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Abstract Automatic image annotation aims at predicting
a set of semantic labels for an image. Because of large
annotation vocabulary, there exist large variations in the
number of images corresponding to different labels (“class-
imbalance”). Additionally, due to the limitations of human
annotation, several images are not annotated with all the rele-
vant labels (“incomplete-labelling”). These two issues affect
the performance of most of the existing image annotation
models. In this work, we propose 2-pass k-nearest neigh-
bour (2PKNN) algorithm. It is a two-step variant of the
classical k-nearest neighbour algorithm, that tries to address
these issues in the image annotation task. The first step of
2PKNN uses “image-to-label” similarities, while the second
step uses “image-to-image” similarities, thus combining the
benefits of both. We also propose a metric learning frame-
work over 2PKNN. This is done in a large margin set-up by
generalizing a well-known (single-label) classification met-
ric learning algorithm for multi-label data. In addition to
the features provided by Guillaumin et al. (2009) that are
used by almost all the recent image annotation methods, we
benchmark using new features that include features extracted
from a generic convolutional neural networkmodel and those
computed using modern encoding techniques. We also learn
linear and kernelized cross-modal embeddings over different
feature combinations to reduce semantic gap between visual
features and textual labels. Extensive evaluations on four
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image annotation datasets (Corel-5K, ESP-Game, IAPR-
TC12 and MIRFlickr-25K) demonstrate that our method
achieves promising results, and establishes a new state-of-
the-art on the prevailing image annotation datasets.
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1 Introduction

Automatic image annotation is a labelling problem that has
potential applications in image classification (Wang et al.
2009), image retrieval (Feng et al. 2004; Makadia et al.
2008, 2010; Guillaumin et al. 2009), image caption gen-
eration (Gupta et al. 2012), etc. Given an (unseen) image,
the goal of image annotation is to predict a set of textual
labels describing the semantics of that image. Over the last
decade, the outburst of multimedia content on the Internet
as well as in personal collections has raised the demands for
auto-annotation methods, thus making it an active area of
research (Feng et al. 2004; Carneiro et al. 2007; Xiang et al.
2009; Guillaumin et al. 2009; Makadia et al. 2008, 2010;
Zhang et al. 2010; Verma and Jawahar 2012; Fu et al. 2012;
Verma and Jawahar 2013;Chen et al. 2013;Ballan et al. 2014;
Moran and Lavrenko 2014;Murthy et al. 2014; Kalayeh et al.
2014).

In the past, several methods have been proposed for image
auto-annotation that try to model image-to-image, image-
to-label and label-to-label similarities. Our work falls under
the category of supervised annotation models such as those
listed above that work with large annotation vocabularies
consisting of few hundreds of labels. Among these, the near-
est neighbour based methods such as Makadia et al. (2008,
2010), Guillaumin et al. (2009), Verma and Jawahar (2012)
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have been found to give some of the best results despite
their simplicity. The intuition is that “similar images share
similar labels” (Makadia et al. 2008, 2010). In most of the
existing approaches, this similarity is determined using only
visual features. In the nearest neighbour based scenario,
since the labels co-occurring in an image are considered
together, visual similarity can also handle correlations among
labels to some extent. However, it fails to address the two
important issues of “class-imbalance” (large variations in
the frequency of different labels) and “incomplete-labelling”
(many images are not annotated with all the relevant labels
from the vocabulary) that are prevalent in the popular anno-
tation datasets as well as real-world databases. To address
these issues in the nearest neighbour based set-up, one needs
to ensure that (a) for a given image, the (subset of) training
images that are considered for label prediction/propagation
should not have large variations in the frequency of different
labels, and (b) the comparison criteria between two images
should make use of both image-to-label and image-to-image
similarities (as discussed above, image-to-image similarities
can partially capture label-to-label similarities in the nearest
neighbour based scenario). With this motivation, we present
a two-step variant of the classical k-nearest neighbour (kNN)
algorithm that fulfills both these requirements.We call this 2-
pass k-nearest neighbour (2PKNN) algorithm. As part of the
2PKNN algorithm, for an image, we say that its few nearest
neighbours from a given class constitute its semantic neigh-
bourhoodwith respect to that class, and these neighbours are
its semantic neighbours. Based on the above discussed intu-
ition ofMakadia et al. (2008, 2010) that similar images share
similar labels, we hypothesize that the semantic neighbours
of an image from a particular class are the samples that are
visually and hence semantically most related with that image
with respect to that class. Now, given a new image, in the first
step of 2PKNN we identify its semantic neighbours corre-
sponding to all the labels.1 Then in the second step, only
these samples are used for label prediction. In comparison
to the conventional kNN algorithm, note that we addition-
ally introduce an initial pruning step where we pick visually
similar neighbours that cover all the labels. This also relates
with the idea of “bottom-up pruning” common in day-to-day
scenarios such as buying a car, or selecting a cloth to wear,
where first the potential candidates are short-listed based on
a preliminary analysis, and then another set of criteria is used
for final selection.

It is well-known that the performance of kNN based
methods largely depends on how two images are compared
(Guillaumin et al. 2009; Makadia et al. 2008, 2010). Usu-
ally, this comparison is done using a set of features extracted
from images and a specific distance metric for each feature
(such as L1 distance for colour histograms, or L2 for GIST

1 We shall use the terms class/label interchangeably.

descriptor). As the 2PKNN algorithm works in the nearest
neighbour setting, we would like to learn a distance metric
that maximizes the annotation performance. With this goal,
we perform metric learning over 2PKNN by extending the
popular Large Margin Nearest Neighbour (LMNN) metric
learning algorithm proposed by Weinberger and Saul (2009)
for multi-label prediction. Since it requires to perform pair-
wise comparisons iteratively, scalability becomes one of the
important concerns while workingwith thousands of images.
To address this, we implement metric learning by alternat-
ing between stochastic sub-gradient descent and projection
steps on subsets of training pairs, that has a motivation sim-
ilar to the Pegasos algorithm (Shalev-Shwartz et al. 2007).
This allows to optimize the weights iteratively using a small
number of comparisons at each iteration, thus making our
metric learning formulation scalable.

We evaluate and compare the proposed approach with
existing methods on four image annotation datasets: Corel-
5K (Duygulu et al. 2002), ESP-Game (von Ahn and Dabbish
2004), IAPR-TC12 (Grubinger 2007) and MIRFlickr-25K
(Huiskes andLew2008).Ourfirst set of results is based on the
features provided by Guillaumin et al. (2009)2 (we will refer
to these features as “TagProp-features”). These features have
become a de facto standard for comparing annotation perfor-
mance, and are used by almost all the recent approaches.
Next we extend this feature set by including deep learning
based features extracted using a state-of-the-art pre-trained
Convolutional Neural Network (CNN) model of Donahue
et al. (2014) (we will refer to these features as “CNN-
features”). We also compute features using two modern
encoding techniques: Fisher vector (Perronnin et al. 2010)
and VLAD (Jégou et al. 2010) (we will refer to these features
as “Encoding-features”). Finally, we embed (different com-
binations of) these features into a common subspace learned
using canonical correlation analysis (CCA) (Hotelling 1936),
and kernelized canonical correlation analysis (KCCA). This
is motivated by the well-known problem of semantic gap,
because of which it is difficult to build meaningful asso-
ciations between low-level visual features and high-level
semantic concepts. Using cross-modal embeddings learned
through (K)CCA, we try to address this partially by learning
representations that maximize the correlation between visual
and textual content in a common subspace.
Contributions: This paper is an extension of the conference
version (Verma and Jawahar 2012). To our knowledge, this is
the first published work that proposed to explicitly integrate
label information while determining the neighbours of an
image in the image annotation task. Herewe extend this work
in the following ways:

2 These features are available at http://lear.inrialpes.fr/people/
guillaumin/data.php.
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1. We include an analytical and empirical discussion on the
diversity and completeness of labels in the neighbours
obtained after the first pass of 2PKNN, and also compare
these with the conventional kNN algorithm.

2. In addition to the TagProp-features, we introduce and
extensively evaluate our approach using the new features
and feature embeddings as discussed above on all the
datasets.

3. We include several additional studies that provide mean-
ingful insights about the annotation problem, and our
approach.

4. We additionally evaluate and compare using the modern
MIRFlickr-25K dataset, that has a larger test set com-
pared to the other three datasets.

5. For fair comparisons, we also extensively evaluate two
state-of-the-art nearest neighbour based methods JEC
(Makadia et al. 2008, 2010) and TagProp (Guillaumin
et al. 2009) under similar set-up throughout.

Experiments demonstrate that compared to using only the
TagProp-features, the new features/feature-combination(s)
along with the cross-modal embedding learned using KCCA
significantly improve the performance of all the compared
methods. Moreover, the proposed approach achieves state-
of-the-art results on two datasets (in terms of F1 score
(Sect. 6.1)), and comparable on the other two. Specially on
the well-known and challenging Corel-5K dataset, we now
achieve an F1 score of 49.9%, which is (absolute) 6.4% bet-
ter than the second best method TagProp (Guillaumin et al.
2009) that achieves an F1 score of 43.5%.

The paper is organized as follows. In Sect. 2, we review
some of the notable and recent works in this domain. Sec-
tions 3 and 4 describe the 2PKNN method and the metric
learning formulation respectively. In Sect. 5, we discuss the
datasets and features used in our experiments. In Sect. 6, we
present the experimental analyses, and finally conclude in
Sect. 7.

2 Related Works

The goal of an image annotationmodel is to formulate amap-
ping between the images and annotation labels. This was
initially addressed using translation models such as Mori
et al. (1999) and Duygulu et al. (2002). These treat it as
a problem of machine translation, where an image region
needs to be translated into a semantic label. In the relevance
models such as CMRM (Jeon et al. 2003), CRM (Lavrenko
et al. 2003) andMBRM (Feng et al. 2004), image annotation
was modelled as a problem of computing the joint proba-
bility of image regions and labels. In MBRM (Feng et al.
2004), it was shown that using regular blocks rather than
arbitrary shaped regions as in CRM/CMRM, and modelling

the absolute presence/absence of labels using a a Bernoulli
distribution rather than modelling their frequency using a
Multinomial distribution could provide better performance.
Xiang et al. (2009) proposed a Markov Random Field based
approach that could flexibly accommodate most of the pre-
vious generative models. A few discriminative models such
as those proposed by Carneiro et al. (2007), Fu et al. (2012),
Verma and Jawahar (2013) treat each label as a class of a
multi-classmulti-labelling problem, and learn separate class-
specific models.

The image annotation domain has primarily been domi-
nated by nearest neighbour based approaches, that predict
labels of a test image by computing its similarity with a
(sub)set of training images. The Joint Equal Contribution
(JEC) approach proposed by Makadia et al. (2008, 2010)
treats the problem of image annotation as that of image
retrieval. It demonstrated that a simple nearest-neighbour
based greedy algorithm could outperform earlier, relatively
complexmodels, though by usingmultiple high-dimensional
global features rather than simple region-based features.
Although JEC is conceptually simple, it achieved the best
results on benchmark annotation datasets when it was pro-
posed. Inspired from the success of JEC, a weighted kNN
based method called TagProp was proposed by Guillaumin
et al. (2009). This transfers labels to a test image by taking a
weighted average of keywords’ presence among the neigh-
bouring (training) images. To address the class-imbalance
problem, logistic discriminant (sigmoid)models arewrapped
over the weighted kNN method. This boosts the importance
given to infrequent/rare labels and suppresses it for frequent
labels. They also proposed a metric learning approach for
learning weights that combines multiple distances computed
using different features. As part of this work, the authors
released a set of pre-computed features for the standard anno-
tation datasets. Since then, these features have been used by
almost all the annotation approaches. Li et al. (2009) pro-
posed a measure to compute the relevance of a tag to an
image by taking into account its frequency in the neighbour-
ing samples of that image, and the entire (training) collection.
Another nearest-neighbour basedmethod (Zhang et al. 2010)
tries to benefit from feature sparsity and clustering properties
using a regularization based algorithm for feature selection.

Among the recent methods, Moran and Lavrenko (2014)
proposed a greedy approach to identify the best kernel for
each feature while computing image similarity using a set
of features. This in turn results into a sparse subset of fea-
tures that maximize annotation performance (in terms of
F1 score). Kalayeh et al. (2014) proposed a formulation
based on weighted multi-view non-negative matrix factor-
ization with the goal of learning a generative model specific
to each query/test image using its neighbouring samples.
Murthy et al. (2014) combined a discrete variant of the
MBRM model (Feng et al. 2004) with binary one-vs.-rest
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SVM models to formulate a hybrid approach for annotating
images. This combination particularly helped in increasing
the number of labels that were correctly recalled. Ballan et al.
(2014) showed that learning (kernelized) cross-modal fea-
ture embedding can significantly improve the performance
of nearest neighbour based methods such as those of Maka-
dia et al. (2008, 2010), Li et al. (2009), Guillaumin et al.
(2009), Verma and Jawahar (2012).

In parallel to the above advances, there have been sev-
eral works such as Jin et al. (2009), Wang et al. (2011) that
target the problem of multi-label classification. However,
usually such methods are shown to work on small vocab-
ularies containing a few tens of labels. Our work falls under
the category of supervised image annotation methods (Feng
et al. 2004;Makadia et al. 2008, 2010;Guillaumin et al. 2009;
Zhang et al. 2010; Carneiro et al. 2007; Xiang et al. 2009;
Nakayama 2011; Fu et al. 2012; Chen et al. 2013; Moran and
Lavrenko 2014; Murthy et al. 2014) that address a more real-
istic and challenging scenario where the vocabulary contains
few hundreds of labels and the datasets seriously suffer from
class-imbalance and incomplete-labelling.

3 Label Prediction Model

Now we present our 2PKNN method for image annota-
tion. Let {I1, . . . , It } be a collection of images and Y =
{y1, . . . , yl} be a vocabulary of l labels (or semantic con-
cepts). The training set T = {(I1,Y1), . . . , (It ,Yt )} consists
of pairs of images and their corresponding label sets, with
each Yi ⊆ Y . Similar to the Supervised Multiclass Labeling
(or SML) method of Carneiro et al. (2007), we assume the
conditional probabilities P(A|yi ) that model the feature dis-
tribution of an image A given a semantic concept yi ∈ Y .
Using this, we model image annotation as a problem of find-
ing the posterior probability for each label:

P(yi |A) = P(A|yi )P(yi )

P(A)
(1)

where P(yi ) is the prior probability of the label yi . Then,
given an unannotated image J , the best label for it will be
given by

y∗ = argmax
i

P(yi |J ) (2)

Let Ti ⊆ T , ∀i ∈ {1, . . . , l} be the subset of training
data that contains all the images annotated with the label yi .
Since each set Ti contains images with one semantic concept
common among them, we call it a semantic group. It should
be noted that the sets Ti are not disjoint, as an image usually
has multiple labels and hence belongs to multiple semantic
groups. Given an unannotated image J , from each semantic

Fig. 1 In the first pass of 2PKNN, for a given image to be annotated
(center), we identify its semantic neighbours corresponding to each
semantic group, and only these samples are considered during label
prediction. Since each image can have multiple labels, an image can
come from more than one semantic group. E.g., the semantic groups
corresponding to the labels “bear”, “meadow” and “grizzly” have two
images in common. It is worth noticing that unlike the usual kNN based
image annotation methods that make use of only feature-based similar-
ity while determining the neighbours of a given image and ignore the
label information, here we explicitly make use of both

group we pick K1 images that are most similar to J and form
corresponding sets TJ,i ⊆ Ti . Thus, each TJ,i contains those
images that aremost informative in predicting the probability
of the label yi for J [as discussed in Sect. 1, our approach
is motivated by the observation that “similar images share
similar labels” (Makadia et al. 2008, 2010)]. The samples in
each set TJ,i are the semantic neighbours of J corresponding
to yi , and help in incorporating image-to-label similarity.
Once TJ,i s are determined, we merge them all to form a set
TJ = {TJ,1

⋃
. . .

⋃
TJ,l}. Thisway,we obtain a subset of the

training data TJ ⊆ T specific to J that contains its semantic
neighbours corresponding to all the labels in the vocabulary
Y . This is the first pass of 2PKNN, as illustrated in Fig. 1.

In TJ , each label would appear (at least) K1 times, which
in turn tries to address the class-imbalance issue. To under-
stand how this step also tries to handle incomplete-labelling,
we analyse the cause of this. Incomplete-labelling occurs
because some (either too obvious, or highly context-specific)
labels are often missed by human annotators while manually
annotating a dataset, and hence many images depicting such
concepts are actually not annotated with them. Under this sit-
uation, given an unseen image, if we use only its few nearest
neighbours from the entire training data [as in Makadia et al.
(2008, 2010), Guillaumin et al. (2009)], then such labelsmay
not appear among these neighbours and hence would not get
appropriate scores. In contrary, thefirst pass of 2PKNNbuilds
a neighbourhood where all the labels are present explicitly.
Therefore, now even those labels that did not appear among
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bay, gravel, road,
house, landscape,
meadow, shrub, sky

bush, coast, grey, sea,
sky

house, mountain, hill,
sky, village, tree

bush, landscape,
cloud, sea, tree

meadow, house, sea,
bush, dirt, sky, bay,
road, coast

Test Image ↑
Neighbours ↗ bush, coast, grey, sea,

sky
hill, sky, house,
mountain, village, tree

bush, coast, grey, sea,
sky

hill, tree, house, vil-
lage, mountain, sky

Fig. 2 For a test image from the IAPR-TC12 dataset, the top row on
the right shows its 4 nearest images (and their ground-truth labels) from
the training data determined after the first pass of 2PKNN and the bot-
tom row shows its 4 nearest images determined using JEC (Makadia

et al. 2008, 2010). The labels in bold are the ones that match with
the ground-truth labels of the test image. Note the frequency (9 vs. 6)
and diversity ({sky, house, landscape, bay, road, meadow} versus {sky,
house}) of matching labels for 2PKNN versus JEC

the neighbours determined using the usual kNN have better
prediction chances.

The second pass of 2PKNN is a weighted sum over the
samples in TJ to assign importance to labels based on image
similarity. This gives the posterior probability for J given a
label yk ∈ Y as

P(J |yk) ∝
∑

(Ii ,Yi )∈TJ

θJ,Ii .P(yk |Ii ) (3)

where, θJ,Ii = exp(−πD(J, Ii )) denotes the contribution
of image Ii in predicting the label yk for J depending on
their visual similarity, with π being a scalar that controls the
decay of θJ,Ii ; D(J, Ii ) denotes the distance between J and
Ii in feature space (see Eq. 7 for the definition of D(J, Ii ));
and P(yk |Ii ) = δ(yk ∈ Yi ) denotes the presence/absence of
label yk in the label set Yi of Ii , with δ(·) being 1 when the
argument holds true and 0 otherwise. Assuming that the first
pass of 2PKNN gives a subset of the training data where each
label has comparable frequency, we set the prior probability
in Eq. 1 as a uniform distribution; i.e., P(yi ) ∝ 1

|T | , ∀i ∈
{1, . . . , l}. Putting Eq. 3 in Eq. 1 provides a ranking of all
the labels based on their probability of getting assigned to
the unseen image J . Finally, the probability score P(yi |A)

is regularized using the following normalization [similar to
Moran and Lavrenko (2014)]:

P(yi |A) = P(yi |A)

maxA′ P(yi |A′)
(4)

Note that along with image-to-image similarities, the sec-
ond pass of 2PKNN implicitly takes care of label-to-label
dependencies since the labels appearing together in the same

neighbouring image will get equal importance [analogous to
Guillaumin et al. (2009)].

Figure 2 shows an example from the IAPR-TC12 dataset
illustrating how the first pass of 2PKNN tries to address both
class-imbalance and incomplete-labelling. For a given test
image (first column) along with its ground-truth labels, we
can notice the presence of rare labels {“landscape”, “bay”,
“road”,“meadow”} among its four nearest images found
after the first pass of 2PKNN (top row on the right), with-
out compromising with frequent labels {“sky”, “house”}.
In contrary, the neighbours obtained using JEC (Maka-
dia et al. 2008, 2010) (second row) contain only frequent
labels. We can also observe that though the labels {“land-
scape”, “meadow”} look obvious for the neighbours found
using JEC, these are actually absent in their ground-truth
annotations (incomplete-labelling), whereas the first pass
of 2PKNN explicits their presence among the neighbours
selected for label prediction. To discuss these aspects more
formally, below we provide an analysis on the diversity and
completeness of labels included in the neighbours identified
using 2PKNN and classical kNN. We will provide an empir-
ical analysis on this in Sect. 6.5.2.

3.1 Analysing Diversity and Completeness

Here we try to analyse two aspects related to the presence
of labels in the neighbours selected for label prediction:
diversity and completeness. In the present context, we define
“diversity” as the number of distinct labels that are present
in the selected neighbours, and “completeness” as the state
when all the labels are present in the selected neighbours.
In order to achieve completeness, we will require perfect
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diversity, i.e., presence of all the labels in the neigh-
bours. Along with 2PKNN, we will analyse and compare
these aspects with respect to the conventional kNN algo-
rithm.

Recall that in the first pass of 2PKNN, we identify K1

nearest neighbours of a given (test) sample J from each
semantic group and take their union, thus obtaining a subset
of training samples TJ ⊆ T specific to J . Let K2 denote
the number of nearest neighbours of J from TJ that are
considered for label prediction. Also, with respect to kNN
algorithm, we assume to pick K nearest neighbours of J
from the complete training set for label prediction. We also
assume to have sufficiently large number of samples for each
label.

For simplicity, let us initially consider a vocabulary Y =
{y1, y2, y3} of three labels (i.e., a vocabulary of size a = 3),
and assume that each sample in the (training) data is associ-
ated with exactly b = 2 distinct labels. For 2PKNN, if we
have K1 = 1, then we will get two samples in the set TJ

(since one sample will be selected twice for two labels). This
means that in TJ , the frequency of two labels will be one,
and that of the remaining one label will be two. In this case,
if we consider K2 = 1, then the diversity of labels in the
selected neighbours will be 2, and if we consider K2 = 2,
then we will achieve perfect diversity and completeness of
labels in the selected neighbours. Now, let us consider the
case of kNN. If we consider K = 1, then the diversity of
labels will be 2 similar to 2PKNN, and in the best scenario
we will require K = 2 samples to achieve perfect diver-
sity. However, since we do not take into account the label
information of samples in kNN while selecting the neigh-
bours and make use of only sample features, we may end-up
getting neighbouring samples labelled with the same two
labels even for very large values of K , and thus we can
not guarantee the minimum value of K to achieve perfect
diversity.

In general, for any (positive integral) values of a and K1,
if we assume each sample xu to be labelled with bu ≤ a
distinct labels (bu may be different for different samples in
multi-label scenario), then in order to achieve perfect diver-
sity using 2PKNN, we will require K2 to be 	 a−1

max(bu)

+ 1 in

the best scenario (lower bound), and (a−min(bu))×K1 +1
in theworst scenario (upper bound). Thesewill depend on the
overlap of labels in the selected neighbours. In case of kNN
algorithm, we will require K to be � a−1

max(bu)
� + 1 to achieve

perfect diversity in the best scenario, which is the same as that
for 2PKNN. However, here we cannot bound the value of K
to achieve perfect diversity in the worst scenario, following
the same reasoning as above.

Note that in practice, since we consider all the samples
in TJ during label prediction (i.e., K2 = |TJ | in Eq. 3), we
can assure perfect diversity and completeness of labels using
2PKNN.

4 Metric Learning

Most of the existing classification based metric learning
algorithms try to increase inter-class and reduce intra-class
distances, thus treating each pair of samples in a binary
manner. Since image annotation is a multi-label prediction
task, here the similarity between two samples need not be
binary, and hence classification based metric learning cannot
be applied directly. As part of metric learning, our aim is to
learn a distance metric that maximizes the annotation perfor-
mance for 2PKNN. For this purpose, we extend the LMNN
algorithm (Weinberger and Saul 2009) for multi-label pre-
diction. Below, first we provide an overview of the LMNN
algorithm, and then present our formulation.

4.1 Large Margin Nearest Neighbour (LMNN)

The goal of LMNN is to learn a Mahalanobis metric such
that the performance of kNN classification is improved. Let
us assume a training set {xi , yi }, where xi ∈ R

d denotes a
sample and yi ∈ {1, . . . ,C} denotes its category/class from
total C classes. Given two samples xi and x j , the Maha-
lanobis distance between them is given by:

dM(xi , x j ) = ((xi − x j )
TM(xi − x j ))

1
2

where M is a symmetric positive semidefinite matrix (M 

0). In LMNN,M is learned such that the local neighbourhood
of a sample belongs to the same category. To do this, for a
given sample, its neighbours from the same class are pulled
closer and those from different classes are pushed farther.

For a given sample xi , its target neighbours are defined
as its k nearest samples from the same class, and impos-
tors as its neighbours from other classes that are closer than
the target neighbours. Using this information, aMahalanobis
metric is learned such that each sample is closer to its target
neighbours than impostors by a margin. Let x j and xk be a
target neighbour and an impostor respectively for xi , then
this constraint can be expressed as:

d2M(xi , xk) − d2M(xi , x j ) ≥ 1 (5)

Note that the above constraint is enforced only on local neigh-
bours. Based on the above constraints, the objective function
of LMNN is given by:

min
M

∑

i j

ηi j d
2
M(xi , x j ) + μ

∑

i jk

ηi j (1 − λik)ξi jk

s.t. : d2M(xi , xk) − d2M(xi , x j ) ≥ 1 − ξi jk

ξi jk ≥ 0

M 
 0 (6)
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Here, the first term tries to pull target neighbours closer, and
the second term penalizes violations of the constraints in
Eq. 5. The variable ηi j is 1 if x j is a target neighbour of xi
and 0 otherwise; λik is 1 if xi and xk belong to the same class
and 0 otherwise; and μ > 0 manages tradeoff between the
two terms.

4.2 Metric Learning for 2PKNN

Let there be two images A and B, each represented by n fea-
tures {f1A, . . . , fnA} and {f1B, . . . , fnB} respectively. The distance
between two images is computed by finding the distance
between their corresponding features using some special-
ized distance measure for each feature (such as L1 for colour
histograms, χ2 for bag-of-words histograms, etc.), and then
combining them all. Let diAB denote the distance between A
and B computed using the i th feature. In order to optimally
combine multiple feature distances, we use a linear distance
metricw ∈ Rn+ in the distance space. Based on this, we write
the distance between A and B as:

D(A, B) =
n∑

i=1

w(i) diAB (7)

Nowwe describe how to learn themetricw for multi-label
image annotation task. For a given labelled sample (Ip,Yp) ∈
T , we define its (i) target neighbours as its K1 nearest images
from the semantic group Tq , ∀q such that yq ∈ Yp, and (ii)
impostors as its K1 nearest images from Tr , ∀r such that
yr ∈ Y \Yp. Our objective is to learn the metric such that the
distance of a sample from its target neighbours is minimized,
and is also less than its distance from any of the impostors
(i.e., pull the target neighbours and push the impostors). In
other words, given an image Ip along with its labels Yp, we
want to learn the weights such that its nearest (K1) semantic
neighbours from the semantic groups Tq ’s (i.e., the groups
corresponding to its ground-truth labels) are pulled closer,
and those from the remaining semantic groups are pushed
farther (Fig. 3). With this goal, for a sample image Ip, its
target neighbour Iq and its impostor Ir , the loss function will
be given by

E1 =
∑

pq

ηpq D(Ip, Iq)

+μ
∑

pqr

ηpq(1 − λpr )[1 + D(Ip, Iq) − D(Ip, Ir )]+

(8)

where μ > 0 handles the trade-off between the two error
terms. The variable ηpq is 1 if Iq is a target neighbour of Ip
and 0 otherwise. λpr = |Yp∩Yr |

|Yr | ∈ [0, 1], with Yr being the
label set of an impostor Ir of Ip, and [z]+ = max(0, z) is

Fig. 3 Illustration of distance metric learning for 2PKNN. Let there be
5 labels Y = {A, B,C, D, E} denoted as A: squares, B: triangles, C :
pentagons, D: hexagons, and E : circles. Each set Tα , α ∈ Y consists of
samples that have one label as α. For a given sample (denoted by cross),
let its actual labels be {A, B,C}. During distance metric learning with
K = 3, its three nearest neighbours from TA, TB and TC act as target
neighbours that need to be pulled closer to it, while those from the
remaining ones act as impostors that need to be pushed far from it

the hinge loss which will be positive only when D(Ip, Ir ) <

D(Ip, Iq) + 1 (i.e., when for a sample Ip, its impostor Ir is
nearer than its target neighbour Iq ). Tomake sure that a target
neighbour Iq is much closer than an impostor Ir , a margin
(of size 1) is used in the error function.

The above loss function is minimized by the following
constrained optimization problem:

min
w

∑
pqηpq D(Ip, Iq) + μ

∑
pqrηpq(1 − λpr )ξpqr

s.t. D(Ip, Ir ) − D(Ip, Iq) ≥ 1 − ξpqr ∀p, q, r

ξpqr ≥ 0 ∀p, q, r

w(i) ≥ 0 ∀i; ∑n
i=1w(i) = n (9)

Here, the slack variables ξpqr represent the hinge loss in
Eq. 8. By applying L1 regularization on w, we try to impose
sparsity on the learned weights.

For large datasets on the order of tens of thousands of
samples, the above optimization problem can have several
millions of constraints. This makes the scalability difficult
using conventional gradient descent. To overcome this, we
implement it by alternatively using stochastic sub-gradient
descent and projection steps (similar to Pegasos (Shalev-
Shwartz et al. 2007)) on subsets of training data. This gives
an approximate solution using a small number of compar-
isons, thus making our approach scalable to large datasets
containing thousands of samples.3

3 An implementation of 2PKNN and metric learning is available at
http://researchweb.iiit.ac.in/~yashaswi.verma/eccv12/2pknn.zip.
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Table 1 General (columns 2–5) and some insightful (columns 6–8) statistics of the four datasets considered in this work

Dataset Images Training Testing Labels Labels/image Images/label Labels#

Corel-5K 4999 4500 499 260 3.4, 4, 5 58.6, 22, 1004 195 (75.0%)

ESP-Game 20770 18689 2081 268 4.7, 5, 15 326.7, 172, 4553 201 (75.0%)

IAPR-TC12 19627 17665 1962 291 5.7, 5, 23 347.7, 153, 4999 217 (74.6%)

MIRFlickr-25K 25000 12500 12500 38 4.7, 5, 17 1560.7, 995.5, 5216 22 (57.9%)

In columns 6 and 7, the entries are in the format “mean, median, maximum”. Column 8 (“Labels#”) shows the number of labels whose frequency
is less than the mean label frequency

4.3 Comparison with LMNN

Similar to LMNN, the proposed metric learning formulation
works on pairs and triplets of samples that are defined in
terms of target neighbours and impostors. Recall that while
LMNN is meant for single-label data, ours is of multi-label
data. Below we discuss the differences between the two, that
are primarily because of the differences in the tasks that each
addresses:

– The primary difference between the two formulations lies
in terms of the definition of target neighbours and impos-
tors. In case of multi-label data, samples from multiple
classes behave as target neighbours and impostors.More-
over, our definitions of such samples especially suit the
2PKNN algorithm, since these are defined based on the
semantic neighbours of a sample.

– In LMNN, the variable λ is binary, whereas we define it
to be in a continuous range [0, 1], thus scaling the hinge
loss depending on the overlap between the label sets of
a given image Ip and its impostor Ir . This means that
for a given sample, the amount of push applied on its
impostor varies depending on conceptual similarity with
that sample. An impostor with large similarity will be
pushed less, whereas one with small similarity will be
pushed more. This makes our formulation suitable for
multi-label tasks such as image annotation.

– While working with high-dimensional features, it
becomes practically infeasible to learn a square Maha-
lanobis distance metric (M) as done in LMNN. To
overcome this, we learn a linear metric w in distance
space rather than feature space. Since a sample is usually
represented using a few tens of features, this makes the
dimensionality of w practically feasible to deal with.

5 Datasets and Features

5.1 Datasets

We consider four image annotation datasets in our experi-
ments:

– Corel-5K:This was introduced byDuygulu et al. (2002),
and since then it has become a de facto evaluation bench-
mark for comparing the annotation performance.

– ESP-Game: This was published by von Ahn and Dab-
bish (2004). It contains images annotated using an on-line
game, where two (mutually unknown) players are ran-
domly given an image, and they need to predict the same
keyword(s) in order to score points. This way, several
people participate in the manual annotation task, thus
making this dataset very challenging and diverse.

– IAPR-TC12: This was introduced by Grubinger (2007)
for cross-lingual information retrieval. In this, each image
is associated with a detailed description. Makadia et al.
(2008, 2010) extracted nouns from these descriptions and
treated themas annotations. Since then, it has beenwidely
used for evaluating image annotation methods.

– MIRFlickr-25K: This dataset contains images down-
loaded from Flickr, and was introduced for evaluating
keyword-based image retrieval (Huiskes and Lew 2008).
Verbeek et al. (2010) got the images in this dataset manu-
ally annotated with 24 concepts for evaluating automatic
annotation performance. In the first round of annotation,
for each image, the annotators were asked whether it was
at least partially relevant for each concept. In the sec-
ond round, a stricter notion of relevance was used for 14
concepts. For each concept, the images that were anno-
tated as relevant in the first round were considered, and
marked as relevant only if that concept was depicted in a
significant portion of the image. In this way, each image
in this dataset is annotated by its relevance for total 38
labels. Compared to the other three datasets, this dataset
has a larger test set, though the number of distinct labels
is relatively quite small.

In Table 1, columns 2 − 5 show some general statistics
of the four datasets; and in columns 6 − 8, we highlight
some other statistics that provide better insights about the
properties of these datasets. It can be noticed that for the
first three datasets, around 75% of the labels have frequency
less than the mean label frequency (column 8), and also the
median label frequency is far less than the corresponding
mean frequency (column 7). Figure 4 shows the frequencies
of the labels in these datasets sorted in descending order. It

123



134 Int J Comput Vis (2017) 121:126–148

Fig. 4 Frequency of labels (or, number of images per label) in the
training set of each of the four datasets sorted in decreasing order order
(Color figure online)

can be observed that tail of the MIRFlickr-25K dataset is
much higher than that of the other three datasets. Each of
those three datasets contains only a small number of high
frequency labels, and a huge number of labels with very low
frequencies. This suggests that compared to the MIRFlickr-
25K dataset, the other three datasets better model the aspect
of class-imbalance. E.g., the most frequent label in the ESP-
Game dataset is “man” that has 4, 553 occurrences.Whereas,
the second most frequent label “white” is significantly less
popular,with 3, 175occurrences (a dropof around30%).The
graphs for the three datasets drop rapidly, and almost level
out near the tail [the long tail phenomenon (Anderson 2006)].
Moreover, for the Corel-5K, ESP-Game and IAPR-TC12
datasets, the cumulative frequency of the 25 most frequent
labels is 52.3, 45.2 and 45.0% respectively, whereas that of
the 25 least frequent labels is just 0.6, 1.5, and 1.2% respec-
tively. This indicates that the labels appearing towards the
tail (such as “bikini”, “icon” and “mail” in the ESP-Game
dataset) might be individually unimportant in the sense that
there are very few images depicting each of these concepts.
However, since there are lots of such labels, they become
collectively significant, and prediction accuracies on these
labels have a critical impact on the overall performance.

Though it is not straightforward to quantify incomplete-
labelling, we try to analyse it from the number of labels
per image (column 6). We posit that a large gap between
mean (or median) and maximum number of labels per image
indicates that many images are not labelled with all the rele-
vant labels. Based on this, we can infer that both ESP-Game
and IAPR-TC12 datasets suffer from incomplete-labelling.
For the Corel-5K dataset, we examined the images and their
corresponding annotations to realize incomplete-labelling.
Unlike these three datasets, since the vocabulary size in the
MIRFlickr-25K dataset is very small, and it was annotated

under a strict set-up, the chances of incomplete-labelling are
rare.

5.2 Features

Our first set of features is the TagProp-features released
by Guillaumin et al. (2009). These are a combination of
local and global features. The local features include the SIFT
(Lowe 2004) and robust Hue (van de Weijer and Schmid
2006) descriptors obtained densely from multi-scale grid,
and from Harris-Laplacian interest points. Each of these
descriptors is used to form a histogram of bag-of-words
representation. The global features comprise of the GIST
descriptor (Oliva and Torralba 2001), and 3-D histograms
(with 16-bins per channel) in each of the RGB, HSV and
LAB colour spaces. To encode some information about the
spatial-layout of an image, all but the GIST descriptor are
also computed over three equal horizontal partitions for an
image (denoted using “(V3H1)” as a suffix). In this case,
the bin-size for colour histograms is reduced to 12-bins per
channel to limit histogram sizes.

In addition to the above features, we extract deep learn-
ing based CNN-features using the pre-trained CNN model
of Donahue et al. (2014). It is a generic CNNmodel, and has
been found to work well in a variety of visual recognition
tasks. In practice, we consider the output of the last three
layers of the network as the features. We also compute repre-
sentations based on twomodern encoding techniques: Fisher
vector (Perronnin et al. 2010) and VLAD (Jégou et al. 2010).
For both, we consider the 128-dimensional SIFT features for
learning a vocabulary of 256 clusters.

Table 2 shows the dimensionality of all the features,
and the corresponding distance metrics used for comput-
ing pair-wise distances. For TagProp-features, we use the
same distance metrics as in Guillaumin et al. (2009). For
CNN-features, our choice of distance metrics was based on
the annotation performance using JEC (Makadia et al. 2008,
2010) (since JEC does not involve any learning as such). For
Encoding-features, we used L2 distance following Perronnin
et al. (2010). Also, in our preliminary evaluations using JEC,
we empirically observed that before computing the pair-wise
distances, taking a square-root of each element of some of
the feature vectors4 provided additional boost in the annota-
tion performance. This has a motivation analogous to “power
normalization” described in Perronnin et al. (2010).

5.3 Feature Embedding

In a recent work by Ballan et al. (2014), it was shown that
learning cross-modal embedding of visual features can pro-
vide significant improvements in the performance of nearest

4 Features indexed by (3), (4), and (9) to (15) in Table 2.
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Table 2 Different features, their
dimensionalities, and distance
metrics used for computing
pair-wise distances

Feature name Dim. Dist.

(1) Dense SIFT, (2) Harris SIFT 1000 χ2

(3) Dense SIFT (V3H1), (4) Harris SIFT (V3H1) 3000 χ2

(5) GIST 512 L2

(6) Dense Hue, (7) Harris Hue 100 χ2

(8) Dense Hue (V3H1), (9) Harris Hue (V3H1) 300 χ2

(10) RGB, (11) HSV, (12) LAB 4096 L1

(13) RGB (V3H1), (14) HSV (V3H1), (15) LAB (V3H1) 5184 L1

(16) Layer-5 9216 L1

(17) Layer-6, (18) Layer-7 4096 L2

(19) Fisher 65536 L2

(20) VLAD 32768 L2

Top: the fifteen publicly available features provided by Guillaumin et al. (2009) (“TagProp-features”)
Middle: features computed using the pre-trained CNN model of Donahue et al. (2014) (“CNN-features”)
Bottom: features computed using advanced encoding techniques (“Encoding-features”)

neighbour based annotationmethods.As discussed in Sect. 1,
the motivation behind cross-modal embedding is to reduce
the semantic gap. Inspired from this, we learn a common
subspace for both image features and labels. For this, we
investigate both CCA and KCCA.

Let Ii and I j be two images, both of which are represented

using a set of feature vectors h f
i and h f

j for all features f ∈F .
In case of CCA, we L2-normalize each feature and use a
linear kernel to compute similarity between two images:

Kcca
v (Ii , I j ) = 1

|F |
∑

f ∈F
〈h f

i , h f
j 〉 (10)

And for KCCA, we use an exponential kernel:

Kkcca
v (Ii , I j ) = exp

(−D(Ii , I j )

Z

)

(11)

where D(Ii , I j ) is the distance between the two images com-
puted using Eq. 7, and Z is the mean distance among all the
training pairs.

For textual features, we represent the labels Y ⊆ Y that
are associated with an image I using a binary vector g ∈ R

l

(l is the vocabulary size). We keep g(k) = 1 if yk ∈ Y , and
0 otherwise. With this, we use a linear kernel to compute
similarity between two textual features, which is same as
counting the number of common labels between two images:

Kt (gi , g j ) = 〈gi , g j 〉 =
l∑

k=1

gi (k)g j (k) (12)

We use the implementation of Hardoon et al. (2004) for
learning the common subspace. It penalizes the norm of
the projection vectors, and regularizes the learning to avoid
trivial solutions. Similar to Ballan et al. (2014), we set the
precision parameter for Gram-Schmidt decomposition to be

η = 30, and the regularization parameter to be κ = 0.1.
Also, the visual and textual spaces are swapped before com-
puting the projection vectors. In practice, we consider the
full-length feature vectors in the common subspace. After
embedding the samples, we compute distance between two
feature vectors using the L2 distance metric, that was empiri-
cally chosen based on the annotation performance of the JEC
method (Makadia et al. 2008, 2010).

Intuitively, the image representation in the learned sub-
space better captures the semantics of the data, and the
neighbouring samples are semantically more meaningful
than those obtained using raw features. As validated in our
experiments, this in turn significantly improves the perfor-
mance of the nearest neighbour based annotation methods
such asMakadia et al. (2008, 2010), Guillaumin et al. (2009),
including ours. Another practically useful advantage of fea-
ture embedding is that it provides a very compact yet effective
representation for images. E.g., if we concatenate all the
features as mentioned in Table 2, an image would be rep-
resented by a 152864-dimensional feature vector. Whereas,
after feature embedding, this reduces to just a few hundreds
of dimensions (or less).

6 Experiments

Here we empirically analyse and compare the performance
of our approach on the above datasets.

6.1 Evaluation Measures

To analyse the annotation performance, we compute preci-
sion and recall of each label in a dataset. Suppose a label yi is
present in the ground-truth of m1 images, and it is predicted
for m2 images during testing, out of which m3 predictions
are correct (m3 ≤ m2 and m3 ≤ m1). Then its precision will
be= m3/m2, and recall will be= m3/m1. We average these
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values over all the labels in a dataset and get (percentage)
mean precision P and mean recall R. Using these two scores,
we compute F1 score, which is the harmonic mean of P and
R; i.e., F1 = 2 · P · R/(P+R). This takes care of the trade-
off between precision and recall. We also consider N+, the
number of labels that are correctly assigned to at least one
test image (in other words, the number of labels with recall
greater than zero), as an evaluation metric. This measure
is particularly useful in the case of class-imbalance, where
frequent labels can suppress the recall of rare labels. Thus,
different image annotation methods are compared using F1
and N+ scores.

Since image annotation has close parallels with the label
ranking task, we additionally report mean average precision
(mAP) scores for various methods.

6.2 Details

For the original features (without cross-modal embedding),
we learn the distancemetric using stochastic gradient descent
on random batches of 1000 samples in leave-one-outmanner.
For 2PKNN without metric learning, the average distance
using all the features is considered while determining the
neighbours [similar to JEC (Makadia et al. 2008, 2010)].
Also, analogous to Guillaumin et al. (2009), this is scaled
by a linear factor π that controls the decay of θJ,Ii (Eq. 3).
For each dataset, the K1 parameter is set by doing cross-
validation on training data in the range {1, 2, 3, 4, 5}. To
evaluate JEC (Makadia et al. 2008, 2010), we implement
this method following the steps outlined in the paper. For
a given test image, in order to predict a ranking of labels
rather than a fixed set of five labels, the number of nearest
neighbours used is ensured to be sufficient to see enough
unique labels [as followed in Makadia et al. (2008, 2010)].
To evaluate the variants of TagProp (Guillaumin et al. 2009),
we use the publicly available code,5 and cross-validate num-
ber of neighbours in the range K = {10, 20, . . . , 200}. In
case of common space learned using KCCA (Eq. 11), we use
distance computed using both without and with the learned
distance metric for TagProp and 2PKNN.

6.3 Comparisons and Discussion

Here, first we perform in-depth quantitative comparisons
with two state-of-the-art nearest neighbour based image
annotation methods JEC (Makadia et al. 2008, 2010) and
the variants of TagProp (Guillaumin et al. 2009) under differ-
ent settings. Then we compare our results with the reported
results of the recent as well as some benchmark methods.
Finally we discuss some qualitative results.

5 The code is available at http://lear.inrialpes.fr/people/guillaumin/
code.php.

6.3.1 Features and Feature Embeddings

In Table 3, we compare 2PKNN and 2PKNN with met-
ric learning (2PKNN+ML) with JEC (Makadia et al. 2008,
2010), and all the four variants of TagProp (Guillaumin et al.
2009): (a) TagProp-SD that simply uses scaled average dis-
tance computed using different features, (b) TagProp-σSD
that uses scaled average distance and label-specific sigmoid
functions to boost the recall of rare labels, (c) TagProp-ML
that learns a distance metric, and (d) TagProp-σML that
learns both a distance metric as well as label-specific sig-
moid functions. Using all the methods, we annotate each test
image with five labels.We consider seven sets of features: (a)
TagProp-features (denoted by T) that include fifteen features,
(b) CNN-features (denoted by C) that include three features,
(c) Encoding-features (denoted by E) that include two fea-
tures, (d) Combined TagProp and CNN features (denoted
by T+C) that include eighteen features, (e) Combined Tag-
Prop and Encoding features (denoted by T+E) that include
seventeen features, (f) Combined CNN and Encoding fea-
tures (denoted by by C+E) that include five features, and (g)
Combined TagProp, CNN and Encoding features (denoted
by T+C+E) that include twenty features.

From the table, we can observe that in case of TagProp,
learning sigmoid functions usually improves the perfor-
mance. Also, the performance improves with metric learning
for both TagProp and 2PKNN. In general, we can notice
that the best performing features usually vary for different
methods, which indicates the importance of using different
features for different methods. In most of the cases, we can
observe that T+C+E features are more useful on the Corel-
5K dataset, C+E on the ESP-Game dataset, T+C/T+C+E
on the IAPR-TC12 dataset, and C+E on the MIRFlickr-25K
dataset. From these results, we can conclude that combina-
tions of both learned as well hand-crafted features can be
useful in such settings.

InTable 4 andTable 5,we compare the performance of dif-
ferent methods by applying feature embedding using CCA
and KCCA respectively. It should be noted that in case of
CCA, we do not include metric learning since it involves
a linear kernel. Also, in case of KCCA, we perform metric
learning just once in the original space wherever applicable.
From these results, we can make the following observa-
tions: (1) After CCA embedding, the performance generally
reduces by a small amount compared to that using the original
features. (2) UsingKCCA embedding, the performance of all
the methods generally improves in terms of F1 score (some-
times by a large margin) compared to both CCA embedding
aswell as original features, thus demonstrating the advantage
of learning kernelized cross-modal embedding. (3) In some
cases, the performance drops in terms of N+. This could be
because the learned embedding does not efficiently capture
the semantics of the labels with relatively low frequency.
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Table 3 Performance comparison using different features

Dataset Corel-5K ESP-Game IAPR-TC12 MIRFlickr-25K

Method Ftrs. P R F1 N+ P R F1 N+ P R F1 N+ P R F1 N+

JEC T 31 36 33.3 148 24 19 21.2 220 31 20 24.3 219 27 24 25.4 36

C 27 35 30.5 140 27 22 24.2 222 33 21 25.7 222 41 38 39.4 37

E 22 26 23.8 126 23 18 20.2 215 24 17 19.9 203 25 25 25.0 36

T+C 32 39 35.2 153 26 21 23.2 224 33 21 25.7 221 31 28 29.4 37

T+E 32 36 33.9 150 25 20 22.2 223 31 21 25.0 220 28 25 26.4 37

C+E 30 38 33.5 147 28 23 25.3 223 35 23 27.8 228 41 38 39.4 37

T+C+E 34 41 37.2 159 26 21 23.2 222 33 22 26.4 222 32 29 30.4 37

TagProp-SD T 31 31 31.0 122 38 21 27.1 218 49 20 28.4 201 47 29 35.9 34

C 25 28 26.4 107 45 21 28.6 195 44 23 30.2 206 56 46 50.5 35

E 20 24 21.8 115 39 17 23.7 202 43 18 25.4 196 41 29 34.0 33

T+C 35 37 36.0 133 42 19 26.2 180 47 23 30.9 197 47 39 42.6 36

T+E 32 34 33.0 133 40 20 26.7 214 50 20 28.6 202 46 30 36.3 33

C+E 25 32 28.1 116 43 21 28.2 192 46 23 30.7 200 56 47 51.1 35

T+C+E 34 38 35.9 136 42 18 25.2 178 48 23 31.1 202 51 41 45.5 35

TagProp-σSD T 32 32 32.0 125 37 21 26.8 220 50 20 28.6 207 48 32 38.4 35

C 25 28 26.4 109 45 21 28.6 195 44 24 31.1 209 57 46 50.9 36

E 23 25 24.0 118 40 17 23.9 206 43 19 26.4 198 42 29 34.3 33

T+C 35 37 36.0 138 46 21 28.8 203 49 23 31.3 207 54 48 50.8 37

T+E 33 35 34.0 135 43 21 28.2 219 49 21 29.4 203 50 33 39.8 34

C+E 26 32 28.7 119 44 21 28.4 199 47 23 30.9 203 56 47 51.1 35

T+C+E 36 39 37.4 142 46 20 27.9 199 48 23 31.1 207 58 47 51.9 36

TagProp-ML T 32 42 36.3 155 39 24 29.7 232 46 34 39.1 263 44 34 38.4 37

C 30 42 35.0 156 37 32 34.3 244 42 34 37.6 262 59 50 54.1 38

E 21 27 23.6 121 35 21 26.2 226 40 27 32.2 246 41 31 35.3 37

T+C 36 48 41.1 167 38 30 33.5 230 49 37 42.2 268 51 41 45.5 38

T+E 32 43 36.7 159 40 25 30.8 235 47 35 40.1 263 45 36 40.0 37

C+E 31 43 36.0 154 38 32 34.7 243 45 37 40.6 263 59 50 54.1 38

T+C+E 35 47 40.1 166 39 30 33.9 234 49 38 42.8 270 53 44 48.1 38

TagProp-σML T 33 43 37.3 160 41 24 30.3 233 48 34 39.8 266 47 38 42.0 37

C 31 43 36.0 157 38 33 35.3 245 43 35 38.6 266 59 50 54.1 38

E 22 29 25.0 124 35 22 27.0 230 39 28 32.6 253 41 32 35.9 37

T+C 36 50 41.9 175 39 31 34.5 244 48 39 43.0 276 59 50 54.1 38

T+E 34 44 38.4 164 41 26 31.8 239 47 36 40.8 270 47 39 42.6 37

C+E 32 44 37.1 160 39 33 35.7 246 45 38 41.2 267 59 51 54.7 38

T+C+E 38 48 42.4 170 39 32 35.2 244 48 39 43.0 276 58 51 54.3 38

2PKNN T 40 41 40.5 180 40 25 30.8 248 49 30 37.2 275 39 29 33.3 38

C 39 45 41.8 189 50 29 36.7 251 54 31 39.4 271 57 45 50.3 38

E 26 27 26.5 142 41 24 30.3 248 45 26 33.0 269 37 33 34.9 38

T+C 42 42 42.0 187 56 19 28.4 243 56 29 38.2 275 46 33 38.4 38

T+E 37 43 39.8 178 44 25 31.9 249 47 32 38.1 275 40 30 34.3 38

C+E 40 43 41.4 192 53 27 35.8 246 53 33 40.7 276 56 46 50.5 38

T+C+E 43 42 42.5 188 57 19 28.5 240 58 28 37.8 275 46 34 39.1 38
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Table 3 continued

Dataset Corel-5K ESP-Game IAPR-TC12 MIRFlickr-25K

Method Ftrs. P R F1 N+ P R F1 N+ P R F1 N+ P R F1 N+

2PKNN+ML T 41 46 43.4 186 43 26 32.4 246 53 32 39.9 277 41 34 37.2 38

C 38 47 42.0 189 47 31 37.4 253 51 33 40.1 273 58 46 51.3 38

E 26 27 26.5 144 41 24 30.3 248 45 26 33.0 270 36 33 34.4 38

T+C 40 51 44.8 196 49 30 37.2 254 49 36 41.5 277 58 46 51.3 38

T+E 40 47 43.2 185 44 26 32.7 250 49 34 40.1 277 41 34 37.2 38

C+E 39 47 42.6 192 49 31 38.0 255 48 36 41.1 276 57 47 51.5 38

T+C+E 40 50 44.4 194 48 30 36.9 252 49 35 40.8 276 57 47 51.5 38

The best F1 and N+ scores for each method are highlighted in bold
T TagProp-features, C CNN-features, E Encoding-features, T+C combined TagProp and CNN-features, T+E combined TagProp and Encoding-
features, C+E combined CNN and Encoding-features, T+C+E combined TagProp, CNN and Encoding-features

Table 4 Performance using feature embedding learned via CCA for different features

Dataset Corel-5K ESP-Game IAPR-TC12 MIRFlickr-25K

Method Ftrs. P R F1 N+ P R F1 N+ P R F1 N+ P R F1 N+

JEC T 29 31 30.0 131 26 18 21.3 216 29 12 17.0 188 34 28 30.7 38

C 26 21 23.2 97 38 18 24.4 214 20 09 12.4 161 49 37 42.2 37

E 22 24 23.0 114 34 18 23.5 212 39 16 22.7 188 37 29 32.5 37

T+C 33 33 33.0 133 38 20 26.2 223 40 14 20.7 180 46 37 41.0 36

T+E 31 32 31.5 133 34 19 24.4 219 38 19 25.3 200 38 31 34.1 38

C+E 30 25 27.3 107 49 18 26.3 209 45 16 23.6 185 50 38 43.2 37

T+C+E 35 34 34.5 136 43 20 27.3 223 44 19 26.5 202 46 38 41.6 36

TagProp-SD T 28 25 26.4 110 37 22 27.6 230 40 25 30.8 244 34 32 33.0 38

C 21 14 16.8 73 52 22 30.9 227 48 21 29.2 223 58 45 50.7 38

E 21 20 20.5 93 34 22 26.7 231 46 23 30.7 227 40 36 37.9 37

T+C 33 33 33.0 132 43 25 31.6 233 48 26 33.7 245 50 46 47.9 38

T+E 30 32 31.0 130 38 25 30.2 232 48 27 34.6 239 38 37 37.5 38

C+E 28 24 25.8 103 54 22 31.3 225 56 22 31.6 220 55 48 51.3 38

T+C+E 33 35 34.0 135 46 26 33.2 235 52 27 35.5 241 49 48 48.5 38

TagProp-σSD T 31 31 31.0 133 33 25 28.4 237 37 28 31.9 258 35 34 34.5 38

C 27 22 24.2 102 47 25 32.6 237 46 25 32.4 245 57 48 52.1 38

E 23 25 24.0 109 32 24 27.4 239 45 25 32.1 239 42 38 39.9 38

T+C 33 34 33.5 133 41 27 32.6 241 47 30 36.6 256 51 48 49.5 38

T+E 32 33 32.5 136 37 26 30.5 240 47 31 37.4 256 43 38 40.3 38

C+E 29 25 26.9 108 53 23 32.1 231 58 24 34.0 235 58 49 53.1 38

T+C+E 34 35 34.5 139 45 28 34.5 241 52 31 38.8 255 51 49 50.0 38

2PKNN T 36 35 35.5 155 41 23 29.5 249 50 19 27.5 256 38 35 36.4 38

C 37 32 34.3 154 50 25 33.3 243 50 14 21.9 244 57 47 51.5 38

E 29 33 30.9 143 39 24 29.7 248 48 27 34.6 255 38 39 38.5 38

T+C 41 41 41.0 170 44 27 33.5 251 57 22 31.7 250 48 47 47.5 38

T+E 39 37 38.0 161 41 25 31.1 247 50 29 36.7 266 40 40 40.0 38

C+E 40 37 38.4 159 58 25 34.9 247 60 26 36.3 256 53 51 52.0 38

T+C+E 42 42 42.0 176 50 27 35.1 250 54 31 39.4 263 48 49 48.5 38

The best F1 and N+ scores for each method are highlighted in bold
T TagProp-features, C CNN-features, E Encoding-features, T+C combined TagProp and CNN-features, T+E combined TagProp and Encoding-
features, C+E combined CNN and Encoding-features, T+C+E combined TagProp, CNN and Encoding-features)
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Table 5 Performance of different methods using cross-modal embedding learned via KCCA for different feature combinations

Dataset Corel-5K ESP-Game IAPR-TC12 MIRFlickr-25K

Method Ftrs. P R F1 N+ P R F1 N+ P R F1 N+ P R F1 N+

JEC T 39 39 39.0 148 46 20 27.9 217 44 22 29.3 206 40 32 35.6 38

C 34 34 34.0 132 48 23 31.1 219 46 22 29.8 211 53 41 46.2 38

E 23 29 25.7 123 30 22 25.4 216 36 21 26.5 202 40 31 34.9 36

T+C 41 43 42.0 156 47 23 30.9 219 47 24 31.8 218 47 40 43.2 38

T+E 39 39 39.0 148 47 21 29.0 219 45 22 29.6 209 42 34 37.6 38

C+E 32 35 33.4 131 50 23 31.5 218 46 23 30.7 210 51 42 46.1 37

T+C+E 41 43 42.0 155 48 24 32.0 224 47 24 31.8 214 48 40 43.6 38

TagProp-SD T 35 37 36.0 137 47 26 33.5 237 51 33 40.1 252 42 42 42.0 38

C 32 34 33.0 130 50 30 37.5 242 53 32 39.9 250 51 53 52.0 38

E 21 29 24.4 123 34 28 30.7 240 42 30 35.0 250 39 40 39.5 38

T+C 27 22 24.2 96 47 29 35.9 239 53 36 42.9 257 48 51 49.5 38

T+E 35 38 36.4 140 48 27 34.6 237 52 34 41.1 249 43 44 43.5 38

C+E 31 32 31.5 116 52 30 38.0 238 54 34 41.7 252 50 53 51.5 38

T+C+E 35 33 34.0 124 49 30 37.2 239 54 36 43.2 256 49 52 50.5 38

TagProp-σSD T 37 40 38.4 145 46 28 34.8 241 50 37 42.5 261 41 42 41.5 38

C 33 35 34.0 134 50 31 38.3 243 52 35 41.8 262 52 53 52.5 38

E 22 30 25.4 125 30 31 30.5 242 39 34 36.3 261 38 40 39.0 38

T+C 40 42 41.0 150 47 31 37.4 242 52 39 44.6 263 48 51 49.5 38

T+E 35 36 35.5 136 48 28 35.4 243 52 37 43.2 260 41 43 42.0 38

C+E 32 36 33.9 133 51 31 38.6 243 53 37 43.6 258 50 53 51.5 38

T+C+E 41 43 42.0 155 48 31 37.7 245 53 40 45.6 265 49 51 50.0 38

TagProp-ML T 34 35 34.5 132 50 25 33.3 235 50 35 41.2 256 43 45 44.0 38

C 33 33 33.0 130 48 32 38.4 245 50 34 40.5 262 52 53 52.5 38

E 21 28 24.0 121 31 28 29.4 237 45 29 35.3 241 40 40 40.0 37

T+C 37 35 36.0 127 47 32 38.1 245 55 36 43.5 259 55 54 54.5 38

T+E 33 34 33.5 130 53 24 33.0 233 51 34 40.8 250 44 45 44.5 38

C+E 30 31 30.5 113 50 31 38.3 245 54 33 41.0 247 53 53 53.0 38

T+C+E 37 36 36.5 131 49 32 38.7 248 56 36 43.8 254 55 54 54.5 38

TagProp-σML T 37 39 38.0 144 50 26 34.2 240 48 39 43.0 263 40 44 41.9 37

C 35 35 35.0 135 46 33 38.4 247 47 39 42.6 274 55 51 52.9 38

E 21 29 24.4 123 28 31 29.4 242 44 33 37.7 256 40 40 40.0 38

T+C 43 44 43.5 158 47 35 40.1 249 54 40 46.0 269 55 55 55.0 38

T+E 34 37 35.4 140 53 25 34.0 237 50 38 43.2 262 42 43 42.5 38

C+E 32 35 33.4 134 50 33 39.8 245 55 36 43.5 256 53 54 53.5 38

T+C+E 42 45 43.4 160 48 34 39.8 249 56 40 46.7 268 55 55 55.0 38

2PKNN T 45 44 44.5 176 45 29 35.3 251 50 37 42.5 273 43 44 43.5 38

C 41 43 42.0 172 51 32 39.3 253 51 35 41.5 269 51 56 53.4 38

E 32 34 33.0 155 39 30 33.9 251 45 32 37.4 272 41 43 42.0 38

T+C 47 50 48.5 187 45 32 37.4 251 53 39 44.9 279 48 54 50.8 38

T+E 45 46 45.5 179 45 30 36.0 252 51 38 43.6 272 43 46 44.4 38

C+E 42 45 43.4 180 49 35 40.8 255 52 37 43.2 273 51 57 53.8 38

T+C+E 48 50 49.0 190 43 33 37.3 250 53 38 44.3 275 48 55 51.3 38
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Table 5 continued

Dataset Corel-5K ESP-Game IAPR-TC12 MIRFlickr-25K

Method Ftrs. P R F1 N+ P R F1 N+ P R F1 N+ P R F1 N+

2PKNN+ML T 45 47 46.0 186 45 29 35.3 249 52 37 43.2 272 39 42 40.4 38

C 43 44 43.5 177 50 33 39.8 253 52 36 42.5 270 53 56 54.5 38

E 32 34 33.0 155 39 30 33.9 251 45 32 37.4 272 41 44 42.4 38

T+C 48 52 49.9 191 44 34 38.4 255 50 41 45.1 275 52 56 53.9 38

T+E 45 48 46.5 185 46 31 37.0 251 53 38 44.3 272 41 43 42.0 38

C+E 44 47 45.5 182 48 36 41.1 255 53 38 44.3 274 53 57 54.9 38

T+C+E 48 52 49.9 196 46 33 38.4 254 50 40 44.4 276 52 56 53.9 38

The best F1 and N+ scores for each method are highlighted in bold
T TagProp-features, C CNN-features, E Encoding-features, T+C combined TagProp and CNN-features, T+E combined TagProp and Encoding-
features, C+E combined CNN and Encoding-features, T+C+E combined TagProp, CNN and Encoding-features

(4) Using KCCA, the performance after metric learning usu-
ally improves for both TagProp and 2PKNN. This indicates
that learned distance metric can benefit common embedding
space. (5) The performance of 2PKNN+ML is consistently
better than the othermethods on theCorel-5KandESP-Game
datasets, comparable to TagProp-σML on the MIRFlickr-
25Kdataset, and inferior toTagProp-σSDandTagProp-σML
on the IAPR-TC12 dataset by around 0.6 and 1.6% respec-
tively.

In all our subsequent analysis, we will use the features
that give the best performance using the KCCA embedding,
giving preference to F1 score over N+.

6.3.2 Tradeoff Between Precision and Recall

It is a popular and well-accepted practice among the image
annotation methods (such as those listed in Table 6) to anno-
tate each image with five labels for comparisons. However,
it may not always be justifiable since the actual number of
labels can vary significantly for different images. E.g., some
(training) images in the ESP-Game and IAPR-TC12 datasets
have up to 15 and 23 labels respectively. Assigning only 5
labels artificially restricts the number of labels that can be
correctly recalled (N+), as well as the F1 score. Though this
inspires us to increase the number of labels assigned per
image, it remains ambiguous till what extent. Annotating
each image with all the labels would ultimately result into
the perfect recall and N+, however it would reduce the pre-
cision drastically and thus would not be practically useful.
Hence it becomes important to analyse the tradeoff between
precision and recall, as well as variation in N+ on increasing
the number of labels assigned per image. We study these in
Fig. 5 by increasing the number of labels assigned per image
from one till the vocabulary size of a dataset. In Fig. 5a we
compare methods that do not involve metric learning (JEC,
TagProp-SD, TagProp-σSD and 2PKNN), and in Fig. 5b we
comparemethods that involvemetric learning (TagProp-ML,

TagProp-σML and 2PKNN+ML) alongwith 2PKNN. From
the figure, we can make the following observations: (1) Gen-
erally both the precision and recall values increase up to a
certain extent, and then precision starts to drop while recall
continues to increase. This is expected since initially increas-
ing the number of assigned labels also increases the number
of correctly predicted labels. However, further increasing this
results into increasing the number of incorrect predictions,
and thus reduces the precision score. (2) In the beginning,
2PKNN remains above the three methods (JEC, TagProp-
SD and TagProp-σSD) on the Corel-5K, IAPR-TC12 and
MIRFlickr-25K datasets, and comparable on the ESP-Game
dataset. On the Corel-5K dataset 2PKNN remains above the
three methods for a very long range of recall. On the other
three datasets, as precision starts to drop, the curve of 2PKNN
gradually becomes comparable to that of TagProp-σSD and
TagProp-SD, and remains so for some time. Then, as recall
increases further, TagProp-σSD comes above both 2PKNN
andTagProp-SDon theESP-Game and IAPR-TC12datasets,
but remains comparable on theMIRFlickr-25Kdataset. Also,
by then JEC catches up with the other two methods 2PKNN
and TagProp-SD. We try to explain these from the frequency
of labels in a dataset (column 7 of Table 1). For the Corel-5K
dataset, the average number of images per label is far less
than the other three datasets. Thus, building small semantic
neighbourhoods results into better performance of 2PKNN
compared to the other methods. On the other hand, the aver-
age number of images per label for the MIRFlickr-25K
dataset is quite large but the vocabulary size is too small.
Due to this, the curves of all themethods become nearly com-
parable quite early. For the other two datasets, the average
number of images per label is in between the Corel-5K and
MIRFlickr-25K datasets. Thus, when the number of labels
assigned per image is small, the semantic neighbourhoods
of 2PKNN result into prediction of more diverse labels than
the other three methods. On further increasing the number
of labels assigned, the other three methods start predicting
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Table 6 Comparison of our best results with the reported results of some of the benchmark and recent image annotation methods

Dataset Corel-5K ESP-Game IAPR-TC12

Method P R F1 N+ P R F1 N+ P R F1 N+

CRM (Lavrenko et al. 2003) 16 19 17.4 107 – – – – – – – –

MBRM (Feng et al. 2004) 24 25 24.5 122 18 19 18.5 209 24 23 23.5 223

InfNet (Metzler and Manmatha 2004) 17 24 19.9 112 – – – – – – – –

NPDE (Yavlinsky et al. 2005) 18 21 19.4 114 – – – – – – – –

SML (Carneiro et al. 2007) 23 29 25.7 137 – – – – – – – –

TGLM (Liu et al. 2009) 25 29 26.9 131 – – – – – – – –

JEC (Makadia et al. 2008, 2010) 27 32 29.3 139 23 19 20.8 227 25 16 19.5 196

MRFA (Xiang et al. 2009) 31 36 33.3 172 – – – – – – – –

CCD (SVRMKL+KPCA) (Nakayama 2011) 36 41 38.3 159 36 24 28.8 232 44 29 35.0 251

GroupSparsity (Zhang et al. 2010) 30 33 31.4 146 – – – – 32 29 30.4 252

BS-CRM (Moran and Lavrenko 2011) 22 27 24.2 130 – – – – 24 22 23.0 250

RandomForest (Fu et al. 2012) 29 40 33.6 157 41 26 31.8 235 44 31 36.4 253

KSVM-VT (Verma and Jawahar 2013) 32 42 36.3 179 33 32 32.5 259 47 29 35.9 268

TagProp-SD (Guillaumin et al. 2009) 30 33 31.4 136 48 19 27.2 212 50 20 28.6 215

TagProp-σSD (Guillaumin et al. 2009) 28 35 31.1 145 39 24 29.7 232 41 30 34.6 259

TagProp-ML (Guillaumin et al. 2009) 31 37 33.7 146 49 20 28.4 213 48 25 32.9 227

TagProp-σML (Guillaumin et al. 2009) 33 42 37.0 160 39 27 31.9 239 46 35 39.8 266

FastTag (Chen et al. 2013) 32 43 36.7 166 46 22 29.8 247 47 26 33.9 280

SKL-CRM (Moran and Lavrenko 2014) 39 46 42.2 184 41 26 31.8 248 47 32 38.1 274

SVM-DMBRM (Murthy et al. 2014) 36 48 41.1 197 55 25 34.4 259 56 29 38.2 283

2PKNN (this work) 48 50 49.0 190 49 35 40.8 255 53 39 44.9 279

2PKNN+ML (this work) 48 52 49.9 196 48 36 41.1 255 50 41 45.1 275

The best F1 and N+ scores are highlighted in bold

the less frequent labels, that were earlier not assigned due to
low predictionweight. This trend continues on increasing the
number of labels assigned even further for all the methods
except TagProp-σSD. This is because it uses label-specific
sigmoid functions that boost the recall of rare labels and
reduces that for frequent labels. This increase in recall also
increases the precision of rare labels, and thus the average
precision remains higher than that of the remaining methods.
This implies that at higher recall values, TagProp-σSD can
provide better performance than the other methods. How-
ever, assigning too many labels would reduce the practical
utility of automatic prediction. (3) In Fig. 5b, we observe
that 2PKNN+ML performs either comparable to or better
than the metric learning based variants of TagProp (TagProp-
ML and TagProp-σML) and 2PKNN, as also observed in
Table 5.

The bottom rows in Fig. 5a, b show the variation in N+ on
increasing the number of labels assigned per image. Com-
pared to all the other methods, 2PKNN and 2PKNN+ML
achieve the perfect N+ much earlier on all the four datasets.
This is because they use semantic neighbourhoods for label
propagation, that explicit the presence of all the labels
among the selected neighbours. It can also be observed

that though the sigmoid variants of TagProp (TagProp-σSD
and TagProp-σML) achieve better N+ than the correspond-
ing non-sigmoid variants towards the beginning, the latter
outperform the former very soon. Moreover, it takes very
long for the sigmoid variants to achieve the full N+. While
the performance of TagProp-SD/ML is as expected, that
of TagProp-σSD/σML is possibly because of the use of
per-label sigmoid functions that boost the recall of rare
labels, but at the cost of reducing that for the frequent
ones.

6.3.3 Tradeoff Between Rare and Frequent Labels

In Fig. 6, we compare the annotation performance in terms
of R and N+ on rare and frequent labels of each dataset,
by assigning five labels to each test image. In Fig. 6a we
compare methods that do not involve metric learning (JEC,
TagProp-SD, TagProp-σSD and 2PKNN), and in Fig. 6b
we compare methods that involve metric learning (TagProp-
ML, TagProp-σML and 2PKNN+ML) along with 2PKNN.
Recall that TagProp-σSDandTagProp-σMLvariants of Tag-
Prop (Guillaumin et al. 2009) learn a sigmoid function per
label to boost the likelihood of rare labels. For comparison,
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Fig. 5 Precision-versus-recall plots by varying the number of labels assigned to an image (top row in each block), and variation in N+ on varying
the number of labels assigned to an image (bottom row in each block). (Best viewed in colour.) (Color figure online)

the labels are partitioned into two groups based on their fre-
quency. The first partition consists of the 50% least frequent
(or rare) labels, and the second partition consists of the 50%
most frequent labels.

From the figure, we can make the following observa-
tions: (1) The JEC method (which is the simplest among all)
provides very competitive performance on frequent labels.
However, on rare labels it usually does not perform well.
Compared to JEC, TagProp-SD usually performs better on
all the datasets, except the Corel-5Kwhere its performance is
slightly inferior. This is possibly because TagProp-SD con-
siders a larger neighbourhood for label prediction than JEC.
However, in theCorel-5Kdataset, the frequency of rare labels
is too low compared to that of frequent labels (it has the
lowest and the largest tail among all the four datasets, cf.
Fig. 4). Due to this, using larger neighbourhoods results into
giving more weight to frequent labels than rare labels, and
thus reduces their prediction chances. (2) TagProp-σSD and
TagProp-σML mostly provide better recall than TagProp-
SD and TagProp-ML, thus demonstrating the advantage of
learning label-specific sigmoid functions. (3) 2PKNN per-
forms consistently better than TagProp-σSD on rare labels.
This implies that building semantic neighbourhoods before
label propagation can provide better boost for rare labels than
learning label-specific sigmoid functions. (4) In general, the

performance of each method on frequent labels is more than
that on rare labels. However, the relative difference in the
performance of 2PKNN and 2PKNN+ML on the two label-
partitions is mostly less than the other three methods. This
indicates that 2PKNN(+ML) addresses the class-imbalance
problem better than the compared methods. (5) The perfor-
mance of 2PKNN and 2PKNN+ML on rare labels is mostly
better than the other methods, and that on frequent labels is
either better than or comparable to the other methods. This
shows that 2PKNN and 2PKNN+ML do not compromise
much with the performance on frequent labels while gaining
that on rare labels. (6) The performance of 2PKNN+ML
is always either better than or comparable to 2PKNN on
both the label-partitions for all the datasets. This confirms
that our metric learning approach benefits both rare as well
as frequent labels. From all the above observations, we can
infer that 2PKNN along with metric learning can be a better
option than either JEC or TagProp for the image annotation
task.

6.3.4 Comparison with Previous Results

Table 6 summarizes our best results (from Table 5) as well as
those reported by the previous methods. Similar to all other
methods, we assign the top five labels (predicted using Eq. 2)
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Fig. 6 Annotation performance in terms of R (top row in each block)
and N+ (bottom row in each block) for different label partitions. The
labels are groupedbasedon their frequency in a dataset (horizontal axis).

This first bin corresponds to the subset of 50% least frequent labels, and
the second bin corresponds to the subset of 50% most frequent labels.
(Best viewed in colour.) (Color figure online)

to each test image, and the average precision and recall values
are computed by averaging over all the labels in a dataset.
Also, here we do not consider the MIRFlickr-25K dataset
since the other three datasets are more popular and challeng-
ing, and none of the listed methods has evaluated on it. From
these results, we can observe that on all the three datasets,
the 2PKNN method significantly outperforms the previous
methods in terms of F1 score. Precisely, for the Corel-5K,
ESP-Game and IAPR- TC12 datasets, we achieve 7.7, 6.7
and 5.3% of absolute improvements, and around 18.2, 19.5
and 13.3% of relative improvements respectively over the
previous best results. In terms of N+, our results are inferior
only to the recent methods SVM-DMBRM (Murthy et al.
2014) on all the datasets, and FastTag (Chen et al. 2013)
on the IAPR-TC12 dataset. However, since the F1 score of
2PKNN is much better than these two methods, this indi-
cates that a higher N+ by these methods is probably because
of correctly recalling only a small number of instances for
several of the recalled labels. Whereas, though 2PKNN is
able to recall a slightly less number of labels, the number
of correctly recalled instances is much higher than the other
two, thus resulting in better F1 score.

In Table 7, we compare our results with the recent work
of Kalayeh et al. (2014). We compare with this work sepa-

Table 7 Comparison of our best performance with the reported results
of NMF-KNN (Kalayeh et al. 2014)

Dataset Corel-5K ESP-Game

Method P R F1 N+ P R F1 N+

NMF-KNN 38 56 45.3 150 33 26 29.1 238

2PKNN 65 68 66.5 190 51 37 42.9 255

2PKNN+ML 63 69 65.9 196 50 38 43.2 255

Similar to Kalayeh et al. (2014), here the average precision and recall
values are computed using only the labels with positive recall, and not
all the labels as followed by the methods in Table 6

rately because their evaluation criteria is different from other
methods compared in Table 6. Precisely, here also we anno-
tate each test image with the top five labels. However, here
we compute the average precision and recall values using
only the labels with positive recall following Kalayeh et al.
(2014). In terms of both F1 and N+ scores, our method sig-
nificantly outperforms the NMF-KNN approach. Note that
since the average precision and recall values are computed
only for the correctly recalled labels, the N+ score acts as a
divisive factor while computing the F1 score (from that com-
puted for all the labels). Even with a big margin of 40/46
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Corel-5K ESP-Game IAPR-TC12

GT: water, people,
pool, swimmers

GT: water, beach,
boats, sand

GT: light, tower GT: red, woman GT: lake GT: monument,
stone

Pred: people,
pool, swimmers,
water, athlete

Pred: beach,
sand, water, sky,
boats

Pred: night,
tower, light, sky,
city

Pred: hair, blonde,
girl, woman, red

Pred: middle,
lake, landscape,
mountain, desert

Pred: bird, monu-
ment, stone, tree,
bush

Fig. 7 Example images from the Corel-5K, ESP-Game and IAPR-
TC12 datasets, along with the ground-truth set of labels (GT) and the
top five labels predicted using 2PKNN+ML (Pred). The labels in blue

(bold) are those that match with the ground-truth, while those in red
(italics) are missing in the ground-truth though depicted in the corre-
sponding images (Color figure online)

on the Corel-5K dataset and 17 on the ESP-Game dataset in
terms of N+, our F1 scores are better than NMF-KNN by a
factor of around 1.5.

From these comparisons,we can conclude that the 2PKNN
and 2PKNN+ML methods along with the new image fea-
tures achieve state-of-the-art results on all the three prevailing
image annotation datasets in terms of F1 score, and compet-
itive performance in terms of N+ score.

6.4 Qualitative Results

Though it is difficult to measure incomplete-labelling, we
try to analyse it from qualitative results. Figure 7 shows
a few examples of incompletely-labelled images from the
Corel-5K, ESP-Game and IAPR-TC12 datasets, along with
the top five labels predicted using 2PKNN+ML. It can be
observed that for all these images, our method predicts all
the ground-truth labels. Moreover, the additional labels pre-
dicted are actually depicted in the corresponding images,
but missing in their ground-truth annotations. These results
demonstrate that our method is capable of addressing the
incomplete-labelling issue prevalent in the challenging real-
world datasets.

6.5 Analysis

In this subsection, we analyse different aspects of the pro-
posed approach, such as computational cost, diversity of
labels among the neighbours obtained after the first pass of
2PKNN, effect of the parameter K1 on performance, and
label ranking performance. We also compare these aspects
with appropriate methods wherever applicable.

6.5.1 Computational Cost

In Table 8, we compare the training and testing time of JEC,
TagProp and 2PKNN.Our hardware configuration comprises
Intel i7-4790K processor with 32 GB RAM. For the com-

Table 8 Computational cost of different methods using the combined
TagProp, CNN and Encoding-features (in seconds)

Training Testing

JEC TagProp 2PKNN JEC TagProp 2PKNN

Corel NA 51.9 212.4 0.2 0.3 6.0

ESP NA 1308.5 1397.2 0.8 2.5 53.8

IAPR NA 1367.8 1336.6 0.7 2.3 54.4

Flickr NA 609.3 360.4 2.9 15.1 76.7

For TagProp and 2PKNN, the training time denotes the time required
for metric learning. For all the methods, the training and testing times
do not take into consideration the time required for computing pair-wise
distances. Since there is no learning involved in JEC, the training time
is not applicable

parison, we consider K = 200 neighbours in TagProp, and
K1 = 5 in the first pass of 2PKNN, and use the combined
TagProp, CNN and Encoding-features (T+C+E). For Tag-
Prop and 2PKNN, the training time denotes the time required
for metric learning. Note that since there is no learning
involved in JEC, the training time is not applicable.

Here, we can observe that the computational cost of
2PKNN is usually higher than JEC and TagProp. This is
as expected since 2PKNN is a two-step process, and addi-
tionally requires semantic groups (sample-subsets based on
label information) while identifying neighbours. Still, for the
larger (ESP-Game and IAPR-TC12) datasets, its training cost
is comparable to that of TagProp.

It should be noted that in all the comparisons in Table 8,we
do not include the time required for computing pair-wise dis-
tances and performance evaluation, since these are the same
for all, except JEC which is a training-free algorithm and
does not require pair-wise distances among training samples.
In practice, the operation of computing pair-wise distances
can be highly parallelizable. However, we follow the sim-
plest approach by computing pair-wise distances for each
feature individually in parallel. Also, during distance com-
putation, we do not perform any optimization. Due to this,
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Fig. 8 Training and testing time (in seconds) for 2PKNN+ML (vertical axis) on varying the value of K1 (horizontal axis), using the combined
TagProp, CNN and Encoding-features

Fig. 9 Average number of distinct labels included in the neighbours
(top), and average frequencies of these labels in the training set (bottom)
on increasing the number of nearest neighbours (horizontal axis) after

the first pass of 2PKNN and the conventional kNN algorithm. (Best
viewed in colour.) (Color figure online)

the time required for computing pair-wise distances becomes
quite significant. E.g., for the 65536-dimensional Fisher vec-
tor based features, it takes around 73 minutes for computing
pair-wise distances among training samples, and around 14
minutes for computing pair-wise distances between training
and testing samples on the Corel-5K dataset. As we can see,
this time is comparatively much longer than training/testing
time in Table 8, which makes the overall difference between
the proposed and other methods relatively small.

In Fig. 8, we analyse the training and testing time of
2PKNN on varying the value of K1 in {1, . . . , 5} using the
same combination of features. Here, we can observe that
while the increase in training time is almost linear for the
Corel-5K, ESP-Game and IAPR-TC12 datasets (the datasets
with large vocabularies), it is sub-linear for the MIRFlickr-
25K which has a small vocabulary. Also, the increase in
testing time as K1 increases is very small, and is primar-
ily affected by the number of test samples rather than the
vocabulary size.

From these, we can conclude that the training (metric
learning) of 2PKNN is quite scalable, and can be done
in a reasonable time (in under 30 minutes) even for tens
of thousands samples and hundreds of labels. The testing
time, though substantially higher than the competing near-

est neighbour based methods, is also fairly feasible for all
practical applications.

6.5.2 Diversity of Labels in Neighbours

Now we try to empirically analyse the diversity of labels
in the neighbours identified after the first pass of 2PKNN,
and compare this with the conventional kNN algorithm. For
2PKNN, we vary the number of nearest neighbours from 1
to 100 on the subset of samples obtained after the first pass.
For kNN, we vary the number of nearest neighbours in the
same range but on the complete training set. In Fig. 9 (top),
we calculate the number of distinct labels in the neighbours
averaged over all test images. Here we can observe that using
2PKNN, we consistently get more diverse labels than kNN.
In Fig. 9 (bottom), we calculate the frequency (in the full
training set) of the distinct labels in the neighbours averaged
over all test images. From this, wewe can see that the average
frequency using 2PKNN is consistently below kNN, thus
indicating that using 2PKNNwe can improve the occurrence
of rare labels in the neighbours, whereas the influence of
frequent labels ismore than rare ones in kNN. From these, we
can conclude that 2PKNN can help in retrieving neighbours
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Fig. 10 Annotation performance of 2PKNN+ML in terms of F1 (ver-
tical axis) on varying the value of the K1 parameter (horizontal axis)

that contain more diverse and relatively less frequent labels
than kNN.

6.5.3 Performance on Varying “K1”

Analogous to kNN algorithm, K1 is a hyper-parameter in
2PKNN that needs to be tuned by doing cross-validation.
Figure 10 shows the influence of K1 on the annotation per-
formance on all the four datasets (in terms of F1 score). We
can observe that though the performance varies on chang-
ing the value of K1, it is not very sensitive to its choice and
remains fairly stable.

6.5.4 Label Ranking Performance

Finally, inTable 9,we compare the label rankingperformance
of different methods using mAP as the evaluation metric.
Here, we observe that the performance of 2PKNN(+ML) is
far inferior than the TagProp variants. However, it is worth
noticing that there are fundamental distinctions between the
label ranking and image annotation tasks. First, in image
annotation, there is no discrimination among the predicted
labels based on their order/rank of prediction, whereas label
ranking does make such a discrimination. Second, in image
annotation, the performance (P, R, F1 and N+) is evaluated
on a per-label basis, thus giving more importance to rare
labels than the frequent ones. While in label ranking, the
performance (mAP) is evaluated on a per-image basis, thus
treating all the labels of an image equally. Since it is eas-
ier to predict frequent labels than the rare ones, this in turn
contributes in increasing the overall mAP. This is also sup-
ported from the consistent drop in mAP on using the sigmoid
variants of TagProp compared to non-sigmoid variants, that
in fact gave better annotation performance (Table 5). Hence,
mAP may not be as appropriate as F1 and N+ measures for
comparing image annotation methods.

Table 9 Performance comparison in terms of mAP

Dataset Corel ESP IAPR Flickr

JEC 52.2 33.6 38.8 62.2

TagProp-SD 60.3 46.1 54.9 74.3

TagProp-σSD 59.1 45.5 53.7 68.1

TagProp-ML 65.1 49.2 55.4 73.6

TagProp-σML 61.1 47.2 54.7 71.6

2PKNN 53.4 46.0 54.0 69.4

2PKNN+ML 55.7 47.9 54.7 70.4

7 Conclusion

Wehave shown that the proposed 2PKNNmethod alongwith
metric learning achieves either comparable or state-of-the-art
results on the challenging image annotation datasets. Exten-
sive analyses demonstrate that our method can be useful for
annotation of natural image databases where frequencies of
labels follow the long-tail phenomenon.We also showed that
advanced feature extraction, encoding and embedding tech-
niques can be useful in improving the performance of existing
methods. We believe our work will provide a new platform
for evaluating and comparing the future techniques in this
domain.
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Appendix

In our conference paper Verma and Jawahar (2012), we pro-
posed to learn a combined distance metric in both distance
as well as feature spaces, denoted by w and v respectively.
While the dimensionality of w is equal to the number of dif-
ferent features used to represent a sample, that of v is equal
to the combined dimensionality of all the individual features.
As a result, we found it was not easy to learn v using limited
examples as the number of features increased, and the compu-
tational cost was also quite high. Hence, in this paper we have
considered only thewmetric. Empirically, we found that the
performance obtained using only the w metric was usually
comparable to that using both w and v. E.g., in Table 10, we
compare their performance using three feature combinations
on the Corel-5K dataset. Here, we can observe that though
we compromise a bit on the performance, the difference is
not significant. More importantly, the training time improves
by several orders of magnitude.
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Table 10 Performance comparison in terms of F1,N+ and training time
(in hours) between our previous metric learning approach (Verma and
Jawahar 2012) that learns a combined metric in distance and feature
spaces (2PKNN+ML (w+v)) with our current approach that learns a
metric only in the distance space (2PKNN+ML(w)) on the Corel-5K
dataset

Features 2PKNN+ML (w+v) 2PKNN+ML (w)

F1 N+ Time F1 N+ Time

T 43.9 188 5.89 43.4 186 0.06

C 42.0 189 2.57 42.0 189 0.03

T+C 45.8 194 8.28 44.8 196 0.08

T TagProp-features, C CNN-features, T+C combined TagProp and
CNN features)
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