
Available online at www.sciencedirect.com
www.elsevier.com/locate/imavis

Image and Vision Computing 26 (2008) 1012–1026
Impact of vertex clustering on registration-based 3D dynamic
mesh coding

Subramanian Ramanathan a, Ashraf A. Kassim a,*, Tiow-Seng Tan b

a Department of Electrical and Computer Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore
b School of Computing, National University of Singapore, Computing 1, Singapore 117590, Singapore

Received 19 February 2006; received in revised form 16 October 2007; accepted 8 November 2007
Abstract

3D dynamic meshes are associated with voluminous data and need to be encoded for efficient storage and transmission. We study the
impact of vertex clustering on registration-based dynamic mesh coding, where compact mesh motion representation is achieved by com-
puting correspondences for the mesh segments from the temporal reference to obtain high compression performance. Clustering algo-
rithms segment the mesh into smaller pieces and the compression performance is directly related to how effectively these pieces can
describe the mesh motion. In this paper, we demonstrate that the use of efficient vertex clustering schemes in the compression framework
can bring about a 10% improvement in compression performance.
� 2008 Published by Elsevier B.V.

Keywords: 3D dynamic meshes; Data compression; Computer animation
1. Introduction

Recent advances in computer graphics have accelerated
the access and use of 3D mesh models in research and
industry. Many interactive applications like collaborative
CAD/CAM, interactive video games, and medical visuali-
zation support access of remote 3D data. Polygonal and
triangular meshes are the de-facto standard for exchanging
and viewing 3D models. Some of the attributes that
describe a triangular mesh are the geometry that defines
the position of vertices in the mesh, connectivity that
describes the association between each triangle and its sus-
taining vertices, the surface color, surface normal and tex-

ture. Also, 3D meshes can be either static or dynamic
(animations). 3D animation appears in two forms: rigid-
body and soft-body motion. While the whole mesh moves
as one entity in rigid-body motion, soft-body motion does
not impose any restrictions on the movement of mesh ver-
tices. Each mesh point can move in a separate trajectory,
0262-8856/$ - see front matter � 2008 Published by Elsevier B.V.

doi:10.1016/j.imavis.2007.11.005

* Corresponding author.
E-mail address: eleashra@nus.edu.sg (A.A. Kassim).
which produces smooth and realistic motion. In typical
animations, both the position and connectivity of the
points in the 3D mesh may change over time. However,
for mesh sequences whose connectivity remains constant
over time, the animation is characterized by changes in
mesh geometry. Therefore, they can also be termed
dynamic geometry sequences. We will restrict our discus-
sions to the compression of dynamic geometry in this
paper. Some dynamic geometry sequences are shown in
Fig. 1.

3D mesh models representing complex objects typically
demand a lot of storage space and rendering time for visu-
alization. Also, transmission of 3D meshes is an onerous
task that is severely limited by network bandwidth. There-
fore, 3D mesh compression has generated much recent
interest among researchers. Extensive work has been done
on exploiting spatial coherency for compression of static
meshes [6–9,21,28,33,34]. A majority of these static mesh
compression techniques address efficient encoding of the
mesh connectivity while mesh geometry coding is a supple-
mentary to the connectivity coding scheme. Lengyel [20]
pioneered the work on animation compression by repre-

mailto:eleashra@nus.edu.sg

Fig. 1. Sample frames from 3D animation sequences Chicken (3029 vertices, 5664 triangles, 400 frames), Dolphin (6179 vertices, 12,337 triangles, 101
frames) and Face (757 vertices, 1468 triangles, 952 frames).

S. Ramanathan et al. / Image and Vision Computing 26 (2008) 1012–1026 1013
senting mesh motion using a few parameters. He proposed
segmentation of the mesh into smaller sub-meshes whose
motion can be described as rigid-body motion using affine
transforms. The residual errors are encoded using spatial
prediction. Ibarria and Rossignac [14] proposed a coding
scheme for dynamic meshes with fixed connectivity by
using space–time predictors to capture correlations in both
spaces.

Another interesting work on dynamic geometry com-
pression is that of Yang et al. [37] where each vertex is
given a motion vector obtained from the neighborhood
of the vertex. The vertex neighborhood is defined as the
set of all vertices within a threshold distance around the
vertex and since the motion vectors errors are correlated,
they are also predicted using a rate-distortion optimization
technique to yield better compression. A connectivity-
based prediction technique was proposed by Stefanoski
and Ostermann in [32], using a non-linear spatio–temporal
predictor with angle preserving properties for encoding 3D
dynamic mesh geometry. Another prediction-based com-
pression algorithm using Differential Pulse Code Modula-
tion (DPCM) was proposed by Muller et al. in [25].

Ahn et al. [1] suggested motion compensated compres-
sion of 3D animations by segmenting them into blocks
for which motion vectors are calculated. Varakliotis et al.
[35] proposed encoding with RTP packetization and rec-
ommended the insertion of I (Intra) frames, which can be
decoded without any temporal reference, to tackle the deg-
radation in animation smoothness on account of noisy
channels. Gupta et al. [10] proposed a dynamic geometry
compression scheme where the mesh is partitioned and
the displacement of the vertices falling in each partition is
computed using Iterative Closest Point (ICP) based regis-
tration. The mesh motion is described completely using a
few affine parameters and residual errors and this algo-
rithm achieves high compression performance for 3D
animations.

Of late, multi-resolution mesh representation for band-
width limited streaming applications has gained in impor-
tance. Representation of static meshes with various levels
of detail is dealt with in [26,7]. Shamir et al. [30] suggested
a multi-resolution representation for time-dependent
meshes whose geometry and connectivity change with time.
Another notable work is that of Alexa and Muller who dis-
cussed a compact representation of animations using PCA
in [2] where each mesh in the animation sequence is pro-
jected on a basis of n PCA eigenvectors. The animation
may be reconstructed using k eigenvectors where k << n.
Higher the k, greater the level of detail. Other examples
of wavelet-based multi-resolution encoding schemes are
that of Guskov and Khodakovsky [11], who exploited the
parametric coherence in mesh sequences and Payan and
Antonini [27], who employed the lifting scheme to exploit
temporal redundancy in dynamic geometry.

Karni and Gotsman proposed a compression scheme
that employs a combination of Principal Component Anal-
ysis (PCA) and Linear Predictive Coding (LPC) in [16].
Recently, localized PCA-based techniques for compression
have yielded good compression performance. Sattler et al.
[29] proposed animation compression using Clustered
PCA (CPCA) where the mesh is first segmented into mean-
ingful components based on vertex motion analysis and
PCA is then applied on each of these components. This
compression scheme outperforms both pure PCA-based

1014 S. Ramanathan et al. / Image and Vision Computing 26 (2008) 1012–1026
and PCA + LPC approaches while achieving better anima-
tion reconstruction. Another Localized PCA Analysis
(LPCA)-based animation compression scheme was pro-
posed by Amjoun and Straßer in [3]. On clustering the
mesh using local similarity properties, a local coordinate
system is defined for each cluster with respect to which
the cluster motion is encoded using PCA. Experimental
results indicate that the LPCA coder achieves better than
CPCA-based compression.

1.1. Motivation

We discuss the contribution of vertex clustering to
dynamic mesh coding. Efficient determination of inter-
mesh motion regions is the key to compressing dynamic
geometry. In fact, the idea is similar to that of MPEG video
coding [19] where motion vectors are used to express differ-
ences between consecutive video frames. In MPEG com-
pression, the motion parameters are obtained by dividing
the image into equal-sized blocks (8 · 8 or 16 ·16) and esti-
mating the motion of each of these blocks. Similarly, the
3D mesh also needs to be segmented into smaller pieces
for efficient motion detection. However, segmentation of
3D meshes is not a trivial problem since they can model
arbitrary shapes. Given that 3D meshes are non-planar,
the manner in which they are segmented into pieces has a
significant role to play in the animation compression
framework. Our experiments confirm the critical impact
of vertex clustering on the compression performance. This
is a crucial difference between dynamic geometry coding
and video compression, where the segmentation procedure
is essentially a pre-processing step to motion estimation.

Clustering techniques group mesh vertices into a speci-
fied number of sets, where the grouping may be performed
in one of the following ways. Topology-based clustering

techniques partition the mesh based on vertex adjacency.
They are more popularly termed ‘‘Graph Partitioning
Techniques’’ and many algorithms have been developed
to solve the graph partitioning problem over the years
[13,18]. In this mode of clustering, vertices are clustered
with their connected neighbors as given by the mesh con-
nectivity and no knowledge of mesh geometry is required.
Geometry-based clustering involves grouping of vertices
based on their positional closeness and is independent of
the mesh connectivity. Lloyd’s algorithm [24] is an example
of geometry-based clustering where vertex neighbors are
computed explicitly in the absence of connectivity informa-
tion. The mesh vertices are clustered such that the mean
distance between the cluster center and the cluster vertices
is minimum. A third set of techniques perform Semantic

Mesh Decomposition to segment the mesh into meaningful

components. These techniques exploit both topology and
geometry features to generate components that represent
distinctive features of the 3D polygonal mesh. Unlike in
geometry or topology-based clustering, where the number
of clusters is user specified, most of the semantic mesh
decomposition algorithms [23,17,22] automatically deter-
mine the number of vertex clusters based on homogeneity
of the mesh regions.

Most dynamic geometry compression algorithms use
topology-based clustering for segmenting meshes. Leng-
yel’s [20] algorithm uses a greedy vertex clustering
approach based on the triangulation of the original mesh.
Prediction-based geometry compression algorithms [37,32]
define vertex neighborhoods for prediction based on mesh
connectivity. Ahn et al. [1] segment the mesh by convert-
ing the triangular mesh structure into a linear triangle
strip form. The triangle strip is divided into blocks such
that each block has same number of vertices. Gupta
et al. [10] use the multilevel k-way graph partitioning
technique [13] that generates clusters of approximately
equal sizes. Since the mesh connectivity remains constant
for dynamic geometry, topology-based clustering needs to
be performed only for the first mesh in the sequence (I
mesh) and the clusters remain fixed thereafter for the
entire sequence.

We find that mesh segmentation based on the fixed mesh
topology is unsuitable for compressing mesh sequences
with changing mesh geometry. Efficient detection of mesh
pieces that have moved over time is possible only when
the components generated upon clustering roughly repre-
sent these pieces. When the mesh undergoes arbitrary
deformation, the vertex clusters undergoing coherent
motion will be different at different times. Clearly, it is
impossible for a given set of clusters generated using topol-
ogy-based partitioning to represent the coherent motion
regions at all times. Clustering the mesh on the basis of
positional proximity instead of graph adjacency is more
suited for encoding dynamic geometry sequences. Alterna-
tively, a fixed set of clusters will effectively describe the
piecewise affine mesh motion in animations only if they cor-
respond to the distinctive mesh components that can
undergo independent motion. Our results confirm that
geometry-based clustering and semantic mesh decomposi-
tion techniques produce better compression performance
than topology-based clustering. The increased compression
performance obtained by PCA-based animation compres-
sion algorithms [3,29] which segment the mesh into coher-
ent pieces based on local motion characteristics
corroborate our experimental findings. We demonstrate
that the compression performance can improve by as much
as 10% by employing semantic mesh decomposition and
geometry-based clustering instead of topology-based
clustering.

1.2. Organization

The organization of this paper is as follows. We present
an overview of some of the clustering schemes in the next
section. These clustering algorithms are evaluated when
integrated into the dynamic geometry compression algo-
rithm [10] described in Section 3. We present the compres-
sion results to underline the importance of clustering and
to compare the different clustering schemes in Section 4.

S. Ramanathan et al. / Image and Vision Computing 26 (2008) 1012–1026 1015
We conclude with directions for possible future work in
Section 5.

2. Overview of vertex clustering techniques

The problem of determining the mesh motion is simpli-
fied by segmenting the mesh into smaller components.
Mesh partitioning is a necessary pre-processing step for
discovering the mesh regions that have moved with respect
to the temporal reference and estimating their motion. A
brief description of various vertex clustering techniques is
presented in this section.

2.1. Multilevel k-way graph partitioning

In MPEG video compression, the image is divided into
smaller, equal-sized blocks for efficient motion prediction.
Likewise, decomposition of the mesh into equal-sized seg-
ments can be achieved using the topology-based multilevel
k-way graph partitioning algorithm [13]. Given the mesh
geometry V, the function of the graph partitioning algo-
rithm is to divide the mesh into k subsets, V 1; V 2; . . . ; V k

such that

V i \ V j ¼ / for i 6¼ j

jV ij ¼ n=k[
i¼1...k

V i ¼ V

where jV ij denotes the cardinality of the ith cluster andS
V i denotes the union of the k clusters.
Let G(V,E) represent a graph containing vertex set V

and edge set E. The graph partitioning algorithm first
coarsens the original graph G0 ¼ GðV 0;E0Þ into a series
of coarse graphs Gi ¼ GðV i;EiÞ, such that the number of
vertices at Gi is approximately half the number of vertices
at Gði�1Þ i.e. jV ij � 1

2
jV i�1j. The graph is coarsened by per-

forming a series of edge contractions. A maximal set of
edges, no two of which are incident on the same vertex,
are first determined and these edges are contracted. This
coarsening procedure maps each vertex in the fine graph
Gi�1 to a unique vertex in the coarse graph Gi and there-
fore, graph topology is preserved. The coarsening termi-
nates when the original graph has been coarsened to
Gm ¼ GðV m;EmÞ where jV mj is typically a small number.
The coarsening phase is useful as it is easier to find a good
partitioning for the coarse graph than the original.

The coarsest graph Gm is now partitioned using a spec-
tral partitioner [12]. One, two or three eigenvectors of the
Laplacian matrix of the graph are used to partition into
two, four or eight sets, respectively. The partitions
obtained for the coarsest graph are propagated back to
the finer graphs by projecting the k partitions onto
Gm�1;Gm�2; . . . ;G0. The projected partitioning onto Gi�1

is occasionally refined using local refinement heuristics
based on the Kerninghan–Lin (KL) algorithm [18]. Verti-
ces are incrementally swapped among the partitions to
reduce the number of cut edges connecting vertices in differ-
ent partitions. The mesh is finally divided through recursive
bisection into k sets each containing about jV 0j=k vertices.
The clusters generated by the k-way graph partitioning
algorithm for various meshes are shown in Fig. 2.

Overall, multilevel k-way partitioning performs better
than competing inertial or spectral bisection approaches
[31] in terms of execution time and the partition quality
(based on the number of cut edges). However, the vertex
clusters obtained by minimization of the number of cut
edges are ineffective for determining the mesh motion. This
is evident from Fig. 2 where vertices belonging to distinct
mesh regions are clustered together (parts of the nose, fore-
head and cheeks in the face; pelvis and thigh regions for
blade) while vertices corresponding to the same region fall
in different clusters (mouth region of the face and the claws
for the chicken). Clearly, the clustered vertices will not
undergo homogeneous motion. Also, when the same clus-
ters are used for the entire sequence, detecting the coherent
motion regions becomes difficult and consequently, the
compression performance is affected as observed from
our experimental results.
2.2. Lloyd’s k-means clustering

The Lloyd’s k-means algorithm [24] is a popularly used
geometry-based clustering technique. Given a set of n data
points {xi} in d-dimensional space and the required number
of clusters k, the problem is to determine a set of k centers
{cj} such that the mean squared distance of each point to
its nearest center, termed the average distortion D, is
minimum.

The algorithm works as follows. The initial k cluster
centers are chosen at random and the data points {xi}
are partitioned into k clusters by assigning each point to
the cluster containing the closest ci. The set of data points
to which ci is the nearest center is known as the neighbor-
hood of ci and is denoted by V ðciÞ. Once the initial centers
and their neighborhoods have been determined, the algo-
rithm proceeds by moving the ci’s to the centroid of their
clusters and recomputing V ðciÞ for each of the ci’s. This
process iterates until convergence is achieved or the mean
distortion D achieves a local minimum. A summary of
the Lloyd’s algorithm is presented below.

Step 1: Initialize {cj} by selecting the cj’s at random.
Step 2: Determine the neighborhood V ðcjÞ for each of
the cj’s by assigning the xi’s to their closest center.

V ðcjÞ ¼ fxi : dðxi; cjÞ 6 dðxi; ckÞ; for all k 6¼ jg

Step 3: Move each of the cj’s to the centroid of V ðcjÞ.

cj ¼
1

jV ðcjÞj
X

i

ðxiÞ; xi 2 V ðcjÞ

Step 4: Repeat Step 2 and Step 3 until mean distortion D

is minimum i.e.

Fig. 2. Clusters generated by topology-based k-way partitioning algorithm for (a) Chicken – 32 partitions; (b) Face – 8 partitions; (c) Dinopet – 32
partitions; and (d) Blade – 8 partitions.

1016 S. Ramanathan et al. / Image and Vision Computing 26 (2008) 1012–1026
D ¼ 1

k

Xk

j¼1

1

jV ðcjÞj
X

x2V ðcjÞ
ðxi � cjÞ2 ¼ Dmin

Fig. 3 illustrates the working of the Lloyd’s algorithm. In the
context of mesh partitioning, the clusters themselves are
more important than the cluster centers. For k-means clus-
tering, it can be proved that the local minimum distortion
measure would correspond to a ‘‘centroidal Voronoi’’ con-
figuration [15], where each data point is closer to its cluster
center than any other cluster center. The partitions move clo-
ser to this configuration at every step until convergence, and
the final clusters would correspond to the local energy min-
ima, even when the initial centers are badly chosen. How-
ever, slightly different initial partitionings do not produce
the same set of clusters. Also, while the final partitioning is
definitely better than the initial partitioning, it need not cor-
respond to the global minimum. Nevertheless, this is not a
significant problem for our application since data reparti-
tioning may be performed later, as explained in the next sec-
tion. Since clustering is performed independent of the mesh
connectivity, vertex neighbors have to be computed explic-
itly. For 3D meshes, computing nearest neighbors is not a
trivial problem. We use the Lloyd’s implementation in [15],
where the nearest neighbor queries are answered using a
kd-tree (k-dimensional tree) data structure. A kd-tree is built
for the data points and as the data points do not change
throughout the cluster computation process, the kd-tree
needs to be computed only once. The clusters at every step
are determined by computing the nearest center for each of
the nodes in the tree.
Fig. 3. Illustration of Lloyd’s clustering for k = 3. (a) The initial cluster centers
moved to the centroid of the cluster and the data points are re-assigned to th
Since clusters are determined based on the vertex posi-
tions, the cluster configurations will vary for different
meshes in the animation sequence (Fig. 4). Clustering
based on vertex proximity produces better quality parti-
tions whose vertices are more likely to undergo homoge-
neous motion. The cluster sizes are variable and the mesh
can be segmented into arbitrary number of clusters. A
noticeable improvement in compression performance is
observed when geometry-based clustering is employed
instead of topology-based partitioning for high-motion
sequences. However, since the vertex clusters do not corre-
spond to the distinctive mesh components, the general per-
formance of geometry-based clustering is inferior to that of
semantic mesh decomposition for dynamic mesh coding.
2.3. 3D mesh segmentation using spectral clustering

Semantic decomposition of a polygonal mesh into mean-

ingful components is useful in mesh editing and morphing
applications [23,17,22]. The mesh components represent
the distinctive regions of the object consistent with human
perception, which defines boundaries along concavities of
the surface. They can be used to establish shape correspon-
dence, and in most cases, also correspond to regions capa-
ble of undergoing independent motion (Fig. 5). Recently,
Liu and Zhang proposed a spectral clustering approach
to mesh decomposition in [23]. A brief description of their
algorithm is presented below.

To segment a 3D mesh with n faces along the edges, the
n� n affinity matrix W is initially constructed for the dual
in red, blue and green and their computed neighborhoods. (b) Centers are
e nearest centers. (c) Final clusters.

Fig. 4. Segmentation using Lloyd’s clustering for frames (a) 70 and (b) 120 of the Chicken animation (maximum cluster size = 100); frames (c) 0 and (d)
505 of the Face animation (maximum cluster size = 75).

Fig. 5. Segmentation of (a) Chicken (59 components), (b) Face (6 components), (c) Dolphin (7 components) and (d) Dinopet (29 components) meshes
through spectral clustering. A number of mesh segments e.g. fins of the dolphin, limbs of the dinosaur can undergo independent motion.

S. Ramanathan et al. / Image and Vision Computing 26 (2008) 1012–1026 1017
of the mesh graph to group faces closer to each other. Each
vertex in the dual graph corresponds to a mesh face and
two vertices are connected if and only if the corresponding
mesh faces are adjacent to each other. For grouping of
faces, the pairwise face distance measure used in [17] is used
to define the affinity matrix. The distance measure between
mesh faces fi and fj is defined as the shortest path between
their dual vertices given by

Distði; jÞ ¼ weightðdualðfiÞ; dualðfjÞÞ

¼ d
Geodðfi; fjÞ
avgðGeodÞ þ ð1� dÞ Ang DistðaijÞ

avgðAng DistÞ

Here, Geodðfi; fjÞ is the geodesic distance between fi and fj

while the angular distance is defined as

Ang DistðaijÞ ¼ gð1� cos aijÞ

where aij is the angle between the normals for adjacent
faces fi and fj. Since the angular distance plays a more
important role for visually meaningful segmentation, d is
set to a value close to zero. Also, a smaller value of g favors
concavities and therefore it is set in the range
0:1 6 g 6 0:2. On obtaining the pairwise face distances,
the affinity matrix is defined by the Gaussian kernel

W ði; jÞ ¼ e
�Distði;jÞ

2r2
It can be easily seen that 0 < W ði; jÞ < 1 and takes larger
values for faces closer to each other. A suitable value for
the width of the Gaussian, r, is empirically set to
1
n2

P
16i;j6nDistði; jÞ.

W ði; jÞ encodes the likelihood of faces i and j belonging
to the same patch. The normalization of the affinity matrix
is performed as N ¼ D�

1
2WD�

1
2 where D is the diagonal

matrix whose ith diagonal element is the sum of the ith
row of W, the vertex degree at node i. N possesses desirable
properties in the context of spectral clustering [36] and
Nij ¼ W ijffiffiffi

D
p

iiDjj
. Let V be n · k matrix formed using the k lead-

ing eigenvectors of N. Then, the n · k matrix Q ¼ VV T rep-
resents the most energy preserving projection of N to rank
k. By normalizing the rows of V to unit length, we obtainbV , whose rows v̂1 . . . v̂n (of dimension k) represent the
embedding of the W ijs onto the k-dimensional unit sphere
centered at origin. bQ ¼ bV bV T is known as the association
matrix whose elements bQij ¼ v̂iv̂T

j ¼ cos hij are the cosine
of the angle between unit vectors v̂i and v̂j. As N is projected
to successively lower rank k, the sum of squared angle
cosines

P
i;jðcos hijÞ2 is strictly increasing [5]. Point pairs

likely to be clustered together will move towards each other
as k decreases, while other pairs will move further apart.
Therefore, clustering points in k-dimensional space is easier
than clustering the original data and is accomplished by
performing k-means clustering on the rows of bV .

1018 S. Ramanathan et al. / Image and Vision Computing 26 (2008) 1012–1026
The spectral clustering algorithm performs a semantic
decomposition of the mesh with the generated components
corresponding to the salient features as shown in Fig. 5.
The algorithm tends to segment the mesh in a hierarchical
fashion on varying the number of eigenvectors chosen for
V. The computation of the shortest distance face pairs
and the affinity matrix W are of complexity Oðn2 logðnÞÞ
and Oðn2Þ, respectively, but this computation time is
greatly reduced in the implementation described in [38].
Also, a recursive 2-way spectral cut procedure used in
[38] overcomes the problem of choosing the optimal k for
clustering and produces better quality partitions. Since
the components generated upon mesh decomposition cor-
respond to the salient features of the object, the same set
of vertex clusters can be used for performing motion esti-
mation for the entire animation sequence. Also, as the
components can describe the piecewise affine mesh motion
effectively, it is possible to encode the animation more effi-
ciently. Our experiments confirm that the compression
obtained through semantic mesh decomposition is gener-
ally much higher than that of k-way partitioning or Lloyd’s
clustering for dynamic geometry compression.
3. ICP based 3D dynamic geometry compression

The vertex clustering algorithms described in the previ-
ous section simplify the problem of determining the coher-
ent motion regions by segmenting the mesh into pieces that
can possibly undergo affine motion. In order to determine
the actual regions that have moved, motion prediction
needs to be performed. In MPEG video coding [19],
motion estimation chiefly contributes to data compression.
For 3D dynamic geometry, the inter-mesh motion is typi-
cally small. The mesh motion can be completely described
using a few affine transformations and residual errors and
this compact representation leads to compression. An effi-
cient dynamic geometry compression algorithm [10] that
performs systematic motion estimation is discussed in this
section. In addition, we also look at associated perfor-
mance measures used for comparing various compression
schemes.
3.1. Algorithm description

A partitioning based dynamic geometry compression
scheme that estimates the mesh motion through systematic
motion segmentation is described in [10]. The algorithm
uses the multilevel k-way graph partitioning algorithm
for initially segmenting the mesh. For each of the pieces
in the current mesh, the corresponding piece in the tempo-
ral reference is detected using the Iterative Closest Point
(ICP) algorithm. Using the results of ICP based registra-
tion, the motion segmentation module segments the mesh
vertices into distinct sets based on their motion character-
istics. Finally, the motion of all mesh vertices is expressed
using affine transforms and a few residual errors. The key
features of the dynamic geometry compression algorithm
are as follows.

3.1.1. ICP based motion segmentation

The Iterative Closest Point (ICP) technique for registra-
tion of two 3D surfaces was introduced by Besl and
McKay [4] to evaluate the rigid-body transformation
required for registering the two surfaces. Also, point corre-
spondences are computed such that for every point in the
first set, there is a closest point in the second with respect
to a predefined distance measure. Since soft-body anima-
tion may be described using piecewise affine motion of
the mesh, ICP can be applied upon the mesh segments gen-
erated using mesh decomposition to discover the coherent
motion regions and the corresponding motion parameters.

Let V ðtÞ represent the geometry of the current mesh
composed of the set of n vertices vjðtÞ; j ¼ 1; . . . ; n at time
t. If ðxjðtÞ; yjðtÞ; zjðtÞÞ denote the coordinates of vjðtÞ, the
position matrix V ðtÞ is given by

V ðtÞ ¼
x1ðtÞ x2ðtÞ � � � xnðtÞ
y1ðtÞ y2ðtÞ � � � ynðtÞ
z1ðtÞ z2ðtÞ � � � znðtÞ

0
B@

1
CA

If the mesh has been divided into k segments and V iðtÞ rep-
resents the set of vertices falling in the ith segment,
i ¼ 1 . . . k, V ðtÞ ¼ ½V 1ðtÞ V 2ðtÞ . . . V kðtÞ�. The jth vertex in
the ith segment is denoted using vi

jðtÞ and the reconstructed
position of vj at ðt � 1Þ using �vjðt � 1Þ. The segments V iðtÞ
form the inputs to the ICP based motion prediction mod-
ule. ICP outputs the closest segment V iðt � 1Þ in the recon-
structed reference mesh V ðt � 1Þ for each V iðtÞ in V ðtÞ.
Now, the motion of the cluster V i can be described using
the affine transformation given by the least square solution

Ai ¼ V iðtÞ � ðV iðt � 1ÞÞ�

where ðV iðt � 1ÞÞ� represents the pseudo-inverse of
V iðt � 1Þ. The estimated position of the vertices in V i at t

is computed as

�vjðtÞ ¼ Ai � �vi
jðt � 1Þ

and the accuracy with which Ai can represent the vertex po-
sition vi

jðtÞ is given by the reconstruction error

ei
j ¼ kvi

jðtÞ � Ai � �vi
jðt � 1Þk

The coherent motion regions (that have undergone con-
sistent motion with respect to the temporal reference
V ðt � 1Þ) are determined using the mean reconstruction
error

�i ¼ 1

jV ij
X

j

ei
j

where jV ij denotes the number of vertices in V i. All the mo-
tion regions that correspond to an error less than a thresh-
old s are deemed as regions with acceptable motion error. s
is usually set to 0.25m, where m is the average motion be-
tween V ðtÞ and V ðt � 1Þ in our experiments. The motion

Fig. 6. Overview of partitioning based dynamic geometry compression
scheme.

S. Ramanathan et al. / Image and Vision Computing 26 (2008) 1012–1026 1019
segmentation algorithm divides the mesh vertices into three
sets.

• First set (Type 1) – consisting of clusters of vertices,
such that the motion of each of the clusters may be
described accurately using the associated affine trans-
form Ai. The reconstruction error for the vertices falling
in this set is less than s.

• Second set (Type 2) – consisting of clusters of vertices,
such that each cluster has an affine transformation
matrix Ai associated with it. In addition, residual errors
also need to be encoded for accurately representing the
vertex positions. The reconstruction error for the verti-
ces falling in this set using the affine transform alone is
less than 20 s in our experiments.

• Third set (Type 3) – consisting of vertices whose motion
cannot be described effectively using affine transforms.
These are encoded using DPCM-based techniques.

The ability of ICP based motion segmentation to divide
the vertices in the mesh into distinct sets helps achieve bet-
ter compression performance compared to other dynamic
geometry compression algorithms. This is because the
motion of Type 1 and Type 2 vertices, which constitute
over 70% of the total, can be described using a few affine
transformations and residual errors. Also, the residual
errors can be adaptively coded using variable number of
bits for different groups of vertices in order to maintain
the animation smoothness.

3.1.2. Repartitioning and vertex regrouping

For some regions, the Ais computed using the corre-
spondences output by ICP are associated with very high
reconstruction errors. These regions are re-clustered and
ICP based registration is repeated on these new partitions.
Also, in order to encode the inter-mesh motion using as few
parameters as possible, the Ais that accurately describe ver-
tex motion are applied to vertices in the neighboring clus-
ters as well. Finally, Ai is associated with the entire set of
vertices for which it provides a good motion estimate.
Our overall compression scheme is illustrated in Fig. 6.

3.2. Performance metrics

This section briefly describes the indices used for evalu-
ating various compression algorithms – Signal to Noise
Ratio (SNR) and compression performance. The SNR
and PSNR (Peak Signal to Noise Ratio) are considered
objective measures for comparing the quality of the com-
pressed data against the original data. We use the following
definition for the per-frame Peak Signal to Noise Ratio
(PSNR) proposed in [35] for evaluating the reconstruction
quality of the encoding scheme.

PSNR ¼ �10log10PMSE

where PMSE is the Peak Mean Square Error per vertex gi-
ven by
PMSE ¼
1

Nn

Pn
j¼1

1
3

P
i¼x;y;zðvjiðtÞ � �vjiðtÞÞ2

R2
where R is the maximum inter-mesh displacement for the
entire animation sequence, N n and n denote the number
of vertices that have moved between two consecutive
meshes and the total number of mesh vertices, respectively.
The PSNR provides a quantitative measure of the anima-
tion smoothness.

Another performance metric used for comparing vari-
ous compression algorithms is the compression ratio
which is defined as the size of the original data to the
encoded data. The coding framework produces two types
of meshes – I and P. I (Intra) meshes are encoded using
static mesh compression techniques and complete infor-
mation can be obtained by decoding the I mesh without
any reference. P (Predicted) meshes contain only the dif-
ferences from the temporally previous I or P mesh and
chiefly contribute to compression. The difference needs
to be added to the reference mesh data in order to
obtain the complete P mesh information. Though the
compression algorithm is inherently lossy, it is still
acceptable if the reconstructed animation is ‘‘perceptually
lossless’’, as there is a trade-off between compression and
quality. For P meshes, the following information needs
to be encoded:

• Affine matrices and vertices associated with each affine
transform matrix.

• Error values associated with the vertex positions for
Type 2 and Type 3 vertices.

To compactly encode the above information, the follow-
ing procedure is used:

1020 S. Ramanathan et al. / Image and Vision Computing 26 (2008) 1012–1026
• Vertices whose motion can be described using affine
transforms are given the symbol P. Every P vertex is
associated with a patch index to denote the associated
affine transform. When the patch index of the vertex
has not changed from the reference, a symbol N is used
to signify no change and the previous patch index is
used.

• Type 2 vertices are represented using the symbol E to
denote error information.

• Type 3 vertices encoded using DPCM techniques are
assigned the symbol D.

• As affine transforms associated with the vertex clusters
exhibit a high spatio–temporal correlation, the differ-
ences between the affine matrices are quantized and
encoded.

• The number of bits used to encode error data for Type 2

and Type 3 vertices is determined by the PSNR. More
bits are added to encode error for vertices whose PSNR
is below a certain threshold.

• Vertex symbols, affine matrices and residual errors are
encoded using Arithmetic coding.

The per-frame compression ratio (CR) is calculated as
follows:

CR

¼ ðBits for raw dataÞ
ðEncoded vertex data bitsþAffine transform bitsþError bitsÞ

The process of reconstructing mesh geometry from P

meshes is outlined in Fig. 7. When there is large inter-mesh
motion, the same vertex may be associated with a number
of affine transforms and many vertices may require error
information to be encoded, which results in considerably
lower compression ratios. Therefore, such meshes are en-
coded as I meshes for which only the spatial coherence in
mesh geometry is exploited. The Edgebreaker algorithm
[28] is used for encoding I meshes. Insertion of I meshes
helps maintain animation smoothness with a marginal
reduction in compression. Also, periodic transmission of
I meshes is necessary while transmitting data over noisy
channels and for enabling random access to the animation
sequence.

A number of encoding schemes also use (a) Distortion
Factor to evaluate reconstruction quality, and (b) Bits
per Vertex per-Frame for compression performance com-
Fig. 7. Reconstruction of mesh geometry from P meshes.
parison. The Distortion Factor, da (also called KGerror), is
defined as

da ¼ 100
kB� bBk
kB� CðBÞk

where B is a 3V � F matrix representing the geometry of
the V vertices in the F frames of the original animation,bB represents the reconstructed animation geometry and
CðBÞ contains the average vertex positions for the anima-
tion. The compression performance defined using encoded
Bits per Vertex per-Frame (bpvf) is related to the compres-
sion ratio as given by the following equation.

bpvf ¼Bits for encoding each vertex

F

¼ Raw data bitsðtotalÞ
Compressed bitsðtotalÞ

FV

� �¼ 96

Avg: compression ratio
4. Results and discussion

In this section, we study the impact of vertex clustering
on dynamic geometry compression by comparing the
aforementioned performance metrics for the various clus-
tering schemes.
4.1. Test animations and clustering statistics

Four animation sequences, namely, Chicken, Face,

Cow and Dance were used for comparing the clustering
schemes. The Chicken animation contains 400 frames
with each mesh in the sequence consisting of 3029 verti-
ces and 5664 triangles. The animation is highly non-lin-
ear with the motion becoming extremely rapid after
frame 260. The Face sequence contains a realistic anima-
tion of a talking human face in various poses and exhib-
iting various facial expressions as well. There are 952
frames in the sequence with 757 vertices and 1468 trian-
gles per mesh. The Cow (2904 vertices, 5804 triangles,
204 frames) animation is also a high-motion sequence
while the Dance sequence (7061 vertices, 14,118 triangles,
201 frames) depicts a person performing various dance
movements. Due to the similar nature of motion
throughout the Dance animation, we used only the first
100 meshes for our experiments.

Evidently, spectral decomposition takes the maximum
time for vertex clustering among the algorithms discussed
in this paper. As against k-way clustering, based on recur-
sive bisection followed by local refinement, and kd-tree
based Lloyd’s clustering (complexity Oðn log nÞ), spectral
decomposition runs in Oðp logðnÞÞ time, where n denotes
number of mesh faces and p is the required number of
recursive mesh cuts. The timing statistics for the various
clustering algorithms on a 3.6 GHz, 1 GB RAM PC, are
presented in Table 1. It is to be noted here that only the
I mesh is processed by the k-way and spectral clustering

Table 1
Clustering statistics showing number of vertex clusters and the time for
mesh segmentation taken by the different vertex clustering algorithms for
our test animations

Animation Clustering algorithm No. of clusters Clustering time (s)

Chicken k-way 32 0.02
Lloyd’s 31 0.1
Spectral 59 2.9

Cow k-way 32 0.05
Lloyd’s 30 0.1
Spectral 14 1.4

Dance k-way 64 0.2
Lloyd’s 71 0.25
Spectral 7 2.1

S. Ramanathan et al. / Image and Vision Computing 26 (2008) 1012–1026 1021
schemes to produce a single, representative set of clusters,
while Lloyd’s clustering is performed on every mesh in
the animation sequence since the clusters vary with the
mesh geometry (and therefore, the mean per-mesh cluster-
ing time is presented in the table).
4.2. Experimental results

The results of ICP based dynamic geometry compres-
sion [10] using k-way partitioning for the Chicken anima-
tion are shown in Fig. 8. An average compression of 45
is obtained for the animation using k-way partitioning with
about 100 vertices per cluster. One can observe that the
Lloyd’s clustering (Fig. 4) and spectral decomposition
(Fig. 5) schemes are able to segment the chicken’s neck
from its torso more effectively compared to k-way topology
partitioning (Fig. 2). The motion in frames 40–60 and 200–
230 (marked as A and B, respectively, in Fig. 8) is mainly
localized around the neck of the chicken as seen in Fig. 9.

For P frames, the per-frame compression is directly pro-
portional to the number of Type 1 and Type 2 vertices and
inversely proportional to the number of Type 3 vertices.
The number of Type 1 vertices, in turn, is determined by
how well the affine transforms computed using ICP based
registration can represent the piecewise motion of the
mesh. There exists a direct relationship between the num-
ber of Type 1 vertices registered using ICP and the accu-
Fig. 8. (a) Variation in the number of Type 1, Type 2 and Type 3 vertices usin
ratio (in blue) for the Chicken animation.
racy with which the initial clusters input to ICP can
represent the independent mesh regions. To illustrate this
point, we encoded frame sequences 40–60 and 200–230
using Lloyd’s clustering (100 vertices per cluster) and spec-
tral mesh decomposition (59 mesh components).

Table 2 shows that the number Type 1 vertices registered
using ICP are much higher when Lloyd’s and spectral clus-
tering are used instead to k-way graph partitioning for both
frame sequences. It is evident that the increase in the number
of Type 1 vertices owing to better quality of input clusters has
a direct impact on the compression performance. For frames
40–60, all mesh vertices are encoded as either Type 1 or Type

2. However, for frames 200–230, the motion is such that a
number of vertices need to be encoded using DPCM tech-
niques. For this frame sequence, while the number of Type

1 vertices registered using Lloyd’s and spectral clustering
are about the same, the number of Type 2 vertices are more
for spectral clustering compared to Lloyd’s resulting in
improved compression performance.

The latter part of the Chicken animation (frames 261–399
marked as C in Fig. 8) is characterized by extensive motion.
In these frames, while the computed affine transforms can
register a large number of vertices within the error threshold
s, reconstruction errors are associated with a large number
of vertices and the reconstructed animation is noisy. Addi-
tional bits need to be encoded to improve animation quality
at the expense of compression performance for these frames
as seen from Fig. 8(b). PSNR calculations are used to mea-
sure and improve the animation smoothness for this set of
frames. For each frame in the animation, we measure the
PSNR for Type 1, Type 2, Type 3 vertices and the entire
reconstructed frame for analysis. The minimum PSNR
required for ensuring smooth animation reconstruction var-
ies for different sequences and depends on the nature of the
mesh motion. A minimum PSNR of 35 db is required for
the Chicken sequence with R = 0.7662 (while a PSNR
threshold of 20 db is sufficient for the low-motion Face

sequence with R = 0.0673). The frame PSNR can be
improved by (i) allocating extra bits for encoding Type 2

and Type 3 vertices (ii) using a smaller error threshold s
to register Type 1 vertices and (iii) transmission of I meshes.
Examples of (i) and (ii) are shown in Fig. 10.
g k-way partitioning and (b) Per-frame PSNR (in pink) and compression

Fig. 9. Frames 48, 56, 203 and 221 of the Chicken animation.

Table 2
Impact of vertex clustering on compression performance for frame sequences (a) 40–60, (b) 200–230 and (c) 261–399 of the Chicken animation

Frame Nos. Clustering mode Type 1 count (avg) Type 2 count (avg) CR (avg) PSNR (avg)

40–60 k-way 733 2296 52 66.1
Lloyd’s 746 2283 52.2 66.5
Spectral 839.6 2189.4 52.8 67

200–230 k-way 470 1787 45.6 63.7
Lloyd’s 604 1632 47.2 63.9
Spectral 603 1925 48.3 64.6

261–399 k-way 264 1406 38.3 51.1
Lloyd’s 357 1299 39.9 50.8
Spectral 296 1407 39.1 51.1

The number of Type 1 vertices and compression ratios increase with improvement in quality of input clusters.

Fig. 10. (a) Reconstructed frame 286 with (i) PSNR = 25.7 db (CR = 46.6) and (ii) PSNR = 43.2 db using s ¼ m=11 and 6 bits for error encoding
(CR = 46.3). (b) Reconstructed frame 320 with (i) PSNR = 31.8 db (CR = 49.5) and (ii) PSNR = 39.7 db using s ¼ m=7 and 5 bits for error encoding
(CR = 49.3).

1022 S. Ramanathan et al. / Image and Vision Computing 26 (2008) 1012–1026
For frames 261–399, Lloyd’s clustering performs better
than spectral clustering and provides the best compression
performance (Table 2). This is because the motion in these
frames is concentrated around the chicken’s wings which is
not well segmented by spectral clustering. The rapidness in
motion also necessitates a number of meshes in the anima-
tion to be coded as I meshes which correspond to the min-
ima in the compression curve. The performance of various
dynamic geometry coding schemes for the Chicken anima-
tion is presented in Table 3 and we find that the use of a
potent clustering mechanism can bring about a 3.8%
improvement in compression.

For the Face sequence, the inter-frame motion is very
low and very few vertices are registered with s ¼ m=4 for
many frames. The compression results for the different
clustering schemes for s ¼ m=4; m=3 and m=2 are shown in
Table 4. Clearly, spectral clustering produces higher com-
pression performance than Lloyd’s or k-way partitioning.
The ability of the spectral clustering algorithm to accu-
rately segment the various face regions (Fig. 5) enables
the ICP module to register a maximum number of Type 1

vertices. This leads to a major improvement in the com-
pression performance even when the encoded mesh is small
in size. The compression obtained using spectral clustering
is 9.7%, 15% and 7.8% higher than k-way partitioning for s
equal to m=4; m=3 and m=2, respectively. However, the com-
pression obtained using Lloyd’s and k-way partitioning is
very similar inspite of Lloyd’s clustering producing better

Table 3
Performance of various dynamic geometry compression algorithms for the
Chicken animation (uncompressed file size = 13.9 MB)

Compression algorithm CR da

Motion compensated compression [1] 10
Motion vector prediction-based compression [37] 18.3
Time-dependent geometry compression [20] 27
PCA representation [2] 39.8
Connectivity-guided connectivity compression [32] 33 0.13
Clustered PCA Analysis [29] 34.3 0.076
Partitioning based compression [10] 45.3 0.11
[10] with spectral 46.6 0.12
[10] with Lloyd’s 46.7 0.12
Local PCA Analysis [3] 64 0.057

Table 4
Compression performance of the different clustering schemes algorithms
at various values of s for the Face animation

ICP threshold
(s)

Clustering
scheme

Type 1

count
CR
(avg)

PSNR
(avg)

m/4 k-way 182 41.9 44.3
Lloyd’s 165 41.2 44.5
Spectral 268 45.9 43.8

m/3 k-way 372 53.3 39.9
Lloyd’s 367 52.9 40
Spectral 526.8 61.3 39.2

m/2 k-way 670 69.5 34.4
Lloyd’s 675 69.2 33.9
Spectral 710 74.9 34.9

S. Ramanathan et al. / Image and Vision Computing 26 (2008) 1012–1026 1023
quality clusters. This is possibly because a marginal
improvement in cluster quality cannot significantly
improve the number of Type 1 vertices for the low-motion,
small-sized Face mesh sequence. A PSNR threshold of
20 db is sufficient to smoothly reconstruct the animation.
The SNR measure proposed in [10] does not work well
for the Face animation and very low SNR values are
obtained even when the reconstructed animation is
smooth. Some of the reconstructed frames in the Face ani-
mation are shown in Fig. 11.

Some partitioned frames of the Cow and the Dance ani-
mations are shown in Fig. 12. A minimum PSNR of 35 db
is required to smoothly reconstruct the animation for both
Fig. 11. Reconstructed frames of the Face animation. (a) Frame 704 with PSN
and (c) frame 108 with PSNR = 25.4 db (CR = 71.6).
sequences. As seen from the figure, the number of mesh
clusters are more for k-way and Lloyd’s compared to spec-
tral clustering. As vertex clustering is performed solely
based on proximity for k-way and Lloyd’s clustering, the
cluster sizes affect the compression and SNR performance
as observed in [10]. While ICP works well on small-sized
clusters, a large number of mesh clusters are associated
with increased processing time and reduced compression
performance (as more affines need to be encoded). Also,
large-sized clusters produce registration errors and conse-
quently, a degradation in compression and SNR perfor-
mance. We observe that optimal compression and SNR
performance is achieved for cluster sizes of 100 and 125
for k-way and Lloyd’s clustering, respectively.

Fig. 13(a) outlines the compression performance
obtained using the various clustering algorithms for the
Cow sequence. The animation is characterized by high-
motion and I meshes need to be encoded frequently after
frame 100. Lloyd’s clustering enables most efficient encod-
ing of the mesh motion as shown in Table 5. The number
of Type 1 vertices is minimum for spectral clustering but
it still outperforms k-way partitioning as the number of
registered Type 2 vertices are more. The poor perfor-
mance of spectral compression for the Cow and the latter
part of the Chicken animations underline the limitations
of semantic mesh decomposition. This is because the mesh
decomposition is purely based on the intrinsic geometric
structure of the mesh. While it is difficult to achieve accu-
rate segmentation of the mesh into distinctive compo-
nents, efficient segmentation of coherent motion regions
can only be performed by exploiting the motion cues
available from the animation. Overall, about a 4%
improvement in compression performance is obtained
when Lloyd’s clustering is used instead of graph partition-
ing. On the other hand, spectral clustering performs
exceedingly well for the Dance animation. As evident
from Fig. 13(b), the compression performance obtained
using spectral clustering is significantly higher compared
to Lloyd’s clustering and k-way partitioning due to the
increased number of ICP registered Type 1 vertices. The
use of spectral clustering improves compression perfor-
mance by over 10% for the Dance animation as shown
in Table 5.
R = 32 db (CR = 32.5), (b) frame 904 with PSNR = 29.6 db (CR = 43.7)

Fig. 12. Frames of the Cow and Dance animations partitioned using (a) k-way (b) Lloyd’s and (c) spectral clustering.

Fig. 13. Compression performance obtained using the different clustering schemes for (a) Cow and (b) Dance animations.

Table 5
Compression performance of the different clustering schemes algorithms for the Cow and Dance animations

Animation Clustering Type 1 count Type 2 count CR (avg) % improvement PSNR (avg)

Cow k-way 351 1386 40.3 – 43
Spectral 332.3 1597 41.7 3.5 44.7
Lloyd’s 368 1581 42 4.2 42.5

Dance k-way 312 4038 41.4 – 42.2
Lloyd’s 414 3993 41.9 1.2 42.9
Spectral 740 4765 45.8 10.6 41.5

1024 S. Ramanathan et al. / Image and Vision Computing 26 (2008) 1012–1026
4.3. Static vs motion-based mesh segmentation

As seen from the experimental results, the clustering
scheme employed to segment the mesh for motion detec-
tion greatly affects compression performance. The dis-
cussed clustering schemes, namely, k-way partitioning,
Lloyd’s clustering and Spectral mesh decomposition are
static mesh segmentation techniques that segment the mesh
to be encoded into smaller pieces without any temporal
considerations. For encoding motion in dynamic mesh
sequences, temporal cues can also be used to group vertices
likely to undergo similar motion. Motion-based segmenta-
tion can facilitate identification of those ‘‘pieces’’ that can-
not be easily detected using static mesh decomposition. For
example, for the human figure in the Dance sequence, seg-
mentation of the arms and limbs is achieved by spectral
clustering (Fig. 12). Motion cues can be used to achieve
further segmentation around articulated joints like the
elbow and knee, and clearly, the segmented parts will cor-
respond to the coherent motion regions better.

Recently, two approaches that perform motion-based
clustering to efficiently represent motion have been found
to achieve high compression performance. Sattler et al.
[29] proposed the clustered PCA (CPCA) approach to
dynamic geometry compression that can identify the mesh
parts undergoing coherent motion over time. The vertex

S. Ramanathan et al. / Image and Vision Computing 26 (2008) 1012–1026 1025
trajectories are clustered using Lloyd’s clustering [24] in
combination with PCA to segment the coherent mesh
parts. Each mesh part is then compressed using PCA on
the complete animation as performed in [2]. This method
results in higher compression than standard PCA and
PCA + LPC approaches while producing lesser distortion.
Also, Amjoun and Straßer [3] proposed local PCA-based
compression, where the mesh is segmented into clusters
based on local motion characteristics and a local coordi-
nate system is defined for each cluster, with respect to
which the cluster motion is encoded. Table 6 compares
the performance of ICP-based compression using spectral
clustering with CPCA- and LPCA-based compression for
similar distortion.

From the table, it is evident that for the bpvf values for
ICP-based compression using spectral decomposition are
much lower than those for Clustered PCA for comparable
values of distortion. While LPCA-based compression per-
forms better than CPCA- or ICP-based coding for the
Chicken sequence, ICP coding with spectral clustering
achieves maximum compression for the Cow animation.
This could be attributed to the inadequate segmentation
achieved by the pure motion-based clustering schemes in
[29,3]. While motion-based clustering can produce meaning-
ful segmentation of the mesh into components, e.g. wings
and legs of the Chicken, more coherent mesh segments are
obtained for the Cow using spectral decomposition
(Fig. 12) compared to pure motion-based clustering. An
ideal segmentation scheme for compressing dynamic geom-
etry should involve a first level of segmentation using static
mesh segmentation techniques like spectral decomposition
which is further refined using motion-based analysis. Future
work should involve development of such a segmentation
scheme that can maximize compression performance for
3D dynamic geometry.

5. Conclusions

We will now summarize our major observations on the
impact of clustering on dynamic mesh coding as follows:

• As demonstrated by our results, use of a potent cluster-
ing algorithm alone can bring about a significant
improvement in compression performance. Topology-
based clustering of the mesh into pieces based on vertex
Table 6
Comparison of CPCA- and LPCA-based compression with ICP-based
compression using Spectral clustering for the Chicken and Cow animations

Animation CPCA-based
compression

LPCA-based
compression

ICP-based
compression

bpvf da bpvf da bpvf da

Chicken 4.7 0.076 3.5 0.008 2.16 0.12
2.8 0.139 1.5 0.057 1.72 0.26

Cow 7.4 0.16 6.8 0.128 2.9 0.33
3.8 0.50 4.1 0.47 2.3 0.47
2.0 7.4 2.2 1.22 1.9 0.9
adjacency as given by the connectivity matrix is ineffi-
cient for encoding dynamic geometry sequences. Clus-
tering based on mesh geometry or a semantic
decomposition of the mesh into components can pro-
duce better compression.

• Spectral mesh decomposition, in general, produces the
best compression performance and results in higher
compression (by as much as 10%) over Lloyd’s or k-
way clustering. The improvement in compression per-
formance is chiefly due to the increased number of
ICP registered Type 1 vertices. ICP tends to register
more vertices when the input vertex clusters can approx-
imate the coherent motion regions better.

• Geometry-based Lloyd’s clustering performs signifi-
cantly better than the other clustering schemes when
the inter-mesh motion is high (latter part of the Chicken

and the Cow animations). However, the performance of
Lloyd’s clustering and k-way partitioning are very simi-
lar when the inter-frame motion is low as in the Face

and Dance sequences.
• When the inter-mesh motion is high, spectral decomposi-

tion does not perform as well. This is because automated
mesh decomposition is a difficult problem and the gener-
ated mesh components are not always accurate. Also,
when the motion is rapid, the mesh can be assumed to typ-
ically consist of many motion regions. Efficient motion
encoding would only be possible if a majority of these
motion regions can be detected. Motion cues need to be
employed to discover these motion regions.

• Future work should focus on developing an efficient
clustering mechanism for animations. The mesh segmen-
tation strategy should use global mesh features (given by
the mesh geometry) as well as local motion characteris-
tics to detect the coherent motion regions. We believe
that such a mesh segmentation approach can enable
very efficient compression of 3D dynamic geometry.

Acknowledgements

We are thankful to Rong Liu and Richard Zhang for the
discussions we had during the course of this paper. Thanks
are due to Sumit Gupta for his valuable comments and
suggestions. The Chicken animation was created by An-
drew Glassner, Tom McClure, Scott Benza and Mark
Van Langeveld and is the property of Microsoft Corpora-
tion. The Face sequence is the property of Visage Technol-
ogies. The Cow and Dance animations were kindly
provided by Matthias Müller, ETH Zurich.
References

[1] J.H. Ahn, C.S. Kim, C.C. Kuo, Y.S. Ho, Motion compensated
compression of 3d animation models, Electronic Letters 37 (24)
(2001) 1445–1446.

[2] M. Alexa, W. Muller, Representing animations by principal compo-
nents, EUROGRAPHICS 19 (3) (2000) 411–418.

1026 S. Ramanathan et al. / Image and Vision Computing 26 (2008) 1012–1026
[3] R. Amjoun, W. Straßer, Efficient compression of 3d dynamic mesh
sequences, 2007.

[4] P. Besl, N. McKay, A method of registration of 3d shapes, IEEE
Transactions on Pattern Analysis and Machine Intelligence 14 (2)
(1992) 239–256.

[5] M. Brand, K. Huang, A unifying theorem for spectral embedding and
clustering, in: Proceedings of the Ninth International Workshop on
Artificial Intelligence and Statistics, 2003.

[6] M. Chow, Geometry compression for real-time graphics, in: Pro-
ceedings of Visualization ’97, 1997.

[7] D. Cohen-Or, O. Remez, D. Levin, Progressive compression of
arbitrary triangular meshes, in: Proceedings of Visualization ’99, 1999.

[8] M. Deering, Geometry compression, in: Proceedings of SIGGRAPH
’95, 1995, pp. 13–20.

[9] S. Gumhold, W. Strasser, Real time compression of triangle mesh
connectivity, in: Proceedings of SIGGRAPH ’98, 1998, pp. 133–140.

[10] S. Gupta, K. Sengupta, A. Kassim, Compression of 3d dynamic
geometry data using iterative closest point algorithm, Computer
Vision and Image Understanding 87 (2002) 116–130.

[11] I. Guskov, A. Khodakovsky, Wavelet compression of parametrically
coherent mesh sequences, in: SCA ’04: Proceedings of the 2004 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation,
2004, pp. 183–192.

[12] B. Hendrickson, R.W. Leland, An improved spectral graph parti-
tioning algorithm for mapping parallel computations, SIAM Journal
on Scientific Computing 16 (2) (1995) 452–469.

[13] B. Hendrickson, R.W. Leland, A multi-level algorithm for partition-
ing graphs, in: Supercomputing, 1995.

[14] L. Ibarria, J. Rossignac, Dynapack: space–time compression of the 3d
animation of triangle meshes with fixed connectivity, in: Proceedings of
the ACM SIGGRAPH Symposium on Computer Animation, 1999.

[15] T. Kanungo, D.M. Mount, N.S. Netanyahu, C.D. Piatko, R.
Silverman, A.Y. Wu, The analysis of a simple k-means clustering
algorithm, in: Proceedings of the 16th Annual Symposium on
Computational Geometry, 1991, pp. 100–109.

[16] Z. Karni, C. Gotsman, Compression of soft body animation
sequences, Computers and Graphics 28 (2004) 25–34.

[17] S. Katz, A. Tal, Hierarchical mesh decomposition using fuzzy
clustering and cuts, ACM Transactions on Graphics 22 (3) (2003)
954–961.

[18] B.W. Kernighan, S. Lin, An efficient heuristic procedure for partition-
ing graphs, The Bell System Technical Journal 49 (2) (1970) 291–307.

[19] R. Koenen, Overview of the MPEG-4 standard, Moving Picture
Experts Group (2000).

[20] J. Lengyel, Compression of time dependent geometry, in: Symposium
on Interactive 3D Graphics, 1999, pp. 89–95.

[21] J. Li, C. Kuo, A dual graph approach to 3d triangular mesh
compression, in: Proceedings of the IEEE International Conference
on Image Processing, 1998.
[22] X. Li, T. Toon, T. Tan, Z. Huang, Decomposing polygon meshes for
interactive applications, in: Proceedings of the Symposium on
Interactive 3D Graphics, 2001, pp. 35–42.

[23] R. Liu, H. Zhang, Segmentation of 3d meshes through spectral
clustering, in: Proceedings of Pacific Graphics, 2004, pp. 298–305.

[24] S.P. Lloyd, Least squares quantization in pcm, IEEE Transactions on
Information Theory 18 (2) (1982) 129–137.

[25] K. Muller, A. Smolic, M. Kautzner, P. Eisert, T. Wiegand, Predictive
compression of dynamic 3d meshes, in: ICIP05, 2005, pp. 589–592.

[26] R. Pajarola, J. Rossignac, Compressed progressive meshes, IEEE
Transactions on Visualization and Computer Graphics 6 (1) (2000)
79–93.

[27] F. Payan, M. Antonini, Wavelet-based compression of 3d mesh
sequences, in: Proceedings of IEEE ACIDCA-ICMI ’2005, 2005.

[28] J. Rossignac, Edgebreaker: Connectivity compression for triangle
meshes, IEEE Transactions on Visualization and Computer Graphics
5 (1) (1999) 47–61.

[29] M. Sattler, R. Sarlette, R. Klein, Simple and efficient compression of
animation sequences, in: SCA ’05: Proceedings of the 2005 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation,
2005, pp. 209–217.

[30] A. Shamir, C. Bajaj, V. Pascucci, Multi-resolution dynamic meshes
with arbitrary deformations, in: Proceedings of the Conference on
Visualization ’00, 2000, pp. 423–430.

[31] H. Simon, Partitioning of unstructured problems for parallel
processing, in: Proceedings of the Conference on Parallel Methods
on Large Scale Structural Analysis and Physics Applications,
Pergammon Press, 1991.

[32] N. Stefanoski, J. Ostermann, Connectivity-guided predictive
compression of dynamic 3d meshes, in: ICIP06, 2006, pp.
2973–2976.

[33] G. Taubin, J. Rossignac, Geometric compression through topological
surgery, ACM Transactions on Graphics 17 (2) (1998) 84–115.

[34] C. Touma, C. Gotsman, Triangle mesh compression, in: Proceedings
of Graphics Interface, 1998, pp. 26–34.

[35] S. Varakliotis, J. Ostermann, V. Hardman, Coding of animated 3d
wireframe models for internet streaming applications, in: Proceedings
of International Conference on Multimedia and Expo., 2001, pp. 353–
356.

[36] Y. Weiss, Segmentation using eigenvectors: a unifying view, in:
International Conference on Computer Vision, 1999, pp.
975–982.

[37] J. Yang, C. Kim, S. Lee, Compression of 3-d triangle mesh
sequences based on vertex-wise motion vector prediction, IEEE
Transactions on Circuits and Systems for Video Technology 12 (12)
(2002) 1178–1184.

[38] H. Zhang, R. Liu, Mesh segmentation via recursive and visually
salient spectral cuts, in: Proceedings of Vision, Modeling and
Visualization, 2005.

	Impact of vertex clustering on registration-based 3D dynamic mesh coding
	Introduction
	Motivation
	Organization

	Overview of vertex clustering techniques
	Multilevel k-way graph partitioning
	Lloyd ' s k-means clustering
	3D mesh segmentation using spectral clustering

	ICP based 3D dynamic geometry compression
	Algorithm description
	ICP based motion segmentation
	Repartitioning and vertex regrouping

	Performance metrics

	Results and discussion
	Test animations and clustering statistics
	Experimental results
	Static vs motion-based mesh segmentation

	Conclusions
	Acknowledgements
	References

