target’s connections are
connected with one another.

We also computed nodal and local efficiency for each
node in the networks. The concept of efficiency [69] can be
used to characterize how close to a ‘small world’ a given
ego-network is. Small world networks are a particular
kind of networks that are highly clustered, like regular
lattices, and have short characteristic path lengths like
random graphs [70]. The use of efficiency is justified by
the hypothesis [71] that the rate at which information
flows within the network is influenced to some degree
by the personality of the ego.

Finally, we extracted the transitivity measure, which
provides an indication of the clustering properties of
the graph under analysis. Based on triads, i.e., triples
of nodes in which either two (open) or three (closed)
nodes are connected by an edge, transitivity is defined
as the ratio of the number of closed triads to the num-
ber of graph triads. In [65], Extraversion was found to
negatively correlate with local transitivity, while McCarty
and Green [72] found that agreeable and conscientious
persons tend to have well-connected networks.

We conducted a preliminary statistical analysis (sum-
marized in Table 5) on the features derived from the
interaction graphs described above, and investigated
their associations with the personality data provided by
SALSA. We only report associations that are significant at
p < .05, unless otherwise stated. Unfortunately, we did
not find statistical significant correlations between the
personality traits and the auditory features. This issue
will be subject of further investigation.

Extraversion, a personality trait lying in the tendency
to behave in a way to engage and attract other people,
and hence usually activated in situations such as social
gatherings, was found to be significantly associated (R =
0.53) with the standard deviation of the degree centrality
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TABLE 5
Significant Pearson correlations between the big-five

traits and IR and GT network features (* denotes p < .01).
Trait Feature R

Extr. Betw. Median Dyn-120-IR .53
Degree Std Dyn-60-IR .53

Agre. Degree Median Dyn-120-IR .48
Nodal Eff. Median Dyn-120-IR .49

Cons.

Local Eff. Stat-IR .52
Nodal Eff. Median Dyn-60-GT .49
Nodal Eff. Median Dyn-120-GT .56
Trans. Mean Dyn-60-IR .54

Em. St. Trans. Median Dyn-60-IR -.53

Crea.

Betw. Stat-GT .49
Clos. Mean Dyn-60-IR -.49
Degree Mean Dyn-60-GT -.47
Degree Mean Dyn-120-GT -.50
Loc. Eff. Stat-IR -.51
Nod. Eff. Stat-GT -.49
Trans. Stat-GT -.73*

computed on the 60 sec dynamic infra-red network. In
other words, more extraverted targets appear to establish
face-to-face interactions of variable duration, and thus
engage with groups of diverse cardinality within the
1-minute windows under analysis. The expansion of
the time window to 120 seconds provided additional
insights: the higher a target scored on the Extraversion
trait, the higher the median of his/her betweenness cen-
trality (R = 0.54). This suggests that the extravert targets
in SALSA tended to act as brokers, i.e., they served as
connectors between clusters of people who had fewer
face-to-face interactions.

Also, more agreeable subjects in SALSA were found
to have a tendency towards engaging in face-to-face in-
teractions with a higher number of people within highly
connected clusters. Agreeableness was found to be sig-
nificantly associated with the median degree centrality
(R = 0.48) and the median nodal efficiency (R = 0.49)
as computed on the 120 sec graphs. Emotional Stability
was found to be negatively associated with median tran-
sitivity (R = −0.53) on the 60 sec infra-red graphs– this
indicated that neurotic persons in SALSA tended to en-
gage face-to-face during unbalanced interaction events.

Regarding Conscientiousness, several significant as-
sociations were found. In particular, from the 60 sec
dynamic interaction networks built on infra-red data, we
noted that conscientious subjects tended to participate in
densely connected groups, as indicated by the positive
association with mean transitivity (R = 0.54). Thus,
within the groups that naturally formed in the SALSA
context, conscientious subjects took part mainly in those
groups where the participants engaged more with each
other. This fact is further confirmed by the significant
association found on the static graph built on infra-red
data between this trait and local efficiency (R = 0.52).
Interestingly, the median nodal efficiency extracted from
the dynamic graphs built upon group annotations consis-
tently shows similar associations with this trait (R = 0.56
using a 120sec window, R = 0.49 using 60 sec).

The social psychology literature does not offer many
quantitative studies regarding the Creativity (or Open-
ness to Experience) trait. Given this lack of information,
the associations detected were remarkable, and deserve
deeper investigation. This trait seemed to be associated
with: i) local efficiency (R = −0.51) computed on the
static face-to-face interaction network; ii) mean closeness
centrality (R = −.49) computed on the 60 sec graphs
built on infra-red; iii) betweenness centrality (R = 0.49),
nodal efficiency (R = −0.49), and transitivity (R =
−0.73, p < .001) computed on the static group interaction
network; and iv) mean degree in both 60 sec (R = −0.47)
and 120 sec (R = −.5) graphs built from group anno-
tations. Hence, creative persons seemed to participate
overall in smaller and less connected networks than
conservative targets.

While the above analyses present correlations between
some of the behavioral cues that can be extracted from
the SALSA data and high-level personality traits, we
believe the entire gamut of information available can
enable the study of both individual and group-level
traits (e.g., dominance). Also, unlike round-table meetings,
which typically have an agenda based on which partic-
ipants assume certain roles that may not relate to their
actual personality, SALSA captures hedonistic and free-
wheeling social interactions, which even if challenging
to analyze, can provide a wealth of information about
one’s native behavior and personality.

6 CONCLUSIONS AND FUTURE WORK
Via extensive experiments, we have demonstrated how
SALSA represents a rich but challenging dataset for
analysis of FCGs. Vision-based analysis for target track-
ing, head and body pose estimation and F-formation
detection evidenced the shortcomings of state-of-the-art
methodologies when posed with cluttered scenes with
persisting and extreme occlusions. However, additional
sensors available as part of the sociometric badge were
found to be helpful in cases where visual analysis was
difficult– in particular, (i) the infra-red sensor which
indicates both the proximity and body pose of the in-
teracting counterpart was found to improve F-formation
detection, (ii) both IR and visual cues were found to
have significant correlations with the big-five personality
traits, and (iii) improved speaker recognition with multi-
badge speech data indicates the promise of additionally
utilizing visual and accelerometer data to this end.

Future research directions include: (a) developing new
methodologies for robust audio processing in cluttered
environments with many dynamic targets, (b) utilizing
the bluetooth and accelerometer data for F-formation
detection and personality trait recognition, and (c) de-
signing tracking and head/body pose estimation algo-
rithms capable of exploiting multimodal data. Given the
extensive raw data and accompanying annotations avail-
able for analysis and benchmarking, we believe SALSA
can spur systematic and intensive research to address
the highlighted problems in a multimodal fashion in the
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near future. Evidently, SALSA would serve as a precious
resource for the computer vision, audio processing, social
robotics, social signal processing and affective computing
communities among others.
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