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Figure 1. MoRAG is a retrieval-augmented framework for generating human motion from text. It integrates part-specific motion retrieval
models with large language models to improve the quality of generation and retrieval tasks across various text descriptions. The black
arrow illustrates motion translation. In the bottom figures, red, blue, and green represent the retrieved motion for the hands, torso, and
legs. The varying transparency in the figure indicates the progression of time steps.

Abstract

We introduce MoRAG, a novel multi-part fusion based
retrieval-augmented generation strategy for text-based hu-
man motion generation. The method enhances motion dif-
fusion models by leveraging additional knowledge obtained
through an improved motion retrieval process. By effec-
tively prompting large language models (LLMs), we ad-
dress spelling errors and rephrasing issues in motion re-
trieval. Our approach utilizes a multi-part retrieval strategy
to improve the generalizability of motion retrieval across
the language space. We create diverse samples through the
spatial composition of the retrieved motions. Furthermore,

by utilizing low-level, part-specific motion information, we
can construct motion samples for unseen text descriptions.
Our experiments demonstrate that our framework can serve
as a plug-and-play module, improving the performance of
motion diffusion models. Code, pretrained models and
sample videos will be made available at: https://motion-
rag.github.io/

1. Introduction

Text-driven human motion generation has seen unprece-
dented growth in recent years [16, 30, 36-38,40]. Numer-
ous works have been proposed for this task, ranging from


https://motion-rag.github.io/
https://motion-rag.github.io/

Motion Retrieval Method | Text Robustness | Generalizability | Diversity | Zero-shot setting

TMR [23] | X | X | x ] X
TMR++ [5] | v | X | x ] X
Ours | v | v | v v

Table 1. Comparision of text-to-motion retrieval approaches

encoder-decoder style architectures [2, | |, 12] to the recent
emerging trend of diffusion-based models [7,306,38], which
generate fine-grained, realistic motion sequences. While
they can generate high-quality motion sequences for sim-
ple or familiar text descriptions similar to those in the train-
ing set, they perform poorly with complex or unseen text
descriptions.

Retrieval-augmented Generation (RAG) has gained sig-
nificant attention in recent years for its potential to enhance
generative models by incorporating additional information
through retrieval methods [9,39]. By integrating retrieval-
based techniques with generative models, RAG produces
outputs that are more accurate, contextually relevant, and
reliable. Moreover, this additional information helps en-
hance the model’s generalizability across language space
and also improves the stochasticity. However, the applica-
tion of RAG in motion generation is underexplored.

A RAG system typically comprises two key components:
the retriever and the generator. The retriever identifies rele-
vant information from a database based on the input query,
while the generator uses both the input query and the re-
trieved information to generate the desired content.

Recently proposed text-to-motion retrieval approaches
[23, 33] aim to retrieve full-body motion sequences from
the motion database using a contrastive training strategy
between text and motion embeddings. However, these re-
trieval strategies do not perform well when text phrases con-
tain spelling errors, rephrased text sequences, or substitu-
tion of synonymous words. (See Fig. 5)

Action-GPT [16], TMR++ [5] prompt large-language
models (LLMs) to provide detailed descriptions as input.
However, these approaches are limited in their ability to
generate or retrieve motion sequences for text descriptions
that are not present in the database, restricting the diversity
of output motion sequences and reducing generalization to
out-of-domain or unseen text descriptions ( Fig. 6 (a))

Based on the RAG concept, ReMoDiffuse [37], adopts
a hybrid retrieval approach using motion length and CLIP
[26]-based text-to-text similarity, which does not incorpo-
rate any motion-specific information, which can result in
inaccurate retrievals (Fig. 2) and motion generation. (Fig. 6
(b))

To overcome these shortcomings, we propose a multi-
part fusion-based augmented motion retrieval strategy that
is capable of constructing diverse and reliable motion se-
quences. We train part-specific independent motion re-
trieval models that retrieve motion sequences with move-

ments corresponding to each part aligned with the pro-
vided text description. The retrieved part-specific motion
sequences are fused accordingly to construct full body mo-
tion sequences, allowing our method to even query unseen
text descriptions.

Our experiments show that incorporating the constructed
motion sequences as an additional conditioning to the dif-
fusion based motion generation model improves the align-
ment with the semantic information of the text description
and diversity of generated sequences.
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Figure 2. MoRAG utilizes part-specific descriptions to effectively
retrieve relevant samples, demonstrating robustness to variations
in motion length and descriptive text. In contrast, ReMoDiffuse
[37], a hybrid approach based on motion length and text similarity,
fails to retrieve suitable samples when there are changes in motion
length or text. Each figure of ReMoDiffuse displays the retrieved
text at the top and the corresponding motion length in brackets.
For MoRAG, three part-specific retrieved texts, along with their
corresponding HumanML3D [12] ID, are provided using the #.

and cross to indicate whether the motion corresponds to the
input text.

MoRAG

In summary, our contributions are as follows:

* We propose MoRAG, a novel multi-part fusion-based
retrieval augmented human motion generation frame-
work to enhance the performance of the diffusion
based motion generation model.

e We adapt part-wise motion retrieval approach that
utilizes gemerative prompts to construct motion se-
quences that align with the provided text description.

* Motion sequences constructed using our retrieval strat-
egy exhibit superior generalization and diversity, as
shown by the qualitative and quantitative analysis.

2. Related Works

Text-conditioned human motion generation The early
research efforts concentrated on encoder-decoder models
with multimodal joint embedding space spanning both text
and motion domains [!, 2]. Text2Action [I] proposed a
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Figure 3. MoRAG Overview: Given a text description text, we generate part-specific descriptions corresponding to Torso,” "Hands,”
and “Legs” by prompting an LLM. These generated descriptions are used as queries to retrieve corresponding part-specific motions: Rf,, .o,
Rzands, and Rfegs from the mqtion databases Diorso, Dhands, and Diegs, respectively. The retrieved motions are then fused to construct
a full-body motion sequence C" that aligns with the input text. The constructed motion samples are used as additional information in the
motion generation pipeline during both training and inference, alongside the input text, to further improve model performance.

GAN based generative model constituting RNN based text
encoder and action decoder. JL2P [2] focused on learn-
ing a joint embedding space for language and pose on the
motion reconstruction task using text and motion embed-
ding. Ghosh et al. [11] further improved the joint embed-
ding space using a hierarchical two-stream model where
two motion representations are learned, one for each lower
body and upper body.

To enhance the text-to-motion generalizability, Motion-
CLIP [29] incorporated image embedding of the poses into
the training paradigm alongside text embedding. Both the
image and text embedding are generated using CLIP. [26].
TEMOS [22] proposed a transformer based VAE encoding
approach for text and motions to improve the diversity of
generated motion sequences. TEACH [3] extends TEMOS
[22] with an additional past motion encoder to generate long
motion sequences using the text description and previous
sequence. T2M-GPT [35] transforms the challenge of text-
conditioned motion generation into a next-index prediction
task by encoding motion sequences as discrete tokens and
utilizing a transformer to predict future tokens.

Unlike the above mentioned approaches, we propose a
novel multi-part fusion-based augmented motion retrieval
strategy to improve the diversity of retrieved motions and to
enhance their generalizability for unseen text descriptions.

Motion Diffusion Models With recent advancements in
diffusion models for text and image domain tasks, several
works have been proposed in the area of text-to-motion gen-
eration. MotionDiffuse [36] incorporated efficient DDPM
in motion generation tasks to generate diverse, variable-
length, fine-grained motions. MDM [30] is a lightweight
diffusion model that utilizes a transformer-encoder back-
bone. Instead of predicting noise, it predicts motion sam-
ples, allowing geometric losses to be used as training con-

straints. MLD [7] adapted the diffusion process on latent
motion space instead of using raw motion sequences, gen-
erating better motions at a reduced computational overhead.
However, these diffusion-based models struggle to gen-
eralize across the language space, especially when dealing
with complex or unusual text descriptions. Recent text-
to-image generation works introduced retrieval-augmented
pipelines in their frameworks [6] to address such issues.
ReMoDiffuse [37] extended MotionDiffuse [36] by inte-
grating a hybrid retrieval mechanism to refine the denois-
ing process. We improve the generalizability and diversity
of ReMoDiffuse by the inclusion of large language models
(LLMs) and the integration of part-specific retrieval.

Text-to-Motion retrieval Recently, significant progress
has been made by multi-modal retrieval based systems in
the field of text-to-image [18, 25,26, 34] and text-to-video
[8, 10]. However, it has been underexplored in the field of
text-to-motion due to the lack of large and diverse anno-
tated motion capture datasets. Recent works such as BA-
BEL [24] and HumanML3D [12] have provided detailed
description annotations for the large-scale motion capture
collection AMASS [21]. Following, a few works have been
proposed in the field of text-to-motion retrieval.

Initially, motion generation works [12] used retrieval as
a performance metric for evaluation purposes. TMR [23]
is the first work to showcase text-to-motion retrieval as a
standalone task. To query motions, TMR [23] adopted the
idea of contrastive learning from CLIP [26] and extended
text-to-motion generation model TEMOS [22]. Although
TMR demonstrated impressive results, there is a large scope
for improvement in the generalizability of the model over
language space. LAVIMO [33] integrated human-centric
videos as an additional modality in the task of text-to-
motion retrieval to effectively bridge the gap between text



and motion. TMR++ [5] extended TMR by leveraging
LLM:s in the motion retrieval pipeline via label augmenta-
tions to increase the robustness and generalizability. How-
ever, a significant gap remains in utilizing these existing re-
trieval strategies for retrieval-based human motion genera-
tion approaches due to their lack of diversity and generaliz-
ability for complex or unseen text descriptions.

3. Proposed Method

Fig. 3 illustrates our multi-fusion retrieval-augmented
human motion generation framework, MoRAG, which
aims to enhance the performance of diffusion based mo-
tion generation model by leveraging additional motion in-
formation constructed using part-specific motion retrieval.
Given an input text description text, we generate N
diverse, semantically coherent human motion sequences
{HY,...,H", ..., HN}. We prompt the input text descrip-
tion to an LLM to generate motion descriptions specific
to the ”Torso,” "Hands,” and “Legs” (Sec.3.2). These de-
scriptions are used for the retrieval of part-specific full-body
motion sequences from pre-computed part-specific motion
databases (Sec.3.3). The retrieved motion sequences are
then fused to construct full-body motion sequences, which
serve as additional knowledge for the diffusion model
(Sec.3.4). This methodology enhances the model’s ability
to effectively handle both typical and complex/unseen input
conditions (Sec.3.5).

3.1. Augmented Motion Retrieval Strategy

The key component of the MoRAG framework is the re-
trieval of diverse and semantically aligned motion samples
from the database based on the given input text query. Exist-
ing text-to-motion retrieval methods [5, 23, 33] typically re-
trieve full-body motion samples directly from the database.
However, these approaches overlook the fact that actions
are frequently characterized by localized dynamics, often
involving only small subsets of joint groups, such as the
hands (e.g., ‘eating’) or legs (e.g., ‘sitting’). [14,31] This
results in two significant issues: (i) limited generalizability
and (ii) lack of diversity in the retrieved samples. (See Ta-
ble 1 and Fig. 6 (a)) This is due to the limited availability
of text-motion annotated datasets. Although BABEL [24]
and HumanML3D [12] provide detailed text annotations for
the large-scale motion capture collection AMASS [2 1], they
are still insufficient to generalize across the language space.
However, the AMASS dataset contains extensive low-level
body parts information that holds the potential to generalize
across a significantly broader language space.

Based on this observation, we design independent part-
specific motion retrieval models that can retrieve full-body
motion sequences with movements corresponding to spe-
cific parts aligned with the provided text description. This
enables dedicated part descriptions for retrieval of actions

involving specific part movement. By composing these mo-
tion samples, we can construct full-body motion sequences
that are semantically coherent with the given text input.
The composition also improves the expressivity of motions,
since fine-grained motion details are often expressed in text
in terms of body parts. The wide variety of composing com-
binations provides huge diversity in the constructed motion
samples. Integrating these samples into a motion generation
pipeline as additional information can enhance the model’s
performance. We also observe better generations for unseen
text descriptions. (See Fig. 6 (b))

The objective is to construct a series of motion sequences
{Ct,...,C% ...,C*} from the motion database ranked
from 1 to k where each motion sequence C? is represented
as a sequence of human poses {Cf,...,Cy,...,C} } with
fi representing the number of timesteps for motion C*. The
motion retrieval strategy in MoRAG comprises three steps:
(1) generating part-specific body movement descriptions,
(2) retrieving part-specific motion sequences, and (3) com-
posing the retrieved motion sequences. Details of each are
provided in the following section.

3.2. Generation of part-specific descriptions

Given the text description text, we generate part
specific body movement descriptions using an LLM as
a knowledge engine. We construct a suitable prompt
textprompt, for text using a prompt function fprompts
comprising of three components:

(i) Task instructions, to specify the details of our task:

"The instructions for this task is to describe the listed body
parts’ position and movements in a sentence using simple
language. ['Torso’, Hands’, "Legs’]”

(ii) Few-shot examples, provides a set of examples con-
sisting of diverse action descriptions to determine the for-
mat of the output we are expecting.

(iii) Query, to incorporate the input text text to gen-
erate part-specific body movement and orientation informa-
tion.

”Query: Describe the below body parts position and
movements involved in the action [text] in a sentence
using simple language. 1) Torso 2) Hands 3) Legs”.

Specifically prompting for the position provides the
global orientation of the body parts which results in better
retrieval.

The constructed prompt is then passed through LLM to
generate descriptions of the positions and movements for
the specified body parts denoted as textiorso, tE€XTt hands
and textcg,. Training aretrieval model on these body part
descriptions enables the retrieval of motions for rephrased
and spell-error text phrases, thereby having a better gener-
alization over language space. (Fig.5)
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Figure 4. MoRAG Training: Our objective is to construct three independent part-specific motion databases. The training paradigm
includes three motion retrieval models: MoRAG+torso, MORAGhands, and MoRAG g4s, each corresponding to a specific body part.
We train these three models independently using part-specific body movement descriptions generated by LLMs for text phrases text;
and their corresponding full-body motion sequences motion;. We adopt a contrastive training objective between part-specific text em-
beddings (Zgj ;) generated by text encoders (TPE ") and motion embeddings (Z;,‘f’,-) generated by the corresponding part-specific motion
encoder(MpE ). The diagonal elements, representing positive pairs (green), are maximized, while the off-diagonal elements, representing
negative pairs with text similarity below a threshold (red), are minimized. For simplicity, we do not visualize the motion decoder, but we

follow a similar training procedure as described in [23].

3.3. Multi-part motion retrieval

As shown in Fig. 4, MoRAG uses 3 indepen-
dently trained TMR [23] models, MoRAG =
{MoRAGors0, MORAGhands, MORAG ¢q4s} corre-
sponding to the respective body part. We do not train
separate left and right body parts models to avoid asyn-
chronous movements in the composed motion.  For
a part p € {torso,hands,legs}, the retrieval model
MoRAG), = {TE”C,ME”C,MEEC,DE”C} consists of a
text encoder, motion encoder, motion decoder, and motion
database respectively. The model architecture for the
encoder and decoder are based on TEMOS [22].

Text Encoders (Tf”c) : The LLM-generated part-
specific motion descriptions of the text sequence text are
first passed through a pre-trained and frozen DistilBERT
[27] to generate features ]—'pT for each part-wise text de-
scription text,. Along with the features }'pT , two learn-
able distribution tokens are passed as input to the text en-
coders. The outputs corresponding to the distribution tokens
passed are considered as Gaussian distribution parameters
(pp and o) from which the latent vector Z is sampled
using reparametnzatlon trick [17].

(up, p) =1 (F,) (D

Zy ~N(u", o) 2)

Motion Encoders (Mf"c) : Similarly, ZZJ,W is obtained
from the motion encoders by inputting the corresponding

full-body motion sequence Mj.r associated with the text
description text and duration f.

(p! o)) = M7 (M.p) ©)
Zy ~ N (M o™ )

During retrieval, instead of sampling, we directly use the
embedding corresponding to the mean parameter (i.e Zg =
pd and Z) = pd?)

To enhance the effectiveness of motion retrieval, we train
all three motion encoders (Mf”c) using full-body motion
sequences instead of just the respective body parts. This
approach is based on the observation that LLM-generated
part-specific descriptions contain information about the
queried body part about other body parts. Utilizing full-
body motion sequences allows us to leverage intra-joint in-
formation, resulting in more coherent and semantically ac-
curate motion retrieval.

Motion Decoders (Mz?ec) : Motion decoders input a
latent vector Z and sinusoidal positional encoding of the
duration f and output a full body motion sequence M. ¥
non-autoregressively. The input latent vector Z is obtained
from one of the two encoders during training. However,
since our task is motion retrieval, the decoder is not used
during inference.

M.y = MP(2) 5
Ze{zl', z}"} (©)

Loss : Each retrieval model, MoRAG), is trained with
the loss LP [23]:

LP=Lp+ Ak Lixr + L+ AncELNncE  (7)

L is the motion reconstruction loss given motion and
text embeddings to the decoder. L is the Kullback-
Leibler(KL) divergence loss composed of four losses. The
first two are for the text and motion distributions with nor-
mal distribution and the other two are between text and mo-
tion distributions. L is the cross-modal embedding simi-
larity loss between both text and motion latent embeddings
Z! and Z)".
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Figure 5. LLM Importance: Incorporating part-wise descriptions generated by LLM:s into text-to-motion retrieval improves generalization
over the language space. (a) Spell Error - MoRAG successfully retrieves and constructs the correct motion sequence when ‘sit-ups* is
replaced with ‘situps‘, unlike TMR [23]. (b) Rephrasing - MoRAG effectively retrieves the correct motion sequence even when the voice
is changed from active to passive. (c) Substitution - MoRAG accurately retrieves the correct motion sequence when ‘chest‘ is replaced

with its synonym ‘heart".

LncE is the contrastive loss which is based on In-
foNCE [32] formulation, used to better structure the cross-
model latent space. The text and its corresponding motion
embedding are considered positive pairs (Z; ; and Z%-),
whereas all other combinations are considered to be neg-
ative (Zg: , and Z%) with ¢ # j. Similarity matrix S
computes the pairwise cosine similarities for all the pairs,
Sij =cos(Z};, Z)). However, not all negative pairs are
involved in the loss computation. Text-motion pairs with
text description similarities above a certain threshold, re-
ferred to as *wrong negatives’, are filtered out from the loss
computation. The threshold to filter negatives is set to 0.8.

These text similarities are computed using MPNet [28].

1 eSilT
Enen = 2N ZZ: (log Ej eSii /T

eSii/‘r
+ log Zj eSiilT )
(8)

Motion database (Dp) Post training, we create a
database consisting of three key-value tables for every body
part where each key is a unique identifier for a motion sam-
ple from the AMASS [21] database. The corresponding
value is a vector inferred from the motion encoder. Dur-
ing retrieval, the LLM-generated part description is en-
coded into a query vector for every text encoder, Tf”c.
We use this query vector to search the corresponding vec-
tor indexes, finding the k-nearest neighbors in the embed-
ding space using cosine similarity. The corresponding k
full-body motion sequences {R),,..., R, ..., RF} are re-
trieved for each body part p.

3.4. Spatial motion composition

The retrieved motion sequences {R},,..., Ri, ..., RF}
are composed such that the 75, sequence corresponding to
each part p is used to construct the 745, full-body motion se-
quence C*. This results in k full-body motion sequences
{C',...,C"...,CF}, which are used as additional guid-
ance for the motion diffusion model. We followed a rank-
by-rank combination approach to generate these top-k se-
quences. However, alternative combination methods could
be employed to create a significantly larger number of se-
quences. Our composition approach is similar to SINC [4]
but we do not require the use of an LLM for mapping joints
from the retrieved sequences to the composed sequence.

To construct the composed motion sequence C* using
the corresponding retrieved full-body motion sequences,
{Rlorsor Rhandss Ricgs }» We follow these steps: (1) Trim-
ming all three retrieved sequences to the length of the short-
est one; frin = miny(fp), (2) Selecting the respective
body part’s joint information from the corresponding re-
trieved motions. We follow the SMPL [19] skeleton struc-
ture with the first 22 joints and partition it into three disjoint
sets of joints: J = {Jiorso U Jhands U Jiegs }-

C} [jp] = R;,f [jp]

p € {torso, hands,legs}, f € [1, fmin]

€))

(3) Choosing the global orientation and translation from
R}, s as leg motion is closely associated with changes in
global translation and orientation.

3.5. MoRAG-Diffuse

For generation, we extend ReMoDiffuse [37], a
diffusion-based model, by incorporating our retrieval mech-
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Figure 6. Qualitative Results: Comparison of motion retrieval and generation using our multi-part fusion approach: retrieval is compared

with TMR++ [5], a state-of-the-art motion retrieval method and generation is compared with ReMoDiffuse [37].

Top: Our method

demonstrates superior generalization capabilities. Middle: Our approach generates accurate motion sequences for unseen text descriptions.

Bottom: Our setup exhibits increased diversity.

Methods R Precision FID| | MMDist] | Diversity » | MultiModality 1
| Topl Top 2 Top 3 | | | |
Real motions | 0.511%0:003  0,703+0-003  ,797+0.002 | 0 002%0-000 | 2,974+0.008 | 9 503+0.065 | -

MDM [30] 0.320:!:0,005 0.498:(:0.()04 0.611i0‘007 0.544:(:()‘044 5.566i0'027 2.79910.72
MotionDiffuse [36] | 0.491%0:001  ( 81+0-001 ( 782+0.001 |  g3Q+0-001 | 3 1713+0.001 | 9 470=0049 | 7 553+0.042
MLD [7] 0.481i0'003 0.67310.003 0'772104002 0.47310.013 3.196i0'010 9‘724104082 2.413:E0,079
ReMoDiffuse [37] 0.795+0:004 |  103+0.004 9.018+0-075 | 1 795+0.043
FineMoGen [38] | 0.504%0:002  ( 90+0-002 ( 784+0.002 9.263+0-:094 | 3 g9p+0-079

MoRAG-Diffuse | 0.511E0-093 0.6990-003

0.270:(:0010

95860 [ AT

‘ 2. 950i0 .012

Table 2. Quantitative Results: We compare the results of text-to-motion generation between ours and the state-of-the-art diffusion
based methods on HumanML3D [12] dataset. Our method achieves better semantic relevance, diversity, and multimodality performances.

Indicate best results ,

anism within the motion generation pipeline. Unlike Re-
MoDiffuse [37], we adapt our multi-part composed motion,
rather than their motion length and text based similarity re-
trieval approach.

For the top-k retrieved motion sequence C?, we
follow the 263 dimension motion representation as in
[12], where each human pose C} is represented by
(re, 7= 7%, Y, §°,§0, 7, ¢f), where 7#¢ € R is root angular
velocity along Y-axis; ¥ € R, * € R are global root ve-
locities in X-Z plane; 7Y € R is root height; j* € R3xn(J)

j¥ e R j7 e RO*™() are the local pose positions,
VCIOCIty and rotation respectively. ¢/ € R* is the foot con-
tact features calculated by the heel and toe joint velocity.
n(J) is the number of joints and T; represents the number
of timesteps for motion C?.

To effectively utilize information from retrieved mo-
tion samples, we use the Semantics-Modulated Transformer
(SMT) introduced in ReMoDiffuse [37]. It comprises of
N identical decoder layers, each featuring a Semantics-
Modulated Attention (SMA) layer and a feed-forward net-



work (FFN) layer. The SMA layer integrates information
from the input description and the retrieved samples, refin-
ing the noised motion sequence throughout the denoising
process. The SMA layer consists of a cross-attention mech-
anism where the noised motion sequence serves as the query
vector . The key vector K and value vector V' are derived
from three sources of data: (1) the noised motion sequence
itself; (2) CLIP’s text features of the input description text
which are further processed by two learnable transformer
encoder layers; and (3) the retrieved motion and text fea-
tures R™, R?, extracted using transformer-based encoders
from the retrieved samples. As our composed motion sam-
ples do not have associated text sequences for generating
text features R!, we use the features of the input text de-
scription text.

4. Experiments & Results

First, we describe the dataset (Sec. 4.1) and imple-
mentation details (Sec.4.2) used in our experiments. Fol-
lowing that, we analyze the effectiveness of the MoRAG
framework, comparing it to previous research works by pro-
viding an analysis of both retrieval and generation results.
(Sec.4.3).

4.1. Dataset

We chose HumanML3D [12] to evaluate our framework
due to its extensive and diverse collection of motions paired
with a wide range of text annotations. It provides anno-
tations for the motions in the AMASS [21] and Human-
Actl2 [13] datasets. On average, each motion is annotated
three times with different texts, and each annotation con-
tains approximately 12 words. Overall, HumanML3D con-
sists of 14,616 motions and 44,970 descriptions. The data
is augmented by mirroring left and right. We follow the
same splits as TMR [23] and ReMoDiffuse [37] to train the
retrieval and generation models respectively.

4.2. Implementation Details

We use OpenAI’s GPT-3.5-turbo-instruct as the large
language model (LLM) due to its efficiency in understand-
ing and executing specific instructions and its ability to pro-
vide direct answers to questions. The proposed prompting
strategy consumes a maximum of 256 tokens together for
prompt and generation. We use the completions API end-
point with the default parameters to generate the desired
part-specific descriptions.

For part-specific retrieval models (MoRAG,), we use
AdamW [20] optimizer with a learning rate of 0.0001 and
a batch size of 32. The latent dimensionality of the embed-
dings is 256. We set the temperature 7 to 0.1, and the weight
of the contrastive loss term Aycg to 0.1. Other hyperpa-
rameter values are used similarly to those in TMR [23].

For MoRAG-Diffuse, we use similar settings as that of
ReMoDiffuse [37] used for HumanML3D [12]. For the
diffusion model, the variances (; are spread linearly from
0.0001 to 0.02, and the total number of diffusion steps is
1000. Adam optimizer with a learning rate of 0.0002 is
used to train the model. MoRAG-Diffuse was trained on an
NVIDIA GeForce RTX 2080 Ti, with a batch size of 64,
using initial weights of ReMoDiffuse [37] for 50k steps.

4.3. Results

Fig. 6 presents qualitative comparisons of MoRAG for
both retrieval and generation tasks. We compare our re-
trieval results with TMR++ [5], a state-of-the-art motion
retrieval model, and our generation results with ReMoD-
iffuse [37], focusing on generalizability, zero-shot perfor-
mance, and diversity.

We observe that MoRAG constructed samples, utilizing
part-specific retrieved motions, exhibit superior generaliz-
ability across the language space and effectively adapt to
low-level changes. The richer and dedicated part-specific
descriptions generated by the LLM helped retrieve precise
part-specific motion sequences corresponding to the input
text. Multi-part fusion has improved the construction of mo-
tion samples for unseen text descriptions, achieving better
semantic alignment with the input text. Current motion re-
trieval methods treat the input skeleton in a monolithic man-
ner, processing all joints in the pose tree as a whole. How-
ever, these approaches overlook the significance of sub-
parts, which could enhance generalizability for unseen text
descriptions. By dividing each action into sub-actions cor-
responding to specific subsets of joints, retrieval from the
database can be made more effective. For example, in Fig. 6
(a), the text phrase, ”A person is eating while seated on the
ground”, doesn’t exist in the database which leads to the re-
trieval of the closest matched sample by TMR++ [5], “this
person is sitting on the floor and reaches to his head with
his right arm.”. However, MoRAG searches for the part-
specific sub-actions “eating” and sitting on the ground,’
which can be easily retrieved from the database. When
composed, these sub-actions construct a relevant motion se-
quence. Additionally, the extensive range of composition
combinations contributes to significant diversity in the con-
structed sequences.

Similarly, MoRAG-Diffuse demonstrates improved gen-
eralization to the language space and generation of motion
sequences for unseen text conditions, leveraging low-level
information captured through retrieval conditioning.

Table. 2 summarizes the results of using our frame-
work in comparison with the existing diffusion-based mo-
tion generation models. Incorporating part-specific mo-
tion retrieval models as additional knowledge in the mo-
tion generation pipeline shows an improvement over Diver-
sity, Multi-Modal Distance, and MultiModality metrics. As



observed in MUGL [15], quality scores such as FID based
on feature representations often fail to capture the key ac-
tion dynamics of the motion sequences. We empirically
observed that these scores correlate poorly with the visual
quality of motion generations.

5. Conclusion

In this paper, we enhance the performance of the
diffusion-based motion generation model using a multi-part
fusion-based retrieval augmented motion generation frame-
work, MoRAG. Our method incorporates additional guid-
ance into the motion generation pipeline using the diverse
motion sequences constructed from the samples retrieved
from part-specific motion databases. We propose a sim-
ple solution to construct multiple diverse, semantically co-
herent motion samples from the database, even for unseen
descriptions, which is not feasible with existing full-body
motion retrieval approaches. This makes MoRAG a more
viable alternative for text-to-human motion generation by
combining the strengths of both retrieval models — rapid
motion sample construction and generative models — the
ability to create novel outputs.

Future work could extend our approach to other
architecture-based generative models. Incorporating addi-
tional body part information, such as fingers, head, and lip
movements from respective part-specific databases, would
enhance the realism of generated samples and better han-
dle more complex language descriptions. Furthermore, our
approach can be applied to create new data samples, use-
ful for both training and guiding motion generation models,
thereby expanding its potential to handle unusual inputs.
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