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Abstract Supervised learning methods require sufficient labeled examples to learn a good
model for classification or regression. However, available labeled data are insufficient in
many applications. Active learning (AL) and domain adaptation (DA) are two strategies to
minimize the required amount of labeled data for model training. AL requires the domain
expert to label a small number of highly informative examples to facilitate classification,
while DA involves tuning the source domain knowledge for classification on the target
domain. In this paper, we demonstrate howAL can efficiently minimize the required amount
of labeled data for DA. Since the source and target domains usually have different distri-
butions, it is possible that the domain expert may not have sufficient knowledge to answer
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each query correctly. We exploit our active DA framework to handle incorrect labels pro-
vided by domain experts. Experiments with multimedia data demonstrate the efficiency of
our proposed framework for active DA with noisy labels.

Keywords Active learning · Domain adaptation · Noisy labels · Multimedia analysis

1 Introduction

In machine learning, supervised methods require sufficient labeled examples in order to
learn a good model. However, it is difficult to acquire sufficient labeled data in many real
world applications. Moreover, labeling is an intensive task requiring extensive human labor.
In order to tackle this problem, several approaches have been proposed. Semi-supervised
learning aims to exploit the consistency between labeled and unlabeled data for classifica-
tion. Active learning (AL) focuses on selecting a small set of essential examples for querying
labels from domain experts. Domain adaptation (DA, also called Transfer learning) facil-
itates classification when the training (source) and test (target) data are from different
domains. Domain adaptation uses the knowledge acquired from a large number of labeled
source examples and a few labeled target examples for classification in the target domain.

DA algorithms (see Pan and Yang [29] for a survey) seek to combine limited target
data with the source data in order to adapt to the target domain. However, they typi-
cally tend to choose target examples randomly without considering which samples are
most informative for classification in the target domain. Therefore, one question that
needs to be examined is whether and how we can efficiently label target data for DA?
Considering that the goal of both domain adaptation and active learning is to mini-
mize labor-intensive data labeling, it would be worthwhile to integrate DA and AL in a
single framework.

To our knowledge, very few works studied how to minimize the amount of labeled target
data, especially under noisy labeling. A theoretical study on the number of labeled exam-
ples required to learn all targets to achieve an arbitrarily specified accuracy is presented
in Yang et al. [44]. Two active transfer learning algorithms that allow for changes in all
marginal and conditional distributions with the additional assumption that these changes are
smooth are proposed in Wang et al. [37]. However, they do not consider noisy labels which
are likely to occur in active DA scenarios. Shi et al. [33] propose active transfer learning,
but their approach is limited by the unlikely assumption that identical prediction labels are
generated for a target example by the out-of-domain (source) and in-domain (target) clas-
sifiers. Additionally, the error rate of the transfer classifier is not bounded, and only binary
classification is considered here. Extending active transfer learning to multi-class classifi-
cation as in this work, the upper-bound error rate increases considerably and consequently,
the domain-adaptive classifier cannot classify correctly anymore.

In this paper, we investigate an adaptive DA algorithm within an AL framework able to
cope with label noise. We also extend the binary classification to a multi-class classification
problem through error-correcting output coding. We investigate how AL helps to minimize
the numbers of labeled data for DA even under noisy labeling. Experiments on real-world
datasets for headpose estimation and image classification demonstrate the efficacy of our
proposed framework. To sum up, this paper makes the following contributions:

– An active domain adaptation framework under noisy labeling is proposed, and is shown
to be effective for multimedia analysis;
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– We integrate active learning with domain adaptation for a multi-class setting through
error correcting output coding;

– The proposed framework is general, and potentially applicable to many multimedia
problems.

The paper is organized as follows. Section 2 reviews related work from the perspective
of active learning, domain adaptation and learning with noisy labels. Section 3 details active
domain adaptation with noisy labels. Section 4 presents experimental results on headpose
estimation and image classification, while Section 5 concludes the paper.

2 Related work

In this section, we review related work in the areas of active learning, domain adaptation
and learning with noisy labels.

2.1 Active learning

Active learning (AL) involves asking the domain expert to label a small number of
most-informative examples to facilitate classification. Based on query scenarios, AL can
be divided into three types of settings: (i) Membership query synthesis, (ii) stream-
based selective sampling and (iii) pool-based sampling. The pool-based scenario has
been studied for many real-world problems in machine learning and computer vision.
Uncertainty sampling is a common approach in AL. Distance from hyperplane for
margin-based classifiers has been used as a measure of uncertainty in previous works.
Tong and Koller [36] provided a theoretical motivation for SVM-based AL using the
notion of a version space. Yan et al. [38] proposed a unified multi-class AL approach
through error-correcting output coding based on the ’best worst case’, which approxi-
mates the expected loss function with the smallest loss function among all the possible
labels.

Hoi et al. [20] extended the Fisher information framework to the batch-mode setting for
binary logistic regression. Sheng et al. [32] studied the problem of using several heuristics
that take into account estimates of both oracle and model-uncertainty, and showed that data
can be improved by selective repeated labeling. However, their analysis assumed both were
equally and consistently noisy and annotation was a noisy process over some underlying true
label. Liang and Grauman [25] introduced a novel criterion that requested a partial ordering
for a set of examples that minimized the total rank margin in attribute space, subject to a
visual diversity constraint.

Existing AL strategies can have uneven performance, being efficient on some datasets
but ineffective on others, or inconsistent just between runs on the same dataset. Aodha
et al. [2] proposed perplexity-based graph construction and a new hierarchical sub-query
evaluation algorithm to combat this variability and to use the potential of expected error
reduction. Elhamifar et al. [12] developed an efficient active learning framework based on
convex programming, which can select multiple samples at a time for annotation. Unlike the
state-of-the-art, their algorithm can be used in conjunction with any classifier type, includ-
ing sparsity-based classifiers (SRC). Hua et al. [21] presented a collaborative computational
model for AL with multiple human oracles. This approach leads not only to an ensem-
ble kernel machine robust to noisy labels, but also to a principled label-quality measure
detecting irresponsible labelers online.
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Li and Guo [24] presented a novel multi-level AL approach to reduce the human annota-
tion effort for training robust scene classification models. Different from most existing AL
methods that can only query labels for selected instances at the class level, their approach
established a semantic framework that predicted scene labels based on a latent object-based
image representation, and was capable of querying labels at two different levels– the scene-
class level and the latent object-class level. Yang et al. [46] proposed a semi-supervised
batch mode multi-class AL algorithm for visual concept recognition. Chang et al. [7] pro-
posed a novel convex, semi-supervised multi-label feature selection algorithm applicable to
large-scale datasets.

2.2 Domain adaptation

Traditional machine learning algorithms are based on the assumption that training and test
data share the same distribution in feature space. When the training and test distributions are
different, the classification accuracy drops significantly. In such cases, domain adaptation
(DA) between the two domains is desirable. DA assumes that the training and testing data
could be from different domains and distributions. It is motivated by the fact that people
can intelligently apply knowledge learned previously to solve new problems efficiently. The
target of DA is to find some common property which is shared between the training (or
source) and test (or target) domains.

Pan and Yang [29] identified three main research issues in DA: (i) what to transfer,
(ii) how to transfer, and (iii) when to transfer. ‘What to transfer’ examines which knowl-
edge can be transferred across domains or tasks. After discovering which knowledge can be
transferred, learning algorithms are developed to describe the process of ‘how to transfer’.
‘When to transfer’ studies the situations where the knowledge could be transferred, in order
to guard against negative knowledge transfer that could hurt classification performance on
the target domain.

There are several DA approaches. Instance-transfer involves re-weighting some source
data for use in the target domain under the assumption that source data can be reused in
the target domain [8, 22, 47]. Feature-representation-transfer attempts to find a ‘good’ fea-
ture representation that reduces the difference between the source and target domains as
well as the classification/regression error [3, 9]. Parameter-transfer involves discovery of
shared parameters or priors between the source and target models which can benefit from
transfer learning [5, 13, 30]. Relational-knowledge-transfer builds a mapping of relational
knowledge between the source and target domains [27].

In essence, transfer learning adapts useful source information to efficiently classify in
the target domain whose attributes vary with respect to the source. Daume [9] proposed a
feature replication method to augment features for transfer learning. Saenko et al. [31] and
Kulis et al. [23] proposed a method for domain adaption using metric learning by gener-
ating cross-domain constraints. Dai et al. [8] used a boosting framework [14] to re-weight
the importance of source and target samples for DA. Yao and Dorretto [47] extended the
transfer boosting framework to include information from multiple sources. Yang et al. [43]
adapted DA by learning a delta function between the source and target domains based on
SVMs. This method seeks the target decision boundary which is close to the source decision
boundary. Duan et al. [11] extended this method via multiple kernel learning by learning
kernels that minimize the mismatch between source and target domains. Han et al. [19]
proposed a framework for image attribute adaptation. Zhang et al. [48] proposed a DA
framework for still-to-motion Adaptation (SMA) for human action recognition. Han et al.
[18] proposed finding a low-dimensional optimal consensus representation from multiple
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heterogeneous features for multi-view transfer learning. Han et al. [17] proposed a sparse
multi-label learning method to circumvent the visually polysemous barrier of multiple tags.

2.3 Learning with noisy labels

Nowadays, with the exponential growth of user-generated web images and videos, there
has been an increasing interest in learning models that can handle noisy labels for super-
vised learning. This is a practical problem due to the uncontrolled environments in which
humans label data. Given the importance of learning from noisy labels, a great deal of
progress has been made in this regard. Natarajan et al. [28] addressed the problem of
risk minimization in the presence of random noise, and obtained generalizable results
using unbiased estimators and weighted loss functions. Efficient algorithms were pro-
posed with both methods with provable guarantees for learning under label noise. Yang
et al. [45] proposed a multimedia retrieval framework based on semi-supervised rank-
ing and relevance feedback. Yan et al. [41] proposed event-oriented dictionary learning
for multimedia event detection. Biggio et al. [4] investigated the robustness of SVMs
under adversarial label noise and proposed an improved method based on kernel matrix
correction. Yan et al. [42] proposed a multi-task LDA method for multi-view action
recognition.

In active learning, it is highly probable that the expert may have no information con-
cerning some queries and cannot provide accurate labels. Du and Ling [10] studied AL
under noisy labeling with a human-like oracle by introducing non-uniformly distributed
noise. They made a realistic assumption that the less confident the oracle is in label-
ing the example, the larger is the effect of the noise. Sogawa et al. [34] proposed a
pool-based active learning framework through robust measures based on density power
divergence. By minimizing β-divergence and γ -divergence, one can estimate the model
accurately even with noisy labels. Golovin et al. [15] tackled the fundamental problem of
Bayesian active learning with noise, where they needed to adaptively select from a num-
ber of expensive tests in order to identify an unknown hypothesis sampled from a known
prior distribution. Learning with noisy labels is especially important in DA scenarios. To
the best of our knowledge, there is no work focusing on active transfer learning with
noisy labels.

3 Active domain adaptation with noisy labels

Domain adaptation uses a small number of labeled samples from the target domain.
However, taking into account that not all samples from the target domain are equally
informative, an efficient sample selection strategy is preferable. To minimize the amount
of labeled data in the target domain, we attempt AL using different sample selection
strategies.

3.1 SVM-based domain adaptation

Recently, several adaptation methods for the support vector machine classifier (SVM)
were proposed for video retrieval in Duan et al. [11]. In order to make the SVM
classifier adaptive to a new domain, the target decision function f T (x) is formulated
as:

f T (x) = f S(x) + �f (x) (1)
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where x is the specific feature vector and f S(x) is the source decision function. �f (x) is
the function of the mismatch between source and target domains.

Duan et al. [11] extended this method via multiple kernel learning. In this case, the target
decision function is formulated as:

f T (x) =
P∑

p=1

γpfp(x) +
M∑

m=1

dmwT
mφm(x) + b (2)

where fp(x) is the p-th pre-learned classifier trained using labeled data from both domains.
P is the number of pre-learned classifiers. γp are the coefficients of the p-th pre-learned

classifier. A linear combination of multiple kernels
M∑

m=1
dmwT

mφm(x) + b is used to model

�f (x) in this setting with a bias term b. M is the number of kernels and dm are the coef-
ficients of the m-th kernel. wT

m is the transpose of the weight vector wm and φm(x) is the
nonlinear feature mapping function where base kernels can be calculated as km(xi, xj ) =
φT

m(xi)φm(xj ).
There are two objectives to minimize. The first objective is to reduce the mismatch

between the source and target domains. Gretton et al. [16] proposed a similarity mea-
sure for two different distributions. The mismatch is measured by Maximum Mean
Discrepancy (MMD) as in Huang et al. [22] based on the distance between the sam-
ple means from the source and target domains in the Reproducing Kernel Hilbert Space
(RKHS) namely:

DIST (DS,DT ) = �(d) =
∥∥∥∥∥
1

nS

nS∑

i=1

φ(xS
i ) − 1

nT

nT∑

i=1

φ(xT
i )

∥∥∥∥∥
H

(3)

where xS
i and xT

i are the samples from the source and target domains, respectively. nS and
nT are the number of samples in the source and target domains.

The second objective is to minimize the structural risk functional J (d) in the target
domain. If we combine these two objectives, the optimization problem is given by

min
d

G(d) = 1

2
�2(d) + θJ (d) (4)

where d is coefficient vector for the multiple kernels. �2(d) is the distance between the
source and target distributions. By introducing Lagrangian multipliers α, the dual form of
the optimization is:

J (d) = max
α

αT − 1

2
(αy)T

(
M∑

m=1

dmK̃m

)
(αy) (5)

This is equivalent to the dual form of SVMwith kernel matrix
M∑

m=1
dmK̃m, where K̃m are the

domain-adaptive rectified kernels. The optimization problem can be solved by an existing
SVM solver, such as LIBSVM [6].
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3.2 Multiclass active learning

Margin-based learning algorithms minimize the loss function L(·) with respect to the
margin.

min
1

m

m∑

i=1

L(yif (xi)) (6)

Allwein et al. [1] proposed a unifying framework for studying the solution of
multi-class categorization problems by reducing them to multiple binary problems.
Firstly, we define a coding matrix M ∈ {−1, 0, +1}k×l . k is the number of
classes and l is the number of binary classification problems. Let M(r) denote the
row r of M and f (x) be the vector of predictions on an instance x, f (x) =
(f1(x), ..., fl(x)). The basic idea is to predict with the label r, which row in M(r)

is the closest to the prediction f (x), i.e., predict label r that minimizes the distance
d(M(r), f (x)).

Taking advantage of the confidence of binary predictions, Allwein et al. [1] proposed a
loss-based decoding scheme. The idea is to choose the label r that is the most consistent
with the predictions fs(x) in the sense that, if the example x was labeled r, the total loss
on example (x, r) would be minimized over choices of r ∈ Y . The distance measure is the
total loss on a proposed example (x, r).

dL(M(r), f (x)) =
l∑

s=1

L(M(r, s)fs(x)) (7)

The predicted label ŷ ∈ {1, ..., k} is:
ŷ = argmin

r
dL(M(r), f (x)) (8)

Yan et al. [38] proposed an approximated sample selection strategy which uses the best
worst case model to approximate the expected loss function with the smallest loss function
among all the possible labels.

argmax
x

min
y∈Y

l∑

s=1

L(M(y, s)fs(x)) (9)

If yx is the predicted label for example x, Eq. (9) becomes:

argmax
x

l∑

s=1

L(M(yx, s)fs(x)) (10)

Here, we choose the most ambigous examples with the maximum expected loss for the
predicted label.

3.3 Modeling with noisy labels

Information-theoretic methods can be used to model expert labeling knowledge. In the tra-
ditional AL scenario, the expert is able to provide a label for each queried instance. Then,
the objective of uncertainty sampling based AL is to query the instance with the highest
entropy. We model the domain expert as either knowledgeable to label an instance or not
knowledgeable. The Knowledge Base (N) is defined as the union of instances (N+) which
have been labeled by the domain expert, and those instances (N−) which the domain expert
is unable to label.
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The expected entropy of an unlabeled instance xi with respect to sets N+ and N− is given
by:

E = P(xi ∈ N+)E(yi |xi ∈ N+) + P(xi ∈ N−)E(yi |xi ∈ N−)

where E(·) is the entropy of samples xi with respect to the predicted classifier label. More-
over, in the above equation E(yi |xi ∈ N−) = 0 due to the definition of conditional
entropy. The diverse density concept proposed in Maron and Lozano-Perez [26] is adopted
to estimate P(xi) ∈ N+.

3.4 Framework

Considering that the goal of both DA and AL is to minimize intensive data label-
ing, it is reasonable to investigate how combining them can further minimize data
labeling on the target. We propose an active DA under noisy labeling framework
as shown in Figure 1. We use labeled source, labeled and unlabeled target data to
train the transfer classifier. Then, we use AL to select unlabeled target data to be
labeled by the expert, and add the same to labeled target data to update the transfer
classifiers.

Algorithm 1 presents the active DA under noisy labeling algorithm. We initially ran-
domly select one sample per category. Steps (4-8) represent the DA procedure. We combine
labeled target samples Ds

l with labeled source samples Dt
l to train an adaptive SVM

classifier f T m
(x) on the target domain Dt . To this end, we employ alternative coordi-

nate descent to optimize variables α and d in Eq. (5). ηt is the learning rate and gt

denotes the update direction. We iterate this procedure Tmax times. Steps (9-12) rep-
resent the AL procedure. In step (9), we calculate loss values for all the unlabeled
target samples. We choose those unlabeled target samples that produce the least loss
to be labeled by experts, and then add these samples to the labeled target domain.
Steps (13-19) represent the procedure adopted to deal with noisy labels. If the expert

Figure 1 Proposed framework for active domain adaptation with noisy labels

Expert 

Noisy labels 
modeling 

based on entropy  



World Wide Web (2016) 19:199–215 207

does not know the label for xi , the algorithm will include xi in the negative knowl-
edge base (N−). Step (19) is to update the knowledge base N. We iterate this procedure
K times.

4 Experiments

In this section, we test the proposed active DA method for cross-domain headpose estima-
tion (proposed earlier in Yan et al. [39, 40]) and cross-domain web image classification
(proposed in Saenko et al. [31]).

4.1 Cross-domain headpose dataset

In video surveillance, knowing where a person is looking at is important. However, head-
pose estimation or classification from surveillance videos can be very hard, due to the low
resolution and noise characterizing the sensor data. We focus on headpose estimation from
low-resolution images acquired using a multi-camera system.

The CLEAR 2007 dataset [35] illustrated in Figure 2a provides multi-view images,
output from four cameras placed in the room’s corners. This dataset includes 15 persons
rotating in-place, and exhibiting all possible head orientations while wearing a magnetic
motion sensor (flock-of-birds) to measure their head pose. The task is to estimate the per-
son’s 3D head orientation with respect to the room’s coordinate system, and to obtain a
robust, joint pose estimate from all four views instead of employing only a single camera
view for analysis.
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In order to evaluate cross-domain headpose classification, we used the DPOSE dataset
(described in Rajagopal et al. [30]) shown in Figure 2b. DPOSE is recorded under the
same settings as CLEAR, with both static and moving persons (only data corresponding to
static persons are used in our experiments). As evident from Figure 2, the illumination and
recording environments are very different in the CLEAR and DPOSE datasets.

We firstly localize the head in each of the four views using the procedure described
in Rajagopal et al. [30]. The localized head regions are then resized to 20×20 resolution. We
then concatenate the head crops from the four views on which visual features are extracted.
Head pan is divided into eight classes, each denoting a 45◦ pan range, and for each head
pan range, the tilt is quantized into three classes– namely frontal [−20◦, 20◦], upward (20◦,
90◦] and downward (−20◦, −90◦]. This leads to a total of 24 headpose classes (e.g. pan
range (-22.5,22.5) with frontal, upward and downward tilts denote headpose classes 1–3).
We divide the 4-view head image into 25 patches (every patch is 4 × 4). For the visual
features computed over each view, we use HOG (81 dimensions) and skin pixel histograms
(25 dimensions denoting the number of skin pixels in each patch). Then, we concatenate
these features to derive a 106-dimensional vector per view, and a 424-dimension vector over
the 4-view image.

We use several baseline methods to evaluate and compare our transfer learning results.
SATB means we train on source domain A and test on target domain B. SBTB means we train
on target domain B and test on B. S(A+B)TB means we train on both A and B and test on
B. T rAdaboost means we use the Adaboost algorithm [14] trained on labeled source and
target data. AMKL random means we use adaptive multiple kernel learning and randomly
label target samples. AMKL active (our method) means we use AMKL and actively label
the target samples. For all the experiments, we report the mean accuracy on 5 randomly
selected train/test sets. SVM parameterC = 1 in all the experiments. We use 100 images per
class in the source domain and query 24 samples (one sample/class) to label every round.
To begin with, there are 100 unlabeled images per class in the target domain.

Figure 3 compares classification accuracies achieved using various approaches over 30
rounds of active learning. Evidently, we can see that our active transfer learning algorithm
outperforms all the considered baselines. Clearly, our method efficiently learns about the
target domain upon incorporating knowledge from a few target examples. Also, employ-
ing information from all four camera views achieves superior performance as compared to
monocular analysis. Comparing AMKL active with AMKL random, we see that in both the
monocular and multi-view cases, our approach outperforms AMKL random after 10 rounds

Figure 2 4-view exemplar from the (a) CLEAR and (b) DPOSE datasets. Automatically extracted face
crops are shown on the bottom right inset
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Figure 3 Classification accuracies with (left) single view and (right) 4 views

of AL, and the benefit of learning from the most informative samples is reflected in the fact
that AMKL active outperforms AMKL random by more than 10 % after 30 rounds while
classifying with 4-view information.

Figure 4 shows the confusion matrix over 24 headpose classes using active transfer learn-
ing after 30 rounds. We can conclude that most of the target samples are correctly classified.
Moreover, most of the misclassified samples belong to nearby classes, which means the
samples are only misclassified with respect to head tilt, while the head pan is classified
correctly. This again demonstrates the robustness of our active DA framework for head-
pose estimation. We also evaluate the effects of using five different types of loss function
in the AL module– (i) Logistic loss 1/(1 + e2yf (x)), (2) Exponential loss e−x , (3) Hinge
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Figure 4 Confusion matrix over 24 classes for active DA after 30 rounds
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Figure 5 Evaluating active DA classification error with different loss functions

loss (1 − y)+, (4) Minimum margin loss e−100x and (5) log loss log(1/(1 + x)). Figure 5
presents the active transfer learning classification error obtained on these different loss func-
tion. We observe that hinge loss achieves the better performance among all loss functions,
which implies that active transfer learning works optimally if identical loss functions are
employed in the DA and AL modules.

Since querying sample labels for AL can also be done in a batch mode, we examine the
extent of reduction in classification error for varying number of queried samples at every
round. Figure 6 shows the progressive reduction in classification error with differing number
of queried samples (4, 8 and 12 samples/class/round) for AL. From Figure 6, we can see
that the classification accuracy is not influenced much by varying the number of queried
samples per round. However, choosing a moderate number of queried samples per round
appears to be optimal since the error is minimal when 8 samples per round are queried as
compared to querying 4 or 12 samples per round. Finally, we evaluate the robustness of our
active DA framework to noisy labels. Figure 7 compares classification accuracies achieved
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Figure 6 Evaluating our active DA framework with batch mode querying by varying number of queried
samples/class/round
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Figure 7 Evaluating active
domain adaptation with noisy
labels modeling strategy

with and without modeling for noisy labels in the AL module (steps 13–19 in Algorithm 1).
Note that about 3 % higher accuracy is achieved by accounting for noisy labels when using
both monocular and 4-view image features.

4.2 Cross-domain Berkeley web image dataset

The Berkeley image dataset consists of three types of images: web images (from amazon),
images from a digital SLR camera (high resolution image), and low-resolution webcam
images, as shown in Figure 8. Each domain has 31 categories of images. While the dig-
ital SLR camera and webcam images capture the same objects, the viewpoint and image
resolutions are different.

Our objective on the Berkeley dataset is to perform object recognition across image
domains. For all the experiments, we report mean accuracy obtained on 5 randomly selected
train/test sets. SVM parameter C = 1 in all the experiments. For each object category,

Figure 8 Exemplars from the Berkeley web image dataset. (from top to bottom) Web (amazon), digital SLR
camera (high resolution image) and webcam (low resolution image)
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Table 1 Source domain - webcam images

webcam→dslr webcam→amazon

SATB 0.19 ± 0.02 0.09 ± 0.01

SBTB 0.37 ± 0.01 0.18 ± 0.02

S(A+B)TB 0.28 ± 0.02 0.15 ± 0.01

Saenko et al. [31] 0.27 ± 0.02 0.19 ± 0.01

TrAdaboost (Dai et al. [8]) 0.25 ± 0.02 0.17 ±0.02

DA 0.35 ± 0.02 0.20 ± 0.01

ADA 0.61 ± 0.02 0.23 ± 0.01

ADAN 0.65 ± 0.02 0.27 ± 0.02

The bold means the largest values in the columns of tables

there are a small number of labeled samples in the target domain (3 in our experiment). For
the source domain, we use 8 labels per category for webcam/dslr and 20 for amazon. As
low-level visual descriptors, we use the pre-compute SURF features. A codebook of size
800 is constructed by k-means clustering. We firstly normalize the feature vector and then
repeat the experiment as in Saenko et al. [31]. Descriptions of the several baseline methods
compared are as follows:

– SATB - We train on source domain A and test on target domain B.
– SBTB - We train on target domain B and test on B.
– S(A+B)TB - We train on both A and B, and test on B.
– Saenko et al. [31] - A metric learning-based DA approach.
– T rAdaboost [8] - DA based on the Adaboost algorithm.
– DA - DA with adaptive multiple kernel learning (AMKL) and randomly label target

samples.
– ADA - DA and actively label target samples.
– ADAN - Proposed DA method accounting for noisy labels.

Tables 1, 2 and 3 compare classification accuracies achieved with the different
approaches when trained on images from the webcam, dslr and amazon domains respec-
tively. We make the following observations from these tables: (i) Superior performance

Table 2 Source domain - dslr images

dslr→webcam dslr→amazon

SATB 0.15 ± 0.01 0.04 ± 0.01

SBTB 0.40 ± 0.03 0.18 ± 0.02

S(A+B)TB 0.20 ± 0.02 0.08 ± 0.01

Saenko et al. [31] 0.31 ± 0.03 0.15 ± 0.02

TrAdaboost (Dai et al. [8]) 0.44 ± 0.03 0.10 ± 0.02

DA 0.49 ± 0.02 0.15 ± 0.02

ADA 0.59 ± 0.02 0.22 ± 0.02

ADAN 0.63 ± 0.02 0.31 ± 0.02

The bold means the largest values in the columns of tables
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Table 3 Source domain - amazon images

amazon→dslr amazon→webcam

SATB 0.04 ± 0.02 0.08 ± 0.01

SBTB 0.36 ± 0.03 0.38 ± 0.02

S(A+B)TB 0.10 ± 0.03 0.14 ± 0.02

Saenko et al. [31] 0.32 ± 0.02 0.48 ± 0.03

TrAdaboost (Dai et al. [8]) 0.22 ± 0.03 0.38± 0.01

DA 0.28 ± 0.01 0.39 ± 0.02

ADA 0.36 ± 0.03 0.45 ± 0.01

ADAN 0.40 ± 0.01 0.49 ± 0.03

The bold means the largest values in the columns of tables

is always achieved using SB as compared to SA, which proves the need for DA for
object recognition on the Berkeley dataset. (ii) While the inductive TrAdaboost and metric
learning-based DA approaches perform favorably with respect to S(A+B)TB , they are gen-
erally outperformed by the AMKL-based DA approaches studied in this work. (iii) ADA
outperforms DA considerably, implying that AL greatly benefits DA for object recognition.
(iv) ADAN outperforms ADA by up to 5 % on an average, implying that our approach
which explicitly accounts for label noise greatly benefits AL. (iv) ADAN consistently pro-
duces the best recognition performance demonstrating the efficiency of the proposed active
DA framework.

Commenting on the computational time required for our proposed algorithm, model
training for cross-domain multi-view headpose estimation and object recognition required
20 minutes with cross-validation on a workstation with Intel(R) Xeon(R) CPU E5-2620
v2 @ 2.10GHz × 17 processors implying that our algorithm can be applied on large-scale
datasets.

5 Conclusion

We propose an active transfer learning framework which explicitly accounts for ambigu-
ous labels provided by the domain expert. We also extend traditional active learning for
binary classification to a multi-class setting through error-correcting output coding. Exten-
sive experiments on cross-domain multi-view headpose estimation and object recognition
demonstrate the effectiveness of our proposed method. In particular, the ability to select the
most informative samples for active learning and handle label noise improves classification
performance with respect to random sample selection. Developing DA approaches that (i)
incorporate useful information from unlabeled target samples and (ii) learn from multiple
sources will be the focus of future work.
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