Interactive Video Manipulation using Object
Trajectories and Scene Backgrounds

Rajvi Shah and P. J. Narayanan

Abstract—Traditional video editing interfaces model and rep-
resent videos as a collection of frames against a timeline, which
makes object-centric manipulation of videos a laborious task.
We enable simple and meaningful interaction for object-centric
navigation and manipulation of long shot videos, by introduc-
ing operators on three high-level video semantics: background
mosaics, object motions, and camera motions. We estimate the
scene background and represent the object motion using 3D
space-time trajectories. We use the 3D object trajectories as
basic interaction elements and define several object and camera
operations as simple and intuitive curve manipulations. These
allow users to perform various video object temporal manipula-
tions by interactively manipulating the object trajectories. The
camera operations model the camera as a movable and scalable
aperture and allow the users to simulate pan, tilt, and zoom
effects by creating new camera trajectories. With several example
compositions we demonstrate that our representation and oper-
ations allow users to simply and interactively perform numerous
seemingly complex, high-level video manipulation tasks.

Index Terms—Object-based Video Interaction, Video Naviga-
tion, Video Manipulation, Video Mosaicing, Interactive Tech-
niques.

I. INTRODUCTION

With the ubiquity of video-capture devices and social media
platforms, there is an exponential rise in popularity of user
generated videos, creating an immediate need for simple,
effective, and high-level video manipulation tools for amateur
users. Enhancement or manipulation of captured images is
popular among home users due to the availability of numerous
easy-to-use photo editing utilities such as Instagram, Picasa,
and Windows Photo Gallery. These tools provide advanced
features such as one touch beautification, artistic effect fil-
ters, photo retouching, photo fusion, and creating wide angle
panoramas. In comparison, video manipulation is less popular
among common users due to the lack of easy-to-use yet
powerful video editing software.

Basic video editing platforms for home-users are simple
and intuitive, but these tools provide only limited functionality
such as to split or merge videos, or to add captions and audio.
Though there has been significant advancement in computer
vision algorithms for video understanding and processing,
the use of these techniques has been limited to only high-
end video post-production software. Such professional video
editing platforms are rich in functionality, but demand high

The authors are with the Center for Visual Information Technology,
International Institute of Information Technology, Hyderabad 500032, India
(e-mail: rajvi.shah@research.iiit.ac.in; pjn@iiit.ac.in).

Copyright (c) 2013 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending an email to pubs-permissions @ieee.org.

technical expertise for use. A naive user is easily discouraged
by complex or cumbersome interactions.

Moreover, most video editing interfaces adopt frame-time
semantics for video representation, even though a video is
perceived by the viewer with more meaningful semantics such
as objects, actions, events, and interactions. Though the frame-
time model is best suited for passive playback and media
synchronization tasks, the discrepancy between perception and
representation makes object-centric manipulation of videos an
unnatural and tedious experience. We wish to improve the
usability of video manipulation interfaces by using computer
vision techniques.

Previously, we proposed an interface for simple and intuitive
navigation and manipulation of video objects based on object
trajectories [1]. We demonstrated various applications of this
interface, including object synchronization, saliency magnifi-
cation, visual effects, and composite video creation. However,
the background estimation pre-processing could only model
fixed cameras in long shot videos. In this paper, we generalize
the concepts to also handle in-plane camera motion in long
shot videos.

In cinematographic terms, a long shot is defined as a
continuous camera shot taken at some distance from the
subjects so that they are seen in full, within their surrounding
environment. Many amateur videos can be categorized as
long shot videos, such as sports or art performance videos.
However, most amateur long shot videos have significant
camera motion, either intended or induced due to hand shake.
Hence, generalizing our representation to model moving cam-
era videos significantly improves the scope and applicability of
the previous work. Moreover, in this paper, we introduce novel
camera manipulation operations. These operations augment the
previously proposed trajectory-based interactions, increasing
the scope of interaction. We unify these contributions with the
previous work and coherently describe the proposed object-
centric representation and interactions.

Our proposed representation models long shot videos using
three high-level video semantics: scene background, objects,
and camera. [Figure 1| shows an outline of our framework. We
estimate the camera motion, construct a static scene back-
ground, and segment the moving objects using background
subtraction. We represent the object trajectories against the
scene background in a 3D space-time Interaction Grid, and
define a set of interactive operations that allow users to
perform a number of object and camera manipulation tasks
in a simple and intuitive manner. Users can visualize the
resulting spatial occupancy and object overlap in a separate
3D space-time Visualization Grid. shows the spatio-

Background
Estimation o

| Foreground
Segmentation |

Input Video

Pre-processing

Trajectory
Estimation

Interactive
Operations

—

Composition

Output Video

Fig. 1: Block diagram showing the main stages of our framework.

Fig. 2: Left: Volumetric representation of the video objects
against the scene background. Right: Interaction and visualiza-
tion grids, showing the object trajectories and object volumes
in spatio-temporal 3D plots.

temporal video volume with the object tubes on the left and
the Interaction and Visualization Grids on the right.

The proposed representation and operations replace complex
user input elements, such as parameter specification dialogs
and sliders, by interactive curve manipulation operations like
select, break, join, move, resize, erase, copy, and paste. Most
home-office users are already familiar with similar operations,
making the interactions intuitive. Object operations allow the
users to retime, reorder, remove, revert or replicate video
objects independently. Camera operations allow users to create
new camera trajectories to alter camera path, tilt, and zoom.
In combination, object and camera operations allow users to
perform high-level manipulations in a simple and interactive
manner. Our key contributions are:

1) A novel interface using object trajectories as basic inter-
action elements, and the translation of common video ma-
nipulation tasks to visually meaningful curve manipulation
operations. To the best of our knowledge, ours is the first
work which explicitly uses object trajectories as user input
elements for video manipulation tasks.

2) A semi-automatic framework for building the trajectory-
based representation for long shot videos.

3) Example compositions created using the proposed opera-
tions on several amateur long shot videos. These validate
the proposed representation and interactions.

overviews prior work on object-centric ap-
proaches for video related tasks. discusses our
video representation and explains the required pre-processing.
explains the proposed interactions and operations
for object and camera manipulations. gives several
demonstrations of example video compositions.

discusses the limitations of the current approach and future

extensions. Finally, concludes this paper.

II. PREVIOUS WORK
A. Video Navigation

Typical video browsing interfaces have a single control
mechanism for video time manipulation: the timeline slider.
Users can browse the video only in time, by moving the slider
to a specific time. Previously, efforts were made to use motion
information to improve interaction for direct video browsing.
Satou et al. [2] identified the shortcomings of the timeline
slider for video navigation, and introduced CyberCoaster, a
polygonal line shaped spatio-temporal slider, to represent time
in space for improved interactive video playback. These polyg-
onal line sliders represent object motion trajectories and allow
users to navigate the video by the objects within. CyberCoaster
is an interesting interaction design, but it requires manual
annotation to specify object motion which makes it unsuitable
for practical applications.

Similar ideas were developed into prototype players for
interactive video browsing [3| 4] 5 6. Unlike CyberCoaster,
these systems employ automatic motion analysis algorithms.
This allows users to navigate the video by dragging the object
along its trajectory on the video surface, providing direct
manipulation interaction. These interfaces do not alter the
content of the videos, but instead display the corresponding
frame based on the spatial position of the object. This creates
the illusion that the dragging action is moving the object in
the video.

Dragicevic et al. [3]] developed a pixel-level direct manipu-
lation interface DimP which employs sparse SIFT feature-flow
[7] for motion estimation. They deduced per-pixel flow from
the sparse feature-flow using nearest-neighbor interpolation.
The motion trajectory through a pixel in a video frame could
then be built by accumulating flows forward and backward in
time. This interface works well on high-quality videos with
large continuous motions.

Karrer et al. [4] developed a similar direct manipulation
interface for in-scene video navigation — DRAGON. Unlike
DimP, DRAGON employs the highly-accurate dense optical
flow algorithm proposed by [8]] for pixel-wise motion estima-
tion. Hence, DRAGON could capture small motions as well.
However, dense optical flow computation is much slower than
feature flow computation. The speed limitation of DRAGON
was addressed by Wittenhagen [9] in an enhanced interface
called DragonEye. For real-time performance, DragonEye
employs a GPU implementation of SIFT feature extraction,
and uses KLT tracking [10] for point tracking. It also uses
CAMShift (Continuous Adaptive Mean Shift) [[11] on color

histograms as a secondary tracking algorithm. In recent work,
Karrer et al. [12] analyzed the problem of temporal ambigui-
ties in direct manipulation navigation interfaces caused by self-
occluding object trajectories and proposed methods to solve it.

Kimber et al. [5] presented a video navigation interface
specifically for surveillance videos called Trailblazing, which
allows object-level interaction as opposed to pixel-level in-
teraction. The system employs background subtraction for
object detection and tracking as explained in [13] to extract
object motion trajectories in a fixed camera environment.
This system also demonstrated a camera-view to floor-plan
mapping of object trajectories for a multi-camera surveillance
environment. Users can scrub the object trajectories on the
video surface or on the floor plan to navigate the footage.

The focus of all these systems is to provide a more natural
browsing experience using direct manipulation interaction and
not to change or manipulate the actual content of the video.
Our work focusses on both the navigation and manipulation
aspects of video interaction.

Goldman et al. [6] proposed an extended framework for
video object navigation, annotation, and composition. They
used motion trajectories to enable scrubbing for navigation and
manipulation tasks, such as attaching annotations to moving
objects and compositing a desired still frame from the video.
Their system computes dense motion at the particle level using
the tracking approach of Sand and Teller [14], which allows
a detailed, per-pixel interaction. Though this system allows
limited composition tasks, such as creating re-timed still frame
compositions by dragging objects to the desired positions, it
does not allow the creation of an arbitrary re-timed video.
Our interactions are a superset of [6] as we also allow the
combination of multiple temporal effects and interactive video
object compositing. Also, particle video computation is an
expensive operation. We avoid this and compute only object-
level motions, which works well for object-level manipulation
in long shot videos.

Recently, Walther-Franks et al. [15] proposed a direct
manipulation interface for performance timing of keyframe
animations which draws similarities to the video navigation
systems discussed above and also to the video retiming oper-
ation proposed in our work.

B. Video Visualization and Summarization

Present day interfaces typically represent video using single-
frame thumbnails, which only depicts a single time instance
of the action in the video. Viewing or exploring a video
is a time-consuming process. Many approaches have been
proposed in literature for efficient video visualization and
summarization. Though the literature in this area is vast,
we discuss some of the object-based approaches, which use
similar video representations to our framework.

Daniel and Chen [16] and Nguyen et al. [17] proposed a
3D-volume based representation for visualization and sum-
marization of video data. These methods extract meaningful
information from the videos by analyzing voxel activity and
employ volume-rendering techniques for effective visualiza-
tion and summarization of active video information in 3D.

Irani and Anandan [18] proposed a mosaic-based represen-
tation for video visualization which conveys dynamic informa-
tion and allows for direct and rapid access to the information of
interest. They demonstrated applications of this representation
for stroboscopic video summarization, rapid object indexing,
and object annotation.

Goldman et al. [19] proposed a video storyboarding frame-
work for video visualization. Storyboard is an iconographic
representation used in film production to describe a video
shot. This framework represents a video shot by a mosaic-like
static image along with iconic annotations (text and arrows)
describing object and camera motions in the scene.

Many methods have been proposed for producing synopsis
videos using object-activity-based saliency models [20} 21} 22,
23]]. A synopsis video is more compact than the original video
with minimal or no loss of presented activity. Rav-Acha et al.
[20] and Pritch et al. [21] posed video synopsis as an energy-
minimization problem to maximize spatio-temporal activity.
This formulation first labels each pixel in the video as active or
inactive using background subtraction. Background pixels are
marked as inactive and moving foreground pixels are marked
as active. The energy formulation models the loss in activity
(foreground pixels). Finally, iterative graph-cut techniques [24]]
are used to minimize the energy to produce a synopsis video.

Correa and Ma [23|] also proposed a technique to create
stroboscopic narratives by video alignment and object segmen-
tation. They further blended two mosaics corresponding to two
video shots [25]] to produce long tapestry-like composite video
narratives. Kang et al. [22] proposed a formulation to combine
multiple video clips into a single montage video which is
compact in both space and time. They used background
subtraction to model the saliency of pixels and used first-fit
and graph-cut algorithms to maximize overall saliency.

Our system shares some fundamental components with
these systems, such as mosaicing and background subtrac-
tion. However, the primary focus and contribution of this
paper is not mosaicing or background subtraction itself, but
our overall video representation and object interactions. The
papers discussed above focused on producing compact video
representations for visualization or for automatic synopsis
applications. On the contrary, we create an object-trajectory-
based representation and give creative freedom to the user.
Our proposed interactive operations allow the users to perform
various object and camera manipulations and combine them
in any order to create composite videos, of which a synopsis
video could be one such possible composite.

III. VIDEO REPRESENTATION

We represent a long shot video using a static scene back-
ground and object trajectories. This video representation re-
quires estimating a clean background, segmenting the moving
objects, and estimating the object trajectories. We explain
the pre-processing required for these tasks in the following
subsections.

A. Background Reconstruction

Reconstructing a clean background image in the presence
of moving objects is a difficult task. It is particularly more

challenging when the camera is also moving. Many automatic
algorithms have been proposed for robust modeling of scene
backgrounds for fixed cameras [26]. However, these tech-
niques typically fail to model moving camera videos.

Many long shot videos with interesting action, such as
sports or dance, have significant camera motion as the camera
operator tends to follow a moving target. Hence, it is not
sufficient to model only fixed camera videos for these appli-
cation scenarios. In the following subsections, we explain our
approach for background estimation of both fixed and moving
cameras.

1) Estimating background in fixed camera videos: For fixed
cameras, we use the adaptive codebook-based background
modeling algorithm proposed by Kim et al. [27]. This al-
gorithm builds per-pixel codebooks for encoding intensity
variations at each pixel in the video frame. A codebook
is made up of codewords (boxes) which represent ranges
of intensity values. These codewords grow to cover all the
intensity values occuring at a given pixel. These values may
correspond to background, foreground or noise. At this stage,
the codebook is called a fat codebook.

The fat codebook is then refined in a temporal filtering
step by separating the codewords contributed by the moving
foreground objects from the true background codewords. A
true background pixel value typically recurs within a bounded
period. If a codeword does not recur within a bounded
period (heuristically determined) during the training, then it
is assumed that it was contributed by a moving foreground
and is removed from the codebook in the temporal filtering
step.

The filtered codebook corresponds to the background model.
This codebook is used to classify pixels as foreground or
background in all the training frames using a simple rule:
if a pixel value is contained in the codebook then it is a
background pixel; otherwise, it is a foreground pixel. Finally,
to create a single static background image from all frames,
we take the median of all background classifications at each
pixel.

2) Estimating background in moving camera videos: Con-
sider the video frames shown in Figure [3a] These frames are
taken from a moving camera performance video. The per-pixel
codebook-based algorithm cannot model such a video, since
the pixels across the frames do not correspond directly. A
frame at any point in time offers a limited field-of-view of
the scene background. We use image mosaicing to combine
these frames and reconstruct an extended field-of-view of the
complete scene background. Given a complete representation
of the background scene, it is possible to create an extended
field-of-view video by mapping each of the original frames
to the reconstructed background frame. This extended field-
of-view video is free from any camera motion. This motion-
compensated video can then be treated as a fixed-camera
video for further processing and trajectory based interaction. In
the remainder of this section we will discuss the underlying
camera motion model, necessary assumptions, and required
processing steps for mosaic-based background modeling in
moving camera videos.

a) Motion Model: The projection of the 3D world onto
a 2D image plane can be defined by a projective transforma-
tion. In a video, as the camera position changes with time,
the parameters of underlying projective transformation also
change. Under specific assumptions to be discussed later,
it is possible to recover the 2D projective transformation
that relates two frames captured from two different camera
positions. This transformation also describes the underlying
camera motion between two frames, and is commonly referred
to as a homographic transformation or homography.

If p = (x,y,w) and p’ = (2/,y’,w’) are homogeneous
coordinates of two corresponding points in two frames related
by a 2D projective transformation then p and p’ are related by
the following equations, where H represents the homography.

p'=Hp (1)
x! hir hi2 his T
y'| = |har hoe hos| |y)
w' hai1 hza 1 w

b) Assumptions: We make the following assumptions to
describe the camera motion using homographies and to model
the scene background using a static mosaic:

1) The captured scene is distant from the camera. This
assumption holds true for many long shot videos.

2) The camera translation is negligible compared to the
scene-to-camera distance. This assumption holds true
for videos with a relatively stationary vantage point.
This restriction on translation is relaxed for truly planar
backgrounds.

3) The scene background is stationary and non-cluttered.
This is required to be able to produce a clean static
background mosaic.

Many casually-captured long shot videos such as stage
performance videos or sports videos satisfy these assumptions.
Hence, it is possible to represent the camera motion in
these videos by a series of frame-to-frame homographies and
reconstruct the scene background as a planar mosaic.

¢) Background Mosaicing: Mosaicing is a well-explored
problem in computer vision literature [28, 29]. Most ap-
proaches consider the general problem of constructing a seam-
less mosaic from a collection of images. These approaches
can be extended to videos by providing every frame of the
video as input to the mosaicing system; however, this is largely
unnecessary due to high amount of temporal redundancy in a
video. Additionally, moving objects in the video will create
ghosting artifacts in the mosaic if all frames are used. We
overcome these problems with an approximate frame overlap
key-frame selection and an interactive object removal step. The
complete procedure for key-frame selection, object removal,
and mosaicing is explained here step-by-step:

i) Feature Extraction: We extract SIFT feature points and de-
scriptors [[7] from the video frames. While the background
mosaic construction uses only a subset of the video frames,
we extract features from all frames as we later use them to

Frame 2072 Frame 1262

Frame 782 (R)

Frame 902 Frame 1412

(a) Key-frames selected from a dance performance video after spatial overlap-based ordering.

(b) Frames aligned to the reference frame (782).

(c) Final background mosaic.

Fig. 3: Key-frame selection and mosaicing.

align and warp the original video frames to the extended

field-of-view mosaic.
ii) Approximate Frame Alignment: We select every n'" frame
from the original video and compute feature-flow be-
tween adjacent frames using SIFT descriptor matching.
The camera may pan across the scene background multiple
times in any direction. We compute approximate translation
between adjacent frames using the pairwise feature-flow
and use this information for spatial ordering of the key-
frames and estimating overlap after relative translation.
Key-frame Selection: Once the initial set of key-frames
are spatially ordered, a subset of these frames are selected
based on estimated ordering and overlap. This step prunes

iii)

most of the key-frames and retains a small number of vii)

frames for the final set.

iv) Accurate Frame Alignment: Accurate frame-to-frame ho-
mographies are computed for this small ordered set of
keyframes using an improved RANSAC algorithm
and Linear Least Squares. This algorithm adds an iter-
ative refinement step which improves the homography
estimation by applying RANSAC on inliers obtained in
previous iterations. This refinement increases the number
of inliers after each iteration and significantly reduces
the probability of incorrectly estimating H. Farin
describes this algorithm in detail.

v) Foreground Removal: We present the final set of key-

frames to the user as a filmstrip for marking foreground
regions. Since the spatial ordering and overlap selection
prunes most of the redundant frames from the initial set, the
amount of interaction required for marking the foreground
objects is reduced.
For a ballet video sequence of 2495 frames, choosing
n = 10 leads to 250 frames in the initial key-frames
set. Out of 250, only 5 key-frames were selected for
mosacing after overlap pruning (see [Figure 3). In most of
our experiments, the interaction time required for marking
moving foreground regions in the final key-frames was 30-
40 seconds.

vi) Hole Filling: Once the foreground regions are marked, we
warp the final key-frames to the center frame using the
accurate homographies estimated in Step iv, and we remove
the foreground regions in the warped frames. We compute
a binary mask of the same dimensions as the final mosaic
indicating if a pixel is a valid background pixel in any of
the warped key-frames. If there are unfilled regions (holes)
in the binary background mask due to the removal of the
foreground objects, we add intermediate frames based on
the spatial ordering and repeat the process of foreground
removal and warping until there are no unfilled regions
in the background mask. Typically, this process converges
within 1-2 iterations.

Final Mosaic Composition: Once the final key-frames
are aligned and the foreground regions are removed, the
final background mosaic is composited using Laplacian
pyramid based blending [32]. We use the open-source
utility Enblend for compositing the final mosaic from
the aligned key-frames.

Once a reliable background mosaic is composited, we
estimate frame-to-mosaic homographies using the improved
RANSAC algorithm (Step iv) and warp each input frame to the
background mosaic to create an extended field-of-view video
which is free from any camera motion.

B. Object Segmentation

Given a background image, we perform object segmentation
using standard background subtraction techniques [34]. Per-
pixel thresholding in the difference image leads to a noisy
foreground mask with holes and clutter. To obtain a cleaner
mask we use neighborhood distance thresholding as explained
in [35]. This method is briefly summarized here:

e Let I, be the background image and I. be the current
video frame.

o Define the difference image as, Ig;s¢ = Dist(Ic, Ing).

o The foreground image is obtained by thresholding the

difference image [4;5; using the following rule:

1 if >
(z,y)EN(4,5)
0 otherwise

o Laise(2,y) 2T
Ifg(laj) =

Here, (N(i,7) represent the neighbourhood of the pixel
(i,4). Dist can be any valid distance metric in any colorspace.
However, we found the Mahalanobis distance in YUV col-
orspace to give the best results [31]].

We post-process this mask using morphological operations
to fill holes and remove clutter. We retain only the £ largest
connected components as objects, where k is the number of
objects in the video specified by the user.

shows foreground masks for an example frame
at different processing stages. Since the proposed operations
allows only temporal manipulations, we do not require a pixel-
accurate foreground mask. However, an accurate mask can be
computed using high-level matting techniques [36].

(c) Initial object mask.

(d) Object Mask after cleaning.

Fig. 4: Object Mask at different stages of processing.

C. Trajectory Estimation

We need to estimate the trajectories of objects from the
binary segmented videos. In case of single object videos, we
can simply compute the centroids of the foreground blobs.
However, this can lead to erratic trajectories due to inaccurate
segmentation. Also, in the presence of multiple overlapping
objects, such a tracking method will not be able to resolve
conflicts. Hence, we use a hybrid tracker as described by [37]]
for trajectory estimation. This tracker performs a connected-
component tracking in binary segmented frames using Kalman
filtering [38]. When the Kalman filter prediction suggests a
possible overlap of objects in the next frame, a reliable mean-
shift tracker [39]] is used on the actual video frames.

We represent object trajectories against the static scene
background as (x,y,t) line plots in the 3D interaction grid.
We also show the object bounding boxes using volumetric
plots in the 3D visualization grid. Here, (x,y) represent the
pixel space of the scene background and ¢ represents time.
demonstrates this representation for a surveillance
video sequence. We discuss the proposed interactions and
operations based on this representation in the next section.

G|W e |l@ d |+ @ HE @ &

i | |

Fig. 5: A snapshot of the trajectory based interface

IV. INTERACTIVE OPERATIONS

Our prototype interaction interface is shown in
We employ object trajectories as basic interaction elements

and allow users to perform object and camera operations by
manipulating object trajectories. In the following subsections,
we discuss these operations in detail. The supplementary video
demonstrating these operations and their effects can be seen
here: https://vimeo.com/42749995.

A. Object Operations

We define various object operations as interactive curve
manipulations on object trajectories. These interactions include
Scrub, Shift, Resize, Invert, Delete, Copy, and Break. Users can
navigate the video in different ways by scrubbing the object
trajectories, or perform various temporal manipulations on
video objects by interactively manipulating the object trajecto-
ries. Later on, we will demonstrate how these operations can
be combined with camera operations to produce new camera
motions. First, we will explain the object operations in detail.

1) Video Navigation: The user can control video navigation
by scrubbing the object trajectories with the mouse. We
provide two modes of navigation: Simple Video Navigation
and Single Object Navigation. We also provide a WYSIWYG
(what you see is what you get) mode in which users can create
new videos in a similar way to how videos are browsed.

a) Simple Video Navigation: This mode of navigation
simply replaces the timeline slider with object trajectories.
Here, the user does not alter video frames; instead, video
playback is controlled by the current mouse position over
object trajectories. This browsing mechanism is similar to
many direct manipulation interfaces discussed in
However, there are two key advantages of using 3D trajectories
as control elements over 2D trajectories: 1) Long range indoor
motions can induce complex 2D trajectories containing self-
occluding loops as shown in (left). A 3D represen-
tation frees trajectories from loops and self-occlusions. 2) 2D
trajectories are not dependent on the action time. Hence, two
objects moving along the same path at different velocities or
at different time durations induce similar 2D trajectories (see

(right)). Adding the temporal dimension resolves such
conflicts.

https://vimeo.com/42749995

(a) Simple video navigation.

(b) Single object navigation.

Fig. 7: Modes of object-centric video navigation.

b) Single Object Navigation: In this mode, only the ob-
ject corresponding to the active trajectory (the trajectory being
scrubbed) is laid out on the background. Hence, scrubbing
action results in motion of only the single currently active
object, and other moving objects are replaced by constant
background.

c) Composition by Navigation: This WYSIWYG mode
allows users to composite videos as they are seen. In this
mode, navigation actions are recorded and used to create a
new video. This mode allows users to create various retiming
effects in video by scrubbing object trajectories at the desired
speed and in the desired order.

shows video frames for simple video navigation,
single object navigation and composition by navigation. The
frame shown in a) is the actual video frame and the
frame shown in [Figure 7(b) is generated with single object
navigation by compositing active object segments onto the pre-
computed background.

2) Reordering: This operation allows a user to indepen-
dently delay or advance events in the video. Users can drag
and move object trajectories along the timeline to achieve
desired timeshift. Shifting the trajectory effectively shifts the
lifetime of the selected object. This operation can be useful to
synchronize two non-overlapping events, change the relative
order of two events, and so on.

3) Retiming: This operation allows users to change the
pace (velocity) of different objects/events independently of
the video playback rate. To achieve this, the user selects a
trajectory segment and drags any endpoint of the segment
to stretch or shrink the trajectory. Users can also select and
extend a single point along the timeline to pause the selected
object. Shrinking a trajectory along a timeline produces speed
up (temporal downsampling) and stretching a trajectory results
in slow down (temporal upsampling) of the selected object
tube.

(a) Original State (b) Reordering (c) Reordering

Fig. 8: Reordering and Retiming on object trajectories. (a)
Original state of the object trajectories. (b) User moves the
trajectories to reorder the objects/ activities temporally. (c)
User selects a trajectory segment and stretches it along the
timeline to slow down the object.

Temporal downsampling can be achieved by skipping in-
termediate samples (object frames). Temporal upsampling
requires interpolation between frames. Due to the motion of
the objects, pixel-based frame blending introduces ghosting
artifacts. Ghosting becomes severe as the upsampling rate in-
creases. At higher upsampling rates, optical-flow based motion
interpolation techniques like [40]] should be used to produce
better results.

4) Cloning: This operation allows users to create a clone
of an object by simply selecting and copying the object
trajectory. The copied trajectory needs to be time-shifted to
create multiple visible instances.

5) Removal: This operation allows users to interactively
remove objects from videos. Users can erase the trajectory or
a segment of it by using the eraser tool or by selecting the
trajectory or its segment and pressing delete to remove the
object from the desired video segment.

6) Reversal: This operation allows the users to reverse the
activity by inverting (mirroring) the trajectory along time.

shows reordering and retiming operations on object
trajectories. Internally, these operations are performed by
storing the frame-to-frame mappings between the original state
and the modified state of the trajectories. Modified trajectories
indicate the presence of objects in corresponding temporal
segments in the modified video. Each frame in the modified
video is rendered by copying the object bounding box from the
corresponding source frame and compositing it on the static
background image. Due to illumination differences between
the source frame and the static background, visible seams
may exist at object boundaries. If the difference is not severe,
simple alpha blending or feathering is sufficient to suppress
the sharp boundaries. However, if illumination differences are
severe, gradient domain blending techniques [41]] can be used
instead.

B. Camera Operations

Mosaic-based representations destroy the camera-object as-
sociation, and this association is an important aspect of story-
telling. Moreover, for applications other than video synopsis,

Fig. 9: Specifying Aperture Path: From P; to Pa, aperture follows
the trajectory; From P> to Ps aperture path is interpolated.

extended field-of-view backgrounds with no events of interest
occupy a large display space. We present intuitive operations
to produce novel moving camera videos from extended field-
of-view video with desired focus of attention. These operations
allow the user to perform simple cinematographic experiments
in the mosaic space without having to re-shoot the video.

To achieve this, we mimic the camera with a movable
and scalable view window aperture in the mosaic space.
Movement of this aperture is restricted to be planar to avoid
view-interpolation problems. The location, orientation, and
scale of this aperture along the timeline decides the camera
pan, tilt, and zoom in the video. Hence, users can simulate
camera motion (pan, tilt and zoom) by manipulating the
aperture parameters — (4, y¢, 0%, St), representing the location,
orientation and scale along time.

However, asking users to explicitly specify these parameters
would be complex and tedious. When a user shoots a video,
their objective is often to track objects and events, such as
following a car until it crosses the bridge, or zooming to
focus on a dancer. The user should be able to control the
aperture onto the mosaic space similarly. We use the visually
meaningful object trajectories to allow users to specify camera
parameters in terms of objects and events of interest.

We propose simple operations to interactively create
aperture trajectories to produce videos with the desired focus
of attention. We explain these operations in three steps:
specifying the aperture path, orientation, and scale.

1) Aperture Path: The path is a location map of the desired
focus of attention at any time. Users can find object anchor
points in videos by scrubbing the trajectories and marking an
object or activity of interest. Consider the object trajectories
as shown in [Fig Ol The user has selected five anchor points,
P, to Ps, represented by the green markers. A smooth aperture
path is obtained from these anchor points using the following
rule:

If P, and P;,, are on the same object trajectory, then:
Aperture follows the object trajectory.
Otherwise: Interpolate the transition from P; to P 1.

For smooth transitions, the ratio of the distance between two
anchor points and the time duration between two anchor points
(Aperture Velocity) must be above a threshold. To prevent
sudden transitions, we do not allow the user to create an anchor
point which fails this criteria.

. o R
| - * r 4 - ™
W e ey D 1
-.L;xfg*,';w-& L Gl e T
O S ST

G S

Fig. 10: (Top) Frames with Fixed Aperture Scale, (Bottom) Frames
with Adaptive Aperture Scale

2) Aperture Scale: Aperture scale can either be fixed or
adapted to the change in object scale. For an adapted aperture
scale, the aperture grows or shrinks according to the size of the
object. This creates a tracked zoom effect in the video to focus
on the object of interest. However, due to the inaccuracies in
object segmentation, the per-frame scale change observations
are also not accurate. Hence, adapting the aperture scale to
these observations produces unwanted and distracting zooming
effects. To avoid this, we fit a quadratic model to the per-
frame object scale factors. Also, we limit the aperture scale
to a magnification factor of 2 to prevent excessive blurring.
shows the effect of adaptive aperture scale on the
lion sequence (please see our demo video).

3) Aperture Orientation: Finally, like scale, the aperture
orientation can also be fixed or adapted to the object orienta-
tion. Alternatively, a user can interactively specify the aperture
orientation at anchor points.

V. RESULTS

We demonstrate the applicability of our representation by
manipulating several long shot videos. Similar results can be
produced by other video editing tools or techniques. However,
our representation makes such manipulations significantly
simple and intuitive to perform. Hence, it is not meaningful
to visually compare these example results with the results
of other techniques. Instead, we demonstrate several exam-
ple video manipulations along with the required interactive
operations in a supplementary video. This video can be found
here: https://vimeo.com/42749995. In this section, we discuss
these example results.

demonstrates an example of multiple object
operations performed on a surveillance video (PETSZOOCE[).

[Figure TTja) shows the frames from the original video. In the
original video, first a red car enters and leaves the scene, then a
blue car enters from the opposite direction and moves towards
the parking area. [Figure T11[b) shows a series of operations
performed on this video sequence. First, a segment of the blue
car trajectory is deleted. This deleted segment corresponds to
the blue car entering the scene and approaching the parking
lot. The remaining segment shows the blue car being parked

'Source: PETS 2000, ftp://ftp.pets.rdg.ac.uk/pub/PETS2000

https://vimeo.com/42749995
ftp://ftp.pets.rdg.ac.uk/pub/PETS2000

(c) Frames from the modified video.

Fig. 11: Multiple object operations on PETS2000 video sequence. Object operations as shown in (a) from left to right: (i) A
segment of blue car’s trajectory is selected. (ii) Selected segment is erased (iii) The blue car’s trajectory is copied and shifted
in time. (iv) Blue car’s shifted trajectory is inverted (v) The red car’s trajectory is copied and shifted in time, tailing part is
erased and the new endpoint is extended. Frames from the modified video are shown in (b).

(a) (b) (© (@ (e)

Fig. 12: Composition of a dance video montage. (a) Frames from the original video, (b) Dancer’s original trajectory, (c) User’s
arrangement of the trajectory segments, (d) Magnified XY view of the interaction grid, (e) Frames from the montage video.

10

(a) Keyframes from the Running Lion video sequence.

(b) Example frame from the output video showing several lions.

(c) Effect of setting aperture path on cloned lions sequence. Compare the background features with original frames to observe
the simulated camera motion.

Fig. 13: Object and camera operations performed on Running Lion video sequence.

(c) Manipulated trajectory. (d) Last frame of the modified video.

Fig. 14: Object operations performed on Bluebird Ballet video sequence.

from the road. This remaining segment is copied and time-
shifted to the beginning of the video, and inverted. The red
car trajectory is also copied and time-shifted, and a portion
is erased at the trailing end and extended until the end of the
video. [Figure TT|c) shows the effects of these operations in the
modified video. In the modified video, the blue car is already
parked in the parking area. Then it is seen moving in reverse
away from the parking area, pausing on the road for a moment
and being parked again. Later, two red cars are seen one after
another entering the scene from the right, moving towards the
left. The second red car stops on the road while the first car
is seen leaving the scene.

demonstrates composition of a dance video mon-
tage (Only Hope Lyricalf). [Figure 12(a) shows the original
trajectory of the dancer. The user breaks the trajectory into
multiple segments and arranges them to be non-overlapping.
This arrangement produces a composite video showing mul-
tiple non-overlapping dance segments in the same image
space. The arrangement of the trajectory segments is shown
in [Figure T2[b). [Figure 12{c) shows a magnified XY view of
the interaction grid. [Figure 12(d) shows keyframes from the
montage video.

[Figure 13|a) demonstrates keyframes from the Running
Lion Sequencd| [Figure 13|b) demonstrates the scene mosaic
constructed from the keyframes. [Figure 9| shows the modified
state of the trajectories. In this composition, first the trajectory
of the lion is copied several times, creating multiple clones
of the lion. The clone lion trajectories are time shifted to
produce a temporal gap, creating the effect of multiple lions
running one after another. The camera aperture path is set
to follow the lion clones according to the selected anchor
points to simulate camera motion. ¢) demonstrates
a keyframe in the output video without the camera operations.
Several lions can be seen running in this cloned sequence.
The effect of specifying the camera aperture path is shown in
[Figure 13|d). The camera moves from left to right, following
the first lion, then sweeps towards the left, focusing on the
second lion almost when it has reached the middle of the
scene. Then, the camera sweeps further left to focus on the
third and fourth lions and finally follows the last lion moving
towards the right until the end of the video.

[Figure 14(a) shows keyframes from the Bluebird Ballet
Sequenceﬂ Figure 14ib) shows the modified trajectory. In this
composition, the trajectory of the dancer has been cut at iconic
movements and the endpoint at each cut have been extended
until the end of the video. The modified video shows the
dancer stationary in her previous iconic movements as she

crosses the floor. [Figure 14[c) shows the last frame from the

modified video showing all the iconic positions of the dancer.

VI. LIMITATIONS AND FUTURE WORK

We allow only temporal manipulation operations on trajec-
tories. Since these operations do not alter the spatial config-
uration of objects with respect to the background, composi-
tion does not introduce severe artifacts. However, if there is

2Source: Youtube User d100lt, http://youtu.be/HIfSWUSICUQ
3Source: Youtube User blazinggecko, http://youtu.be/cD7dHTDudHM,
4Source: Youtube User klara houdethttp://youtu.be/w6IagNw9SgQ,

an overlap of objects in the original video then the object
segmentation in these frames needs to be refined using robust
interactive segmentation techniques [42}[36]. Also, more accu-
rate segmentation would be required to avoid shadow artifacts
in the composited frames.

The present approach for background mosaicing and seg-
mentation is not fully automatic. We require small amount of
user interaction to specify the number of foreground objects
in the video and also to mark the objects in key-frames.

The current interface uses a simple object tube representa-
tion for visualization. Further work can be done to improve
the visualization of various operations to enhance the overall
user experience.

Since we use a single homography transformation to align
a pair of images, our background estimation is limited to
videos with in-plane camera motion. Also, the feature based
approach for mosaic construction may fail to estimate correct
homographies under extreme conditions, like lack of texture
in the background or large illumination variations. More user
intervention in the mosaicing process can help us overcome
this limitation under difficult scenarios.

A future extension of this work is to align multiple videos
captured at the same location but at slightly varying view-
points. We can build background mosaics for each of these
videos independently and then align them to a common
reference. This will allow us to combine events from videos
shot at the same locations at different times and by different
people in a background consistent manner. Another useful
extension of this work is to estimate the complexity of object
motion and represent it visually to aid a user to focus on
important video segments.

VII. CONCLUSIONS

We proposed a scene mosaic and object trajectory based
video representation to enable simple interaction for navigation
and temporal manipulation of long shot videos. We model a
video as a static background and a collection of moving objects
in 3D space-time. We proposed a novel interaction scheme
which uses object motion trajectories as basic interaction
elements and defines simple and meaningful operations for
navigation and temporal manipulation of video objects. We
also use the static background representation to propose simple
camera operations to alter the focus of attention in videos.
These operations model the camera as a movable and scalable
aperture and allow users to specify the aperture pan, tilt, and
zoom to simulate desired camera motion.

Using combinations of object and camera operations, users
can simply and intuitively produce seemingly complex video
effects. We demonstrated the usability of our proposed repre-
sentation and interactions by showing interesting compositions
from several consumer captured long shot videos. Though the
proposed representation is not generic enough to model any
dynamic video, we showed that it is able to manipulate long
shot videos such as surveillance, stage performance, and sports
videos.

Overall, we believe that augmenting video context and
motion cues with user interface can significantly improve the

http://youtu.be/Hlf5WU5ICUQ
http://youtu.be/cD7dHTDudHM
http://youtu.be/w6IagNw9SgQ

usability of video manipulation tools. The work discussed in
this paper is a step towards that goal. We believe that the
fidelity and popularity of such interfaces will significantly
increase with the progress in computer vision and video
processing techniques.

ACKNOWLEDGMENT

We would like to thank James Tompkin for careful proof-
reading of the manuscript and the anonymous reviewers for
their insightful comments that helped to improve this paper.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

REFERENCES

R. Shah and P. J. Narayanan, “Trajectory based video
object manipulation,” in Proceedings of the IEEE In-
ternational Conference on Multimedia and Expo, ICME,
2011, pp. 1-4.

T. Satou, H. Kojima, A. Akutsu, and Y. Tonomura,
“Cybercoaster: Polygonal line shaped slider interface to
spatio-temporal media,” in ACM Multimedia, 1999, pp.
202-.

P. Dragicevic, G. Ramos, J. Bibliowitcz,
D. Nowrouzezahrai, R. Balakrishnan, and K. Singh,
“Video browsing by direct manipulation,” in ACM
SIGCHI, 2008, pp. 237-246.

T. Karrer, M. Weiss, E. Lee, and J. Borchers, “Dragon: A
direct manipulation interface for frame-accurate in-scene
video navigation,” in ACM SIGCHI, 2008, pp. 247-250.
D. Kimber, T. Dunnigan, A. Girgensohn, F. M. S. III,
T. Turner, and T. Yang, “Trailblazing: Video playback
control by direct object manipulation,” in /EEE Interna-
tional Conference on Multimedia and Expo, 2007, pp.
1015-1018.

D. B. Goldman, C. Gonterman, B. Curless, D. Salesin,
and S. M. Seitz, “Video object annotation, navigation,
and composition,” in ACM symposium on User interface
software and technology, 2008, pp. 3—12.

D. G. Lowe, “Distinctive image features from scale-
invariant keypoints,” International Journal of Computer
Vision, vol. 60, pp. 59-73, 2004.

T. Brox, A. Bruhn, N. Papenberg, and J. Weickert, “High
accuracy optical flow estimation based on a theory for
warping,” in ECCV (4), 2004, pp. 25-36.

M. Wittenhagen, “Dragoneye - fast object tracking and
camera motion estimation,” Master’s Thesis, RWTH
Aachen University, Aachen, Germany, 2008.

S. N. Sinha, J. michael Frahm, M. Pollefeys, and Y. Genc,
“GPU-based video feature tracking and matching,” In
Workshop on Edge Computing Using New Commodity
Architectures, Tech. Rep., 2006.

G. R. Bradski, “Computer vision face tracking for use
in a perceptual user interface,” Intel Technology Journal,
no. Q2, p. 15, 1998.

T. Karrer, M. Wittenhagen, and J. Borchers, “Draglocks:
handling temporal ambiguities in direct manipulation
video navigation,” in Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems, Ser.

(13]

(14]

[15]

[16]

(17]

(18]

[19]

[20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

CHI ’12. New York, NY, USA: ACM, 2012, pp. 623—
626.

C. Stauffer and W. Grimson, “Learning patterns of ac-
tivity using real-time tracking,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 22, no. 8,
pp- 747 =757, 2000.

P. Sand and S. J. Teller, “Particle video: Long-range
motion estimation using point trajectories,” International
Journal of Computer Vision, vol. 80, no. 1, pp. 72-91,
2008.

B. Walther-Franks, M. Herrlich, T. Karrer, M. Witten-
hagen, R. Schroder-Kroll, R. Malaka, and J. Borchers,
“Dragimation: direct manipulation keyframe timing
for performance-based animation,” in Proceedings of
the 2012 Graphics Interace Conference, ser. GI ’12.
Toronto, Ont., Canada, Canada: Canadian Information
Processing Society, 2012, pp. 101-108.

G. Daniel and M. Chen, “Video visualization,” in IEEE
Visualization, 2003, pp. 409-416.

C. Nguyen, Y. Niu, and F. Liu, “Video summagator: an
interface for video summarization and navigation,” in
ACM SIGCHI, 2012, pp. 647-650.

M. Irani and P. Anandan, “Video indexing based on mo-
saic representations,” Proceedings of the IEEE, vol. 86,
pp- 905-921, 1998.

D. B. Goldman, B. Curless, S. M. Seitz, and D. Salesin,
“Schematic storyboarding for video visualization and
editing,” ACM Transactions on Graphics, vol. 25, no. 3,
pp. 862-871, 2006.

A. Rav-Acha, Y. Pritch, and S. Peleg, “Making a long
video short: Dynamic video synopsis,” in Proceedings
IEEE CVPR, 2006.

Y. Pritch, A. Rav-Acha, A. Gutman, and S. Peleg,
“Webcam synopsis: Peeking around the world,” in IEEE
International Conference on Computer Vision, 2007, pp.
1-7.

H.-W. Kang, X.-Q. Chen, Y. Matsushita, and X. Tang,
“Space-time video montage,” in IEEE CVPR, 2006, pp.
1331-1337.

C. D. Correa and K.-L. Ma, “Dynamic video narratives,’
ACM Transactions on Graphics, vol. 29, pp. 88:1-88:9,
2010.

V. Kolmogorov and R. Zabin, “What energy functions
can be minimized via graph cuts?” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 26,
no. 2, pp. 147 —-159, 2004.

Y. Boykov and V. Kolmogorov, “An experimental com-
parison of min-cut/max- flow algorithms for energy
minimization in vision,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 26, no. 9, pp.
1124-1137, 2004.

S.-c. S. Cheung and C. Kamath, “Robust techniques for
background subtraction in urban traffic video,” Electronic
Imaging, pp. 881-892, 2004.

K. Kim, T. H. Chalidabhongse, D. Harwood, and
L. Davis, “Real-time foreground-background segmenta-
tion using codebook model,” Real-Time Imaging, vol. 11,
pp- 172-185, 2005.

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

R. Szeliski, “Image alignment and stitching: a tutorial,”
ACM Found. Trends. Comput. Graph. Vis., vol. 2, 2006.
M. Brown and D. Lowe, “Automatic panoramic image
stitching using invariant features,” International Journal
of Computer Vision, vol. 74, pp. 59-73, 2007.

M. A. Fischler and R. C. Bolles, “Random sample
consensus: a paradigm for model fitting with applications
to image analysis and automated cartography,” Commu-
nications of the ACM, vol. 24, no. 6, pp. 381-395, 1981.
D. Farin, “Automatic video segmentation employing
object/camera modeling techniques,” Ph.D. dissertation,
Eindhoven University of Technology, 2005.

P. J. Burt and E. H. Adelson, “A multiresolution spline
with application to image mosaics,” ACM Transactions
on Graphics, vol. 2, no. 4, pp. 217-236, 1983.

Y. Xiong and K. Turkowski, ‘“Registration, calibration
and blending in creating high quality panoramas,” in
IEEE Workshop on Applications of Computer Vision,
1998, pp. 69-74.

M. Piccardi, “Background subtraction techniques: a re-
view,” in IEEE International Conference on Systems,
Man and Cybernetics,, vol. 4, 2004, pp. 3099-3104.

T. Aach, A. Kaup, and R. Mester, “Statistical model-
based change detection in moving video,” Signal Pro-
cess., vol. 31, no. 2, pp. 165-180, 1993.

J. Wang and M. F. Cohen, “Image and video matting: a
survey,” ACM Found. Trends. Comput. Graph. Vis., vol. 3,
pp- 97-175, 2007.

T. P. Chen, H. Haussecker, A. Bovyrin, R. Belenov,
K. Rodyushkin, A. Kuranov, and V. Eruhimov, “Com-
puter vision workload analysis: Case study of video
surveillance systems,” Intel Technology Journal, vol. 9,
pp- 109-118, 2005.

G. Welch and G. Bishop, “An introduction to the kalman
filter,” Chapel Hill, NC, USA, Tech. Rep., 1995.

D. Comaniciu, V. Ramesh, and P. Meer, “Kernel-based
object tracking,” IEEE Transactions on Pattern Analysis
and Machine Intelligenc, vol. 25, no. 5, pp. 564-577,
2003.

[40]

[41]

[42]

D. Mahajan, F.-C. Huang, W. Matusik, R. Ramamoor-
thi, and P. Belhumeur, “Moving gradients: a path-based
method for plausible image interpolation,” ACM Trans-
actions on Graphics, vol. 28, 2009.

P. Pérez, M. Gangnet, and A. Blake, “Poisson image
editing,” ACM Transactions on Graphics, vol. 22, no. 3,
pp- 313-318, 2003.

Y.-Y. Chuang, A. Agarwala, B. Curless, D. H. Salesin,
and R. Szeliski, “Video matting of complex scenes,’
ACM Transactions on Graphics, vol. 21, no. 3, pp. 243—
248, 2002.

Rajvi Shah Rajvi Shah received her B.Tech degree
in Electronics and Communication Engineering from
Nirma University, Ahmedabad, India in 2009 and
Master’s by Research degree in Computer Science
from Center for Visual Information Technology, IIIT,
Hyderabad, India in 2012. After her masters, she
was a research assistant at Graphics, Vision and
Video Group at Max Planck Institute for Informatics,
Saarbriicken, Germany for six months. Her research
interests are Image and Video Processing, Computer
Vision and Machine Learning.

P J Narayanan P. J. Narayanan is a Professor and
Dean of Research at the IIIT, Hyderabad. He got his
bachelors from IIT, Kharagpur and his PhD from the
University of Maryland. He was a research faculty
member at the Robotics Institute of Carnegie Mellon
University from 1992 to 1996 and a scientist at
the Centre for Artificial Intelligence and Robotics,
Bangalore till 2000. His research interests include
Computer Vision, Computer Graphics, and GPU
Computing. He was made a CUDA Fellow in 2008.
He was the General Chair of ICVGIP 2000 and the

Program Co-Chair of ACCV 2006 and ICVGIP 2010. He was the Area Chair
of ICCV 2007 and 2011. He is currently the President of the ACM India
Council.

	Introduction
	Previous Work
	Video Navigation
	Video Visualization and Summarization

	Video Representation
	Background Reconstruction
	Estimating background in fixed camera videos
	Estimating background in moving camera videos

	Object Segmentation
	Trajectory Estimation

	Interactive Operations
	Object Operations
	Video Navigation
	Reordering
	Retiming
	Cloning
	Removal
	Reversal

	Camera Operations
	Aperture Path
	Aperture Scale
	Aperture Orientation

	Results
	Limitations and Future Work
	Conclusions
	Biographies
	Rajvi Shah
	P J Narayanan

