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Abstract— Robust action recognition under viewpoint changes
has received considerable attention recently. To this end,
self-similarity matrices (SSMs) have been found to be effective
view-invariant action descriptors. To enhance the performance of
SSM-based methods, we propose multitask linear discriminant
analysis (LDA), a novel multitask learning framework for
multiview action recognition that allows for the sharing of
discriminative SSM features among different views (i.e., tasks).
Inspired by the mathematical connection between multivariate
linear regression and LDA, we model multitask multiclass LDA
as a single optimization problem by choosing an appropriate class
indicator matrix. In particular, we propose two variants of graph-
guided multitask LDA: 1) where the graph weights specifying
view dependencies are fixed a priori and 2) where graph weights
are flexibly learnt from the training data. We evaluate the
proposed methods extensively on multiview RGB and RGBD
video data sets, and experimental results confirm that the
proposed approaches compare favorably with the state-of-the-art.

Index Terms— Multi-view action recognition, self-similarity
matrix, multi-task learning, linear discriminant analysis.

I. INTRODUCTION

HUMAN action recognition and understanding from
image and video content has attracted considerable atten-

tion in computer vision due to its critical role in surveillance,
behavior analysis, human-computer interaction, robotics and
content-based retrieval. Several solutions have been proposed
for action recognition over the years–readers may refer
to [1], [2] for extensive surveys. From the representation point
of view, the approaches can be mainly classified into methods
computing the time evolution of human silhouettes [3], action
cylinders [4], space-time shapes [5], covariance features [6]
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and local 3D patch descriptors [7]. From the feature descriptor
point of view, the various approaches can be categorized into
motion-based [8], appearance-based [9], space-time volume-
based [5], space-time interest point-based [10], and Self
Similarity Matrices-based [11].

Recently, multi-view action recognition methods have
gained in popularity. Since self-occlusion problems can be
tackled effectively by employing multiple cameras, multi-view
frameworks can achieve more robust action recognition than
monocular methods. However, as actions are typically recog-
nized based on the actor’s motion trajectories with respect to
the camera viewpoint, viewpoint changes significantly impact
action understanding. Therefore, extracting view-invariant
information is an important step in multi-view settings but
relatively few works have addressed the effect of viewpoint
changes on action recognition. Some recent approaches have
achieved view-invariant recognition of actions by transferring
features across views [13]–[15] or by using view-invariant
features [11], [16], [17].

A possible methodology for achieving view-invariant
action recognition is to compute features which are stable
across different viewpoints. Temporal self-similarity matrices
(SSMs) [11], computed from different low-level features such
as Histogram of Oriented Gradients (HOG) and Histogram of
Optical Flows (HOF), are shown to be robust descriptors for
view-invariant action recognition. However, a careful analysis
of SSMs reveals that they are also sensitive to large viewpoint-
related appearance changes. This effect can be observed
in Fig. 1, where SSMs corresponding to five views for action
sequences from the IXMAS [12] and NIXMAS [3] datasets
are shown. Although the SSMs associated to all five views
share some similarities, it is easy to note that the HOG-based
SSM corresponding to the last view (CAM5) is significantly
different from the remaining views (CAM1-CAM4) for both
datasets. To arrive at an action representation in the presence of
large view-related appearance changes, one approach is to find
those camera views in which the motion patterns for that action
are highly correlated. Multi-task learning (MTL) [18], [19],
which simultaneously learns classification/regression models
for a set of related tasks, represents an attractive solution to
this end. By learning latent relationships between tasks, MTL
typically enables the synthesis of models superior to a learner
that models each task independently.

In this paper, we present Multi-task LDA, a novel
multi-task learning framework to enhance the discriminative
power of SSMs for multi-view action recognition, and

1057-7149 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



5600 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 23, NO. 12, DECEMBER 2014

Fig. 1. Exemplar SSMs computed from HOG and HOF features for the NIXMAS [3] and IXMAS [12] datasets. Note the large discrepancy between the
SSMs corresponding to CAM 5 and others for both datasets.

demonstrate how sharing of features across views (tasks)
leads to improved recognition performance. Inspired by
the equivalence relationship between multivariate linear
regression and linear discriminant analysis (LDA) [20], we
cast multi-task multi-class LDA as a single optimization
problem by choosing an appropriate class indicator matrix, and
develop an efficient algorithm to solve it. Also, by defining a
graph reflecting prior knowledge on the similarity among
different views, the degree of relatedness of the corresponding
view features can be controlled using the proposed approach.
We describe two variants of graph-guided multi-task LDA and
evaluate their performance: (1) Multi-task sparse graph-guided
LDA, where the graph weights specifying view dependencies
are defined a priori, and (2) Multi-task flexible graph-guided
LDA where the graph weights are flexibly learned from
(or iteratively refined based on) training features.

Our experiments demonstrate how our methods can be suc-
cessfully employed for view invariant action recognition, i.e.
considering the case where images corresponding to the test
view are not available in the training data. The obtained results
also confirm that sharing features among views is indeed
beneficial for multi-view action recognition–our methods
outperform competing SSM-based approaches that do not
consider task relationships by 10% on the IXMAS dataset.
Overall, the proposed approaches achieve efficient recognition
of actions on both RGB (video) and RGBD (depth image)
data, and compare favorably with the state-of-the-art.

To summarize, the main contributions of this paper are:
• It represents one of the first works to explore a multi-task

learning framework for multi-view action recognition.
While other recent methods such as [21] also adopt MTL,
a unique aspect of our framework is that, by effectively
combining SSMs descriptors, sparsity and MTL, it easily
allows for accurate action classification on missing views,
for which no examples are available in the training data.

• The proposed approach is shown to be highly effective
and achieves improved action recognition performance

with respect to other classification methods based on
SSM descriptors. While competing works have typically
evaluated their algorithms on multi-view video data, we
also demonstrate how our framework is applicable to
multi-view depth images as in the ACT42 [22] dataset.

• The proposed multi-task LDA framework is novel, and is
modeled as a single optimization problem through the use
of a class indicator matrix. The described graph-guided
learning algorithms can be generically applied to other
computer vision tasks as well.

II. RELATED WORK

We review related work on multi-view action recognition,
linear discriminant analysis and multi-task learning.

A. Multi-View Action Recognition

Multi-view action recognition has received much attention
recently, since a multi-view setup can overcome the
problem of self-occlusions and can enable more robust
action recognition as compared to monocular methods.
Both 3D and 2D-based approaches have been proposed for
multi-view action recognition as detailed below.

Knowing the 3D scene geometry enables the adaptation
of action features from one view to another through
the use of geometric transformations. For example,
Weinland et al. [12] use 3D occupancy grids synthesized from
multiple viewpoints to model actions using an exemplar-based
HMM. Yen et al. [23] employ a 4D action feature model for
recognizing actions from arbitrary views. This model encodes
shape and motion of actors observed from multiple views,
and requires the reconstruction of 3D visual hulls of actors
at each time instant. Both approaches lead to computationally
intensive algorithms as finding the best match between
a 3D model and a 2D observation requires searching
over a large model parameter space. Weinland et al. [3]
develop a hierarchical classification method based on
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3D Histogram of Oriented Gradients (HOG) to represent
a test sequence. Robustness to occlusions and viewpoint
changes are achieved by combining training data from all
viewpoints to train hierarchical classifiers.

A successful approach to tackle the problem of viewpoint-
related appearance differences on action recognition in 2D
approaches involves the design of view-invariant features.
Rao et al. [17] present a view-invariant representation
of human actions by capturing changes in the speed and
direction of action trajectories using spatio-temporal trajectory
curvature. Parameswaran et al. [24] propose modeling actions
in terms of view-invariant canonical body poses and
trajectories in 2D invariance space, which enables recognition
of human actions from a generic view-point. Junejo et al. [11]
introduce temporal SSMs descriptors as features robust to
viewpoint changes.

Farhadi and Tabrizi [13] explicitly address correlations
between actions observed from different views. They use a
split-based representation to describe clusters of codewords in
each view. The transfer of these splits between views is learned
from multi-view action sequences. In [25], Farhadi et al.
model view as a latent parameter, and learn features that can
discriminate between both views and actions. Liu et al. [15]
use a bipartite graph to model the relationship between two
codebooks generated by k-means clustering of videos acquired
for each view. A bipartite partition is used to co-cluster two
view-dependent codebooks into shared visual-word clusters,
and a codebook composed of these shared clusters is used to
encode videos from both views. However, this approach only
exploits codebook-to-codebook correspondence at video-level,
which cannot guarantee that a pair of videos corresponding to
two different views has similar feature representations based
on the shared codebook. In addition, it uses a fusion method to
combine prediction outputs, which requires the clustering of
test videos in the target view. Zheng and Jiang [26] present an
approach to jointly learn a set of common and view-specific
dictionaries for cross-view action recognition. However, their
main focus is on transferring information from one view to
another, and not on jointly modeling the relations among
multiple views.

B. Linear Discriminant Analysis

Linear discriminant analysis (LDA) is widely used in
statistics, pattern recognition and machine learning to find a
linear combination of features which characterizes or separates
two or more classes of objects or events. This makes LDA
a very practical tool for classification and dimensionality
reduction. The optimal projection or transformation in classical
LDA is obtained by minimizing the within-class distance and
maximizing the between-class distance simultaneously, thus
achieving maximum class discrimination.

LDA has been applied successfully in many computer
vision applications such as face recognition [27] or head
pose estimation [28]. Multi-task extensions of LDA have been
proposed in [29] and [30]. However in [29], the proposed
framework is not flexible as no learning of the relationship
between tasks is conducted. In [30], the problem of designing

a multi-task LDA algorithm when the different tasks
correspond to heterogeneous feature spaces is addressed.
However, we do not consider this scenario as it is not
appropriate for our application.

C. Multi-Task Learning

Many real-world applications involve related classification/
regression tasks. Multi-task learning methods aim to simulta-
neously learn models for a set of related tasks. By learning
tasks in parallel while using a shared representation,
performance is typically improved.

Traditional MTL methods consider a single shared model,
assuming that all the tasks are related [18], [19]. However,
when some of the tasks are unrelated, this may lead to
negative transfer and the performance can be even worse than
single-task learning. Recently, more sophisticated approaches
have been proposed to counter this problem. These methods
assume some a-priori knowledge (e.g. in the form of a graph)
defining task dependencies [31] or learning task relationships
simultaneously with task-specific parameters [32]. For
example, Jalali et al. [33] assume that the data follows a dirty
model. Zhou et al. [34] prove that the clustered MTL approach
is equivalent to alternating structure optimization that assumes
the tasks share a low-dimensional structure. The approach
proposed in [35] assumes that tasks are clustered, and that
clustering structure can be inferred automatically during
learning.

Multi-task learning has received considerable attention from
the vision community, and has been successfully applied
to many problems such as image classification [36], visual
tracking [37], daily activity recognition from first-person
videos [38], image-based indoor localization [39] and head
pose classification under motion [40]–[42]. An MTL approach
to monocular action recognition is proposed in [43], where the
authors exploit relatedness of action categories to learn latent
tasks (motion patterns) shared across actions.

This paper is an extension of previous work presented
in [44], where Multi-task LDA guided by a graph with fixed
edge weights is proposed. To our knowledge, multi-view
action recognition using multi-task learning has not been
considered by other works with the exception of [21], which
is contemporaneous to ours. Also, our approach is different
with respect to [21] in the following respects: (1) While [21]
seeks to learn latent action groups, so that within-group
feature sharing is allowed but between-group feature sharing
is prohibited, we explore learning of latent and discriminative
SSM features across views; (2) A part-based action represen-
tation is used in [21], while we use the bag-of-words model
for encoding SSM features; (3) A large-margin framework
is used for LMTL formulation in [21], while we propose
LDA-based MTL, and (4) While in [21] the main focus is
multi-view action recognition, we also consider the problem
of action recognition with missing view, i.e. on a novel camera
view for which no examples are available in the training set.
Furthermore, we show action classification results on
the ACT42 multi-view depth image dataset, in addition
to traditional action video datasets. A description of the
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Fig. 2. Overview of Multi-task LDA-based multi-view action recognition. Note that the viewpoint associated to CAM5 is significantly different from the
other four views and correspondingly, the decision boundary for CAM5 is remarkably distinct from the others.

proposed Multi-task LDA framework is presented in the
following section.

III. MULTI-TASK LDA FOR MULTI-VIEW

ACTION RECOGNITION

In this section, we further discuss the motivation behind the
proposed framework and present an overview of our approach.
Then, Self-Similarity Matrix (SSM) descriptors are introduced
followed by the analysis of the equivalence between LDA
and linear regression. Finally, our multi-task LDA algorithm
and its application to the problem of view-independent action
recognition are described.

A. Motivation and Overview

Among the several view-invariant descriptors proposed
throughout the years in the context of multi-view action
recognition, SSMs have been particularly successful, mainly
due to their simplicity and robustness, even in the challenging
situation of recognition with missing views. However, since
a careful analysis of SSMs reveals that these descriptors
are sensitive to large viewpoint-related appearance changes
(Fig. 1), we propose to improve the discriminative power
of SSM features using a novel MTL approach. Our MTL
framework permits to individuate a subset of features which
truly possess the view-invariance property and must be shared
across different views, thus leading to more robust cross-
view recognition with respect to previous approaches based
on SSMs. Importantly, our method is very flexible, and relies
on a graph structure modeling the degree of similarity among
different views. Note that actions observed from neighboring
cameras may be more similar as compared to other far-away
sensors, as discussed earlier.

The proposed approach for robust view independent action
recognition is illustrated in Fig. 2. First, different types of
low-level features are extracted from videos on a per-frame
basis. The type of computed low-level features depends

on the considered data: we use Histogram of Oriented
Gradients (HOG), Histogram of Optical Flows (HOF) and
their combination to describe RGB data, while Motion
History Images (MHIs) and their variations are adopted
to encode information from depth images. Once the SSM
descriptors for these low-level features are computed, the
standard bag-of-words model is employed for encoding
features into histograms. Finally, the proposed multi-task
LDA is adopted to learn a set of linear classifiers (one for
each view), imposing the constraint that the weight vectors of
related camera views should be similar. Relatedness among
different views is modeled by a graph structure. Our approach
is described in detail in the following subsection.

B. Self-Similarity Matrix Descriptors

Junejo et. al. [11] introduced SSM descriptors as features
robust to viewpoint changes. Given a sequence of images
I = {I1, I2, . . . , IT } a SSM is a square symmetric matrix:

SSM(I) =

⎡
⎢⎢⎢⎢⎢⎣

0 e12 e13 · · · e1T

e21 0 e23 · · · e2T

e31 e32 0 · · · e3T
...

...
...

. . .
...

eT 1 eT 2 eT 3 · · · 0

⎤
⎥⎥⎥⎥⎥⎦

, (1)

where ei j = ‖fi − f j‖2 is the Euclidean distance between
low-level features fi , f j extracted at frames Ii and I j ,
respectively. Obviously, as the diagonal corresponds to com-
paring a frame to itself, it contains all zeros. As low level
features in this paper, we use HOG and HOF descriptors
on RGB frames, while MHIs are adopted in the case of
depth images. The chosen features are described in detail in
the experimental section. Once SSMs have been computed
(separate SSMs are obtained for each type of low level
features), the strategy described in [11] is adopted for calculat-
ing local descriptors. For each point on the diagonal of a single
SSM, three local descriptors are computed corresponding to
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three different diameters in the log-polar domain (28, 42 and
56 frames respectively in diameter). The bag-of-words model
is then employed to obtain the final histogram representation
of a video clip. A codebook size of 500 words is used in our
experiments.

An example of SSMs computed on a sequence extracted
from the IXMAS dataset is shown in Fig. 1. Obviously,
SSMs obtained with different low-level features are different,
since each feature captures specific properties of an action.
Moreover, SSMs are rather stable over different people
performing the same action under multiple viewpoints.
However, as noted earlier, SSMs are robust to view changes
only up to a certain extent. Therefore, in order to individuate
common features from different views, multi-task LDA
learning is proposed in this work.

C. Linear Discriminant Analysis

Linear Discriminant Analysis is a popular technique for
dimensionality reduction and classification. We consider a
dataset of N samples, T = {(xi , �i )}N

i=1, where xi ∈ IRd and
�i ∈ {1, 2, ..., k} denote respectively the feature vector and
the associated class label for the i -th sample, d is the data
dimensionality, and k the number of classes. Let (·)′ denote the
transpose operator. In discriminant analysis [45], three scatter
matrices are defined as follows:

Sw = 1

N

k∑
j=1

∑
{x∈T , x :�= j }

(x − c j )(x − c j )
′, (2)

Sb = 1

N

k∑
j=1

N j (c j − c)(c j − c)′, (3)

St = 1

N

N∑
i=1

(xi − c)(xi − c)′, (4)

where N j and c j denote the number of points and the centroid
for the j -th class, while c is the computed centroid of the
entire data. It follows from the definition that trace (Sw) and
trace (Sb) measure the within-class cohesion and between-
class separation respectively. The total scatter matrix is then
obtained as St = Sb + Sw . LDA computes a linear transfor-
mation U ∈ IRl×d, mapping the vector xi ∈ IRd to a vector
xl

i ∈ IRl , xl
i = U xi , (l < d). In the low dimensional space

resulting from the linear transformation U , the scatter matrices
become:

Sl
w = U ′SwU, Sl

b = U ′SbU, Sl
t = U ′St U. (5)

The optimal transformation U L D A is computed by solving the
following optimization problem [45]:

U L D A = max
U

trace(Sl
b(Sl

t )
−1). (6)

The matrix U L D A is represented by the eigenvectors
of S−1

t Sb corresponding to the largest k-1 eigenvalues.
In the specific case of a binary-class problems, the optimal
transformation [46] is given by:

U L D A = S+
t (c1 − c2), (7)

where c1 and c2 are the centroids of the the negative and
positive classes, respectively.

D. Linear Regression and LDA

The objective of linear regression is to learn the optimal
weight vector w ∈ IRd such that the function f (x) = x ′w
can be used to obtain a good estimate of the desired output
value �i , given as input the associated vector xi . A popular
technique for estimating w is the least squares approach, in
which the following objective function is minimized:

L(w) = 1

2

∥∥X′w − y
∥∥2

, (8)

where X = [x1, x2, . . . , xN ] is the data matrix and
y = [�1, . . . , �N ] is the vector of class labels. Considering
a binary classification problem and assuming that both the
data vectors and labels have been centered (i.e.

∑N
i xi = 0

and
∑N

i �i = 0), it follows that �i ∈ {−2N2/N, 2N1/N}
where N1 and N2 denote the number of samples from the
negative and positive classes respectively. The optimal w is
given by w = (XX′)+Xy [47]. Noticing that XX′ = N St and
Xy = 2N1 N2

N (c1 − c2) it follows that:

w = 2N1 N2

N2 S+
t (c1 − c2) = 2N1 N2

N2 U L D A, (9)

where U L D A is the optimal solution to LDA in (7). Hence
linear regression with the class labels as output values is
equivalent to LDA, as the projection in LDA is invariant to
scaling [46].

Recently, similar results have been proven for multi-class
LDA [20] showing that it is equivalent to multivariate linear
regression if an indicator matrix Ȳ ∈ IRN×k is defined as
follows:

(Ȳ)i j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
N

N j
−

√
N j

N
if �i = j

−
√

N j

N
otherwise,

(10)

where (·)i j is the element in the i -th row, j -th column of the
matrix. The optimal projection matrix W ∈ IRk×d is obtained
by solving the following optimization problem:

min
W

1

2

∥∥X′W − Ȳ
∥∥2

F , (11)

where ‖·‖F denotes the Frobenius norm. Further details about
this equivalence can be found in [20].

E. Multi-Task Linear Discriminant Analysis

In this paper, an extension of multiclass LDA [20] to a
multi-task learning setting is proposed.

1) Definition and Notation: We consider a set of R camera
views (i.e. related tasks). Each task is a multi-class classifica-
tion problem with C categories. For each task t = 1, 2, . . . , R,
a training set Tt = {(xt

n, �
t
n)}Nt

n=1 is given, where xt
n ∈ IRd

is a d-dimensional feature vector, and �t
n ∈ {1, 2, . . . , C} is

the label indicating the class membership. For each task t
we define the matrices xt ∈ IRNt ×d , xt = [xt

1, . . . , xt
Nt

]′ and
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yt ∈ IRNt ×C , with:

(yt )i j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
Nt

Nt, j
−

√
Nt, j

Nt
if �t

i = j

−
√

Nt, j

Nt
otherwise,

(12)

where Nt, j is the sample size of the j -th class in the t-th

task, Nt =
C∑

j=1
Nt, j is the total number of training samples of

all classes in the t-th task. Concatenating xt and yt of all
the R tasks, the matrices X = [x′

1, . . . , x′
R]′, X ∈ IRN×d

and Y = [y′
1, . . . , y′

R]′, Y ∈ IRN×C R are obtained, where

N =
R∑

t=1
Nt . We further define a graph which models

the similarity among different views (tasks) specifying the
edge-vertex incident matrix M, M ∈ IR

R(R−1)
2 ×C R , where:

(M)q=(i, j ),h =
⎧⎨
⎩

γi j if i = h
−γi j if j = h
0 otherwise.

Here, γi j = (
∑

i �= j
1

pq

∑
p
∑

q

∥∥xi
p − x j

q
∥∥

2)
−1, i.e., γi j is set

by calculating the inverse of the normalized Euclidean distance
of SSMs descriptors between two different views (tasks) for
the same action/class, averaged on the training data. γi j is
normalized into the interval [0, 1] and a large γi j indicates high
similarity of specific action/class between views. In practice,
the similarity between two views is defined according to the
corresponding observed data. However, other approaches are
possible as well, such as considering camera geometry to
specify γi j .

2) Proposed Approach: In our multi-task LDA approach
we propose to learn a global weight matrix U =
[u′

1, . . . , u′
R]′, U ∈ IRd×C R by solving the following optimiza-

tion problem:

min
U

�(U) = 1

2
‖(Y − XU)‖2

F + �M(U). (13)

In (13), the loss term minimizes the training errors on each
view (task) separately, while the regularization term �M(U)
ensures that related views (according to the graph speci-
fied by M) have similar classifiers. We propose two variant
approaches to multi-task LDA, corresponding to different
regularization terms �M(U). We present them in the following
subsections.

F. Multi-Task Sparse Graph Guided LDA (MT-SGG-LDA)

The intuition behind our first approach, Multi-task Sparse
Graph Guided LDA, is simple: we want to learn a projection
matrix U which optimally separates data from different classes,
is sparse (thus filtering out noisy features) and has a struc-
ture which reflects view-similarity (i.e. related views should
have similar classifiers). To achieve this goal, we propose to
solve the following optimization problem:

min
U

1

2
‖(Y − XU)‖2

F + λ1
∥∥MU′∥∥2

F + λ2 ‖U‖1, (14)

where ‖ · ‖1 denote the L1 norm, which enforces sparsity on
the learned weights matrix. In the proposed objective function

Algorithm 1 Multi-Task Sparse Graph Guided LDA

all tasks are related thanks to the graph regularization term,
and therefore knowledge from one task can be utilized by the
other tasks. Prior knowledge about the required level of sharing
feature is embedded in the learning framework through M.
To solve (14) we adopt the accelerated gradient method Fast
Iterative Shrinkage-Thresholding Algorithm (FISTA) [48], as
described in Algorithm 1.

1) Optimization: The objective function in (14) can be
decomposed into two parts, i.e. a smooth term �(·) and a
non smooth term �(·),

�(U) = 1

2

∥∥∥(YY′)−1/2(Y − XU)
∥∥∥

2

F
+ λ1

∥∥MU′∥∥2
F

�(U) = λ2 ‖U‖1.

The term (YY′)−1/2 has been integrated as a normalization
factor, to compensate for the different number of samples per
class. FISTA solves the optimization problems in the form
min

U
�(U)+�(U), where �(U) is convex and smooth, �(U) is

convex but non-smooth. In each FISTA iteration, a proximal
step is computed [48]:

min
U

∥∥∥U − Û
∥∥∥2

F
+ 2

Lk
�(U),

where Û = Ũk − 1
Lk

∇�(Ũk), Ũk is the current iterate and Lk

is a stepsize found by line search. To solve the proximal step,
the soft-thresholding operator �λ(x) = sign(x) max(|x |−λ, 0)
is adopted [49].

G. Multi-Task Flexible Graph Guided LDA (MT-FGG-LDA)

The second multi-task LDA approach we propose also
develops from (13), but instead of fixing the graph weights
modeling task dependencies as in (14), it learns them from
training data. Intuitively, we expect that this increased flexibil-
ity leads to improvements in terms of classification accuracy.
We define U = C + S, C, S ∈ IRd×C R , C = [c′

1, . . . , c′
R]′,

S = [s′
1, . . . , s′

R ]′ i.e., we consider the weight matrix as the
matrix obtained on summing two terms, the matrix C modeling
common features among tasks (views), and the matrix S which
accounts for task/view-specific features. We formulate the
following optimization problem:

min
C,S

‖Y − X(C + S)‖2
F + λ�(C, S), (15)
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Algorithm 2 Multi-Task Flexible Graph Guided LDA

where �(·) is an appropriate regularization term defined as:

�(C, S) = ‖C‖2
F + ‖S‖2

F + λc
∥∥MC′∥∥

1.

In the regularization term, similarly to what was proposed
for Multi-task Sparse Graph Guided LDA, the L1 norm
regularizer imposes the weights ct of related tasks to be
close together. However, with respect to (14), they become
identical as λc → ∞, leading to task clusters. Importantly
this effect is feature-specific, i.e., the cluster structure can vary
from feature to feature, thus taking into account the different
discriminative power of features. Moreover, ‖C‖2

F regulates
model complexity and ‖S‖2

F penalizes large deviation of ct

from ut ∀t . The procedure we propose to solve (15) is outlined
in Algorithm 2.

1) Optimization: To apply FISTA to our optimization
problem we define:

�(C, S) = ‖Y − X(C + S)‖2
F

�(C, S) = λ‖S‖2
F + λ‖C‖2

F + λλc
∥∥MC′∥∥

1.

The proximal step amounts to solving the following:

min
C,S

∥∥∥C − Ĉ
∥∥∥2

F
+

∥∥∥S − Ŝ
∥∥∥2

F

+λ̂c
∥∥MC′∥∥

1 + λ̂ ‖C‖2
F + λ̂ ‖S‖2

F , (16)

where λ̂ = 2λ/Lk and λ̂c = 2λλc/Lk , Ŝ = S − 2XT (XS − Y)
and Ĉ = C − 2XT (XC − Y). To solve (16), we consider C, S
separately. While solving with respect to S is straightforward,
solving with respect to C is more challenging due to the
presence of the L1 norm. However, since in our approach each

feature dimension is considered independently, the update of
the weight vectors C can be made very efficient by solving d
separate optimization problems (one for each row ci of the
matrix C) as:

min
ci

∥∥ci − ĉi
∥∥2

2 + λ̂c
∥∥Mci

∥∥
1 + λ̂

∥∥ci
∥∥2

2.

In this paper we propose to apply the augmented Lagrangian
multipliers approach [49], and consider the equivalent opti-
mization problem (in the following the superscripts are
removed for sake of clarity):

minc,q,z
∥∥c − ĉ

∥∥2
2 + λ̂c ‖q‖1 + λ̂ ‖c‖2

2 + zT (Mc − q)

+ρ

2
‖Mc − q‖2

2 , (17)

with ρ being the dual update step-length [49]. Three steps
are alternated (see Algorithm 2), for solving (17) with respect
to c, q and z. Solving with respect to c, while keeping
q, z fixed, implies solving a linear system with Cholesky
factorization Ack+1 = bk where A = ρMT M + (2 + 2λ̂c)I
and bk = ρMT qk − MT zk + 2ĉ. Solving with respect to q
produces a closed form solution, obtained by applying the
soft-thresholding operator. The update step for solving with
respect to z is straightforward.

IV. EXPERIMENTAL RESULTS

In this section, we assess the proposed MT-SGG-LDA
and MT-FGG-LDA approaches on three publicly available
multi-view action recognition datasets, namely IXMAS [12],
NIXMAS [3] and ACT42 [22].

A. Datasets

We consider three different datasets. The IXMAS
dataset [12] consists of 12 action classes (e.g. check watch,
cross arms, scratch head, sit down, get up, turn around, walk,
wave, punch, kick, point and pick up). Each action is executed
three times by 12 subjects and is recorded with five cameras
observing the subjects from very different perspectives. The
frame rate is 23 fps and the frame size 390×291 pixels.

The NIXMAS dataset [3] contains new videos showing the
same actions as in the IXMAS dataset. The dataset is recorded
with different actors, cameras, and viewpoints, and about 2/3
of the videos have objects which partially occlude the actors.
Overall, it contains 1148 sequences.

The ACT42 dataset [22] contains RGB+depth video
sequences depicting 14 representative daily actions. The con-
sidered daily actions are: collapse, drink, make phone call,
mop floor, pick up, put on, read book, sit down, sit up, stumble,
take off, throw away, twist open and wipe clean.

Fig.3 shows some sample frames extracted from the
IXMAS, NIXMAS and ACT42 datasets observed from
different camera viewpoints. In our experiments, we use all
of the IXMAS and NIXMAS data, and a subset (videos
corresponding to 10 actors) of the ACT42 data.

B. Feature Representation

As discussed in Section III-B, our approach is based on
SSM descriptors computed using low-level features extracted
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Fig. 3. Sample frames extracted from the three considered datasets.
A majority of the action sequences in the NIXMAS dataset involve occlusions
due to other scene objects. Figure is best viewed in color.

from individual frames. To obtain features from RGB image
sequences, we used HOG and HOF features [7] in the case
of IXMAS and NIXMAS datasets, while only HOG features
were used for the ACT 42 dataset. Moreover, in case of the
ACT 42 dataset, MHIs [50] were used to compute features on
depth images. In an MHI, each pixel intensity is a function
of the motion history at that location, and a brighter pixel
corresponds to more recent motion. Denoting by D(x, y, t),
the depth value corresponding to a pixel at location x, y and
at time t , the MHI is computed as:

H D
τ (x, y, t) =

{
τ, i f |D(x, y, t) − D(x, y, t − 1)| > δDth

max(0, H D
τ (x, y, t − 1) − 1), otherwi se

where τ is the longest time window that the system considers
(τ is set equal to the number of video frames in our experi-
ments) and δDth is the threshold value for generating the mask
for a motion region.

Moreover, in order to benefit to the highest degree from
the depth information, two other MHI descriptors, namely
forward-MHIs H f D

τ (x, y, t) (encoding information about the
increase of depth) and backward-MHIs H bD

τ (x, y, t) (decrease
of depth) [51], are defined:

H f D
τ (x, y, t) =

{
τ, i f D(x, y, t) − D(x, y, t − 1) > δDth

max(0, H f D
τ (x, y, t − 1) −1), otherwi se

H bD
τ (x, y, t) =

{
τ, i f D(x, y, t) − D(x, y, t − 1) < −δDth

max(0, H bD
τ (x, y, t − 1) −1), otherwi se

To represent each video of the ACT42 dataset, we computed
separate SSM descriptors for HOG, MHI, forward-MHI and
backward-MHI features and, applying a bag-of words model
(using 500 words), we constructed a 2000-bin histogram
corresponding to the final descriptor. In Fig.4, the extracted
MHI, forward-MHI and backward-MHI features and the cor-
responding SSM descriptors are shown.

Fig. 4. ACT42 dataset and different types of features extracted: (from top to
bottom) original RGB frames, Motion History Images, forward Motion His-
tory Images, backward Motion History Images, SSM descriptors, respectively.

C. Experimental Setup

A leave-one-user-out strategy was employed in our classi-
fication experiments: videos of one actor were selected for
testing, while videos of the remaining actors were used as
training data. For all the methods, the optimal values of the
regularization parameters were determined by testing values
in the interval [2−6, 2−5, . . . , 26] on a separate validation
set. Mean action recognition accuracies are reported for all
experiments. We evaluated the effectiveness of our algorithms
in two cases:

• Multi-View Feature Sharing Benefit: Training samples
from all camera views were used in this setting.
According to the MTL theory, all correlated tasks
are learned together. This should consequently boost
each individual task’s performance. Specifically, once
U is learned for MT-SGG-LDA and C, S are learned
for MT-FGG-LDA, the test sample xtest is projected
into C dimensional output space through the operation
x ′

testut for MT-SGG-LDA, and through x ′
test(ct + st ) for

MT-SGG-LDA using ut = ct +st corresponding to the test
view. The class label of the test sample is assigned using
k-nearest neighbor classification (k = 5 in our
experiments).

• View-Invariant Recognition Benefit: Images correspond-
ing to one camera view were missing in the training
data, and we used the model learned with images
from other views to perform prediction on the missing
view. In practice, the test sample xtest is projected into
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TABLE I

MULTI-VIEW ACTION RECOGNITION ACCURACY: COMPARING SINGLE

AND MULTI-TASK LEARNING ON THE IXMAS DATASET

TABLE II

MULTI-VIEW ACTION RECOGNITION ACCURACY: COMPARING SINGLE

AND MULTI-TASK LEARNING ON THE NIXMAS DATASET

a (R − 1)C dimensional output space through the x ′
testU

operation for MT-SGG-LDA and through x ′
test(C + S) for

MT-FGG-LDA since only R − 1 views are considered in
this setting. The label of the test sample is again assigned
using k-nearest neighbor classification.

D. Quantitative Evaluation

A first set of experiments was devoted to demonstrate
the advantage of using an MTL approach for multi-view
action recognition. To this end, we compared the proposed
methods with a single SVM classifier [11], and the �2,1-
norm multi-task learning approach [18] which assumes all
the tasks to be related (no graph explicitly specifying task
relationships is considered). In the SVM experiments, an RBF
kernel was chosen and the LIBSVM1 software package was
used. A publicly available code2 was used for �2,1 multi-task
learning.

Table 1 shows the comparison results for the IXMAS
dataset. Evidently, sharing similarity information among
different views using MTL is beneficial as the proposed
approaches outperform SVM by at least 10%. Moreover, the
fact that graph-guided MTL outperforms �2,1-norm MTL
confirms the benefit of modeling view similarity using a
graph, as against assuming that features across all views
are related. As noted earlier, the viewpoint corresponding to
CAM5 is significantly different from the other four views.
However, even in this case, MTLDA is greatly beneficial as
action recognition accuracy improves from 69.3% to 76-79%,
implying that CAM5-view features are ‘enhanced’ with
discriminative information from the other views. Overall,
these results demonstrate the benefit of feature sharing among
different views achieved by our MTL framework.

Similar results were also obtained for the other two
datasets as shown in Tables 2 and 3. Comparing the two
proposed approaches, we observe similar performances with
MT-SGG-LDA and MT-FGG-LDA on the RGBD ACT42

1http://www.csie.ntu.edu.tw/∼cjlin/libsvm/
2http://ttic.uchicago.edu/∼argyriou/code/index.html

TABLE III

MULTI-VIEW ACTION RECOGNITION ACCURACY: COMPARING SINGLE

AND MULTI-TASK LEARNING ON THE ACT42 DATASET

dataset, while superior accuracies are achieved using the latter
on IXMAS and NIXMAS video data. We believe that the
superiority of MT-FGG-LDA on video data is due to the
greater flexibility of the model achieved with graph-based
learning. However, this improvement is not observed for
RGBD data, possibly because of the different features used
in this case and/or due to the noisy nature of depth images.
More specifically, with the leave-one-actor-out classification
procedure adopted, we found that MT-FGG-LDA outperforms
MT-SGG-LDA for 11 out of 12 targets on IXMAS, and for
all targets on NIXMAS. In contrast, similar accuracies were
observed over all targets using the two approaches on the
ACT42 dataset. Fig. 6(a-b) also reports the performance at
varying k in the k-nearest neighbor classification respectively
for MT-SGG-LDA and MT-FGG-LDA.

We also evaluated the effectiveness of different features–
Fig. 5(a-b) show results on IXMAS and NIXMAS videos
obtained using SSM descriptors computed with HOG, HOF
and HOG+HOF features. As expected, the best performance
on RGB video data is achieved with the combination of HOG
and HOF features. For the RGBD ACT42 dataset, combining
HOG and MHI features produces highest recognition accu-
racy (Fig. 5(c)), implying that having access to both color
and depth information improves multi-view action recognition
performance. This is in accordance with the findings in [22],
where different features extending LBP descriptors to depth
images are employed for action recognition.

To demonstrate that our SSM-based MTL framework is
generalizable in terms of features, we also report the perfor-
mance obtained with dense trajectories [52] on IXMAS and
NIXMAS videos (Fig. 5(a-b)). With trajectory features, we
observe a further improvement in recognition accuracy using
MT-SGG-LDA on the IXMAS dataset, while the improvement
is modest for NIXMAS. As clearly seen from Fig. 5, there is
further scope for improving action recognition performance
with our MTL framework using more sophisticated features.
However, since the primary focus of this paper is to show
the advantages of combining MTL with SSMs, we did not
further analyze the impact of low-level features on recog-
nition performance, and leave this investigation for future
research.

Fig. 7 shows the confusion matrices obtained with
MT-SGG-LDA for the multi-view feature sharing experiments
on the IXMAS, NIXMAS, ACT42 datasets, respectively.
By observing the matrices for the IXMAS and NIXMAS
datasets, it is interesting to notice that for some actions such
as ‘get up’, ‘pick up’ and ‘punch’, our method achieves very



5608 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 23, NO. 12, DECEMBER 2014

Fig. 5. Recognition accuracy with different SSM features on the (a) IXMAS, (b) NIXMAS and (c) ACT42 datasets.

TABLE IV

MULTI-VIEW ACTION RECOGNITION ACCURACY: COMPARISON

OF DIFFERENT METHODS ON IXMAS DATASET

high recognition accuracies. Even for some challenging actions
(e.g., ‘point’, ‘check watch’ and ‘wave’) having small and
ambiguous motions, our method still produces reasonable and
promising results.

We also compared the proposed methods with other action
recognition algorithms which are not based on SSMs. The
results of such comparison on the IXMAS dataset are shown
in Table 4. Our approach achieves higher recognition perfor-
mance, in terms of both single-view and (average) multi-view
accuracies, as compared to most previous methods. While the
approaches proposed in [16], [21], and [55] achieve higher
recognition as compared to our methods, they suffer from other
limitations. The algorithm in [55] is based on latent kernelized
structural SVM which is intractable for inference on large-
scale datasets. The feature extraction phase of the algorithm
in [16] is computationally demanding. Differently, our method
is computationally efficient and also easy to implement. It is
particularly interesting to compare our approach with [21], as
this is also based on multi-task learning. The best performance
reported in [21] is achieved by combining MTL with a feature
representation which takes into account the layout of body
parts. This representation is very powerful and generally
superior to the bag-of-words approach, which we adopt in
this paper. However, if the parts-based representation is not
used, the accuracy of [21] degrades (from 0.951 drops to
0.809 as stated in their work) to a value lower than ours,
thus demonstrating the effectiveness of our proposed MT-LDA
approach.

Fig. 6. Performance at varying k for (a) MT-SGG-LDA and
(b) MT-FGG-LDA

TABLE V

MULTI-VIEW ACTION RECOGNITION ACCURACY: COMPARISON

OF DIFFERENT METHODS ON NIXMAS DATASET

More generally, an accurate comparison between our
method and [21] would require careful analysis of the impact
of different features. However, we believe that both our
work and [21] clearly demonstrate the advantages of multi-
task learning over single-task methods for multi-view action
recognition. Moreover, as confirmed by Tables 1-3 and the
last two rows of Table 4, assuming that all views are related
(i.e. g = 1 as opposite to g = 3 in [21]) is not optimal,
and more flexible algorithms which model more accurately
the relations among multiple views are required. This further
confirms the importance of the graph structure employed in
this work. Finally, we should point out that [21] performs very
poorly in the missing view setting (see Fig.4 in [21]) while
our approach naturally extends to this setting as discussed
below. Similar observations can be made observing the results
in Table 5, which presents a comparison of the different
methods on the NIXMAS dataset. Corresponding results are
not reported for the ACT42 dataset as the set-up used for the
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Fig. 7. Confusion matrices (MT-SGG-LDA) on the (a) IXMAS, (b) NIXMAS and (c) ACT42 datasets.

Fig. 8. Cross-view action recognition accuracy: training is performed with one view missing on (a) IXMAS, (b) NIXMAS, (c) ACT42 datasets.

experiments in [22] cannot be exactly reproduced (the videos
of an unspecified subset of actors are used for evaluation
in [22]).

Finally, to demonstrate the benefits of our approach
on view-invariant action recognition, we evaluated its
performance when one view was missing in the training
data. Results on the IXMAS, NIXMAS and ACT42 datasets
are shown in Fig.8(a), (b) and (c) respectively. Although
there is some performance drop compared to the situation
where all camera views are available in the training phase,
our approach still achieves better performance than the
single-task SVM and �2,1 multi-task learning methods. The
recognition accuracies of both our approaches are similar,
with MT-SGG-LDA outperforming MT-FGG-LDA on the
ACT42 dataset. This may be due to the importance of sparsity
when the feature dimensionality increases.

V. CONCLUSIONS

In this paper, we propose a multi-task extension of multi-
class LDA to effectively improve SSM-based multi-view
action recognition. In particular, we propose two variants of
graph-guided multi-task LDA: (i) where the graph weights
specifying view dependencies are fixed a priori and (ii) where
graph weights are flexibly learnt from the training data. The
intuition is that multi-task learning can share view-invariant
SSM features across different views for better multi-view
action recognition. Extensive experiments on the IXMAS,

NIXMAS and ACT42 datasets demonstrate the superior per-
formance of our method compared to other SSM-based state-
of-the-art methods.

Overall, the proposed multi-task LDA solutions are novel
in the context of view-invariant action recognition, which is
a relevant and important research problem in applications
such as human behaviour understanding and surveillance.
Possible future works include (i) the integration of other
view-invariant features in combination with SSM descriptors;
(ii) the investigation of a different strategy for graph construc-
tion based on camera geometry information; and (iii) the use
of deep structures instead of a shallow, single-layer model
for the considered problem, since deep learning has achieved
considerable success in solving many computer vision and
image processing problems.
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