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Abstract
Automated segmentation of medical image volumes promises to

reduce costly medical experts’ time for annotation. However, using

machine learning for the task is challenging due to variations in

imaging modalities and scarcity of patient data. While interactive

image segmentation methods and foundational models incorpo-

rating user-provided prompts to refine segmentation masks have

shown promise, they overlook crucial sequential information be-

tween the slices in 3D medical image volumes and videos, resulting

in discontinuities in the segmentation results. This paper proposes a

new framework that dynamically updates model parameters during

inference in a test time training framework using user-provided

scribbles. Our framework preserves acquired knowledge from the

previous slices of the current medical volume and the training

dataset via student-teacher learning. We evaluate our method on

diverse CT, MRI, and microscopic cell datasets. Our framework

significantly reduces user annotation time by a factor of 6.72×.
Compared to other interactive segmentation methods, we reduce

the time by a factor of 2.64×. Our method also outperforms prompt-

ing foundation models for segmentation by achieving a dice score

of 0.9 in 3-4 interactions compared to 5-8 user interactions for the

foundation model, significantly reducing annotation time for the

CT and MRI volumes.

CCS Concepts
• Computing methodologies→ Image segmentation; Visual
inspection; •Human-centered computing→ Interaction design
process and methods.
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1 Introduction
Medical image segmentation is essential to isolate regions of in-

terest for medical diagnosis, modeling, and intervention tasks. Ap-

proaches based on deep learning for semantic and instance seg-

mentation have seen success in medical imaging [37]. However,

these methods require extensive data and depend heavily on the

availability of detailed voxel-level segmentation, which requires

considerable time, labor, and expertise [34]. To address this, IIS has

emerged as a critical technique, enabling the efficient extraction of

segmentation masks for specific objects with minimal user effort.

Consequently, there has been a surge in research focused on devel-

oping and refining IIS techniques, exploring various types of user

interactions, such as bounding boxes [23, 41], polygons [1], clicks

[8, 20–22, 31, 32], scribbles [2, 39], and their combinations [44].

While current IIS techniques can segment regions of interest

based on the user’s input (clicks or bounding boxes), they rely on de-

veloping more effective backbone networks or refinement modules

built upon the backbone to boost their segmentation performance.

Recent vision foundation models for segmentation use interactive

cues toworkwell on unseen datawithout fine-tuning. Thesemodels,

trained on extensively large image datasets, segment potentially un-

seen regions in the target data by taking user interactions through

clicks, bounding boxes, or scribbles [17]. SAM and fine-tuned SAM

variations [23] perform well but may not consistently perform sat-

isfactorily for low contrast scenarios in medical imaging when

highly accurate segmentation boundaries are needed. These meth-

ods demand precise clicks or bounding boxes; erroneous clicks or

bounding boxes may yield unapproved segmentation masks. When
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annotating a Region of Interest (ROI) in medical images, it is es-

sential to note that scribbles are more accurate in locating ROIs

than clicks or bounding boxes. Scribbles are particularly useful

when annotating irregularly shaped ROIs, often in medical image

annotation.

The typical procedure in a regular 3D segmentation process

for CT/MRI volumes involves annotating each slice individually.

However, conventional IIS and prompting foundation models pose

challenges for such a scenario, as the annotators must manually

provide the inputs for each slice again. This is inefficient and does

not exploit the similarity between adjacent slices, as the model does

not retain knowledge beyond the current slice. We address this gap

by proposing a novel framework to combine ideas from continual

learning with interactive segmentation in a continual test time

adaptation [36] framework. We capitalize on this observation: the

segmentation masks between close slices tend to overlap, and using

the given set of corrections for the current refined segmentation

mask, we use the continual adaptation method to adapt model

parameters for the slices and subsequent CT/MRI volumes.

Our approach leverages an iterative process that combines a

teacher-student architecture with test time training to adapt any

pre-trained, off-the-shelf model on the fly without requiring ar-

chitectural modifications. The teacher and the student have the

same architecture and weight initialization. We use test-time aug-

mentations and low-variance thresholding to generate an averaged

pseudo-segmentation mask for a slice. The student model is up-

dated in a test-time training style based on user-annotated scrib-

bles and the pseudo-segmentation mask. In contrast, the teacher

is updated through an exponential moving average (EMA) of the

student’s parameters. Unlike prior approaches [35], which restore

the weights after each slice and end up deleting all accumulated

knowledge, in our proposal, the teacher model serves as the repos-

itory of knowledge across the slices. The student model focuses

on quick adaptation for the current slice. This leads to a balanced

knowledge accumulation from previous and current slices. We note

that a naive approach that does not use a teacher model but keeps

on accumulating the knowledge in a student model across slices is

not viable, as test time adaptation (TTA) will lead to overfitting of a

student model on the current slice, and deteriorate the performance

on the next slice. Hence, using the teacher model for regularization

is essential for knowledge preservation without overfitting.

We extensively evaluate our method on five publicly medical

image datasets, where anatomical differences among individuals

and ambiguous boundaries are present. With the plain backbone of

the UNet Network trained on medical image datasets with CT and

MRI images(along with other backbones), our method significantly

reduces user annotation time compared to full-human annotations

(factors of 3.05 to 6.72). Compared to interactive methods with

frozen parameters, our method reduces user interaction time by

1.22 to 1.93x on CT and MRI Volumes. Our method achieves a dice

score exceeding 0.9 in 3-4 interaction loops, which outperforms the

previous best interactive segmentation method by 2-3 interaction

loops, resulting in a 20-36% reduction in user interactions. While

comparing our framework with the foundational models for seg-

mentation, our method takes 3-4 user interactions compared to 5-8

user interactions for the foundation model on CT and MRI Volumes

to reach the dice score of 0.9. Our main contributions are:

(1) We propose a new framework for interactive segmentation

using the TTA of a teacher-student architecture.

(2) The proposed framework retains past and current knowl-

edge captured through user interactions, making it especially

useful for volume segmentation tasks.

(3) Our framework can incorporate arbitrary segmentation mod-

els as its backbone, thus making it future-proof.

(4) Our method achieves state-of-the-art performance on all

publicly available datasets in our experiments, outperform-

ing conventional IIS methods and prompting foundational

models.

2 Related Work
2.1 3D Medical Image Segmentation
Efficient encoder-decoder architectures like UNet [27] and UNet++

[45] have demonstrated success in medical image segmentation.

These architectures have been extended to 3D for volumetric seg-

mentation tasks, with examples including VNet, a 3D fully con-

volutional neural network (CNN) proposed by [25], and a 3D ex-

tension of UNet by [9]. ConResNet by [43] introduced inter-slice

context residual learning for improved performance. Recent ad-

vancements have incorporated transformers alongside CNNs in

several volume segmentation methods [14, 40]. UNETR [14] lever-

ages a transformer-based encoder to learn sequential representa-

tions of the input volume, effectively capturing global information

across multiple scales. CoTr [40] proposes efficient bridging be-

tween CNNs and transformers. Yet, the generalization of medical

image segmentation techniques remains challenging due to the

inherent challenges of medical images, such as low tissue contrast,

highly variable and irregular shapes of segmentation targets, di-

verse imaging and segmentation protocols, and variations across

patients.

2.2 Interactive Image Segmentation (IIS)
IIS takes user inputs like clicks or bounding boxes to improve

segmentation results. Fueled by their success in a variety of appli-

cations, deep learning-based segmentation approaches have been

used in conjunction with various interaction techniques, includ-

ing bounding boxes [41], polygons [1], clicks [32], and scribbles

[39]. Xu et al. [41] introduced a click simulation strategy, which

was adopted in subsequent research. Methods like f-BRS [31] and

RiTM [32] emphasized the importance of modern backbones and

addressed limitations in existing inference-time optimization by

proposing an iterative training procedure. FocalClick [8] tackled the

issue of mask refinement destroying correct parts of the image. iSeg-

Former [20] leverages a Swin Transformer backbone specifically

for medical image segmentation. PseudoClick [21] reduces human

annotation costs by estimating the following click location. None

of the above interactive segmentation methods exploit contextual

information between the slices for medical image volumes.

2.3 Continual Learning (CL) for Volume
Segmentation

CL deals with acquiring new knowledge over time while retaining

previously learned information (or avoiding catastrophic forgetting
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Figure 1: Overview of the proposed framework. Our framework can use various pre-trained network architectures depending
on the application. Therefore, we do not provide the detailed architecture of any specific model. The first step in our framework
is to obtain an initial segmentation using a pre-trained deep-learning network. The user can then review the segmentation and
add scribbles where they want corrections made.

[13]). Indeed, CL for image classification is more popular [3, 7,

12, 42], but its application in segmentation tasks is also gaining

traction [6, 11, 12, 24]. Many CL techniques assume access to target

data during training; whereas others use a subset of the source

data for test-time adaptation. Another strategy for adapting the

model during inference (test time) involves leveraging prediction

entropy [18, 35] or self-training with pseudo-labels [36]. Previously,

during student training, their weights were either restored with the

teacher at each step or reset using updated teacher parameters [36].

However, this method could lead to the student adopting erroneous

weights from the teacher or source network.

3 Methodology
Interactive segmentation of medical images involves iteratively an-

notating and refining the output segmentation masks from an ML

model. This can be accomplished for a CT or MRI volume by repeat-

ing the procedure slice by slice using specialized interactive image

segmentation techniques or prompting foundation models. How-

ever, this is inefficient as the approach overlooks the relationship

between adjacent slices.

We present an interactive segmentation method that can contin-

uously adapt model parameters for the new target medical image

(3D CT/MRI volume) using any pre-trained, off-the-shelf model. We

describe the problem formulation for 3D medical image interactive

segmentation and how we connect it to continual adaptation. This

is followed by our methodology section, where we show how to

adapt a pre-trained model to a new target medical image using

interactive segmentation and continual adaptation techniques.

3.1 Problem Definition
Continuous adaptation of a pre-trained interactive segmentation

model can be formally defined as follows. Let 𝑓𝜃0 (𝑥) be the pre-

trained segmentation model with parameters 𝜃0 learned from train-

ing on the source training data 𝐷𝑠 . During testing, the source train-

ing data is usually not available due to privacy concerns. At this

stage, the model encounters test data 𝐷𝑡 which is not available

during annotation. Our objective is to improve the segmentation

performance of a pre-trained model on an unseen medical image

volume while maintaining the model’s performance on the pre-

viously trained data. Note that maintaining performance on the

previously trained data is a proxy objective to ensure that the model

does not overfit on the current slice, leading to lower accuracy and,

hence, more efforts in interactive segmentation for future slices.

3.2 Proposed Framework
Our approach proposes an iterative teacher-student architecture

with interactive segmentation, where the student is supposed to

adapt to a new domain quickly, meanwhile, the teacher accumulates

the newly learned knowledge without catastrophic forgetting. The

overview of our method can be found in Figure 1.
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Time Taken for the Datasets (in min.)

Method CHAOS LiTS AMOS CHAOS DSB

(84 CT Sl.) (104 CT Sl.) (243 CT Sl.) (70 MRI Sl.) (Cell Image)

Manual Annot. Time 63.00 84.00 140.00 57.00 11.00

Annot. Time
(𝑝𝑟𝑒𝑣. 𝑟𝑒𝑠 )

32.00 39.00 79.00 39.00 -

GrabCut [28] User Time 66.10 67.00 89.00 61.30 8.00

Machine Time 30.00 26.00 36.00 22.00 5.00

f-BRS [31] User Time 52.18 58.43 100.65 40.3 8.00

Machine Time 5.35 6.34 15.00 9.52 3.00

RiTM [32] User Time 48.82 54.31 110.75 42.30 8.00

Machine Time 4.79 5.78 13.44 8.92 2.00

iSegFormer [20] User Time 35.23 38.55 - - 3.00

Machine Time 5.21 4.66 - - 1.32

PseudoClick [21] User Time 30.44 35.45 67.22 40.11 3.00

Machine Time 5.01 5.45 12.86 8.44 1.12

FocalClick [8] User Time 25.33 31.50 - - 4.00

Machine Time 4.32 5.21 - - 0.78

Our Method User Time 9.24 24.41 40.23 36.72 3.00

(UNet as Backbone) Machine Time 4.45 5.50 12.85 8.47 1.40

Table 1: For each method, we report the total time (in minutes) to reach a Dice Score of 0.95 for the CT Volume. Our method
reaches the target with the least User Time among all the methods. Here, ’Manual Annot. Time’ gives the time taken when the
user performs the annotation from scratch on each slice. On the other hand ’Annot Time (prev. res)’ give the time taken for the
annotation when the annotator copies the annotation of the last slice and makes the necessary changes to fit it on the current
slice. The term ’SL’ is used to represent the number of slices. "84 CT SL" means that we have 84 Slices of the CT Modality.

We utilize the pre-trained segmentation model with parameters

𝜃0 that takes a slice from a medical volume 𝑥𝑡 as input. We ini-

tialize the teacher model (𝑓𝜃𝑇 (𝑥𝑡 )) and the student model (𝑓𝜃𝑆 (𝑥𝑡 ))
with the same pre-trained interactive segmentation weights (𝜃 ),

i.e., 𝜃𝑇 = 𝜃0 and 𝜃
𝑆 = 𝜃0. We generate multiple outputs, 𝑦𝑇

𝑖
, using

the teacher model by applying test-time augmentations [33]. We

exclusively apply intensity-based transforms, including Gaussian

noise, blurring, and pixel intensity inversion. However, traditional

TTA methods are unable to adapt to domain shifts between the

source and target data distributions [26, 30]. We overcome this

challenge by modulating the number of augmentations. To adapt,

we calculate the teacher model’s confidence based on the softmax

function applied to its output masks [29] and extract the pixel-wise

confidence of the output masks. We then evaluate the ratio of the

number of pixels with prediction confidence between 0.4 and 0.6

to the total number of pixels, which we denote as ratio(𝑓𝜃𝑇 (𝑥𝑡 )).
The range of 0.4 to 0.6 is chosen because the prediction confidences

are probability values, and a value of 0.5 indicates that the model

assigns equal probabilities to both classes. Thus, this range reflects

uncertain predictions where the model is less confident about as-

signing a pixel to a specific class. This ratio regulates the number

of augmentations. Equation 1 shows the number of augmentations

used based on this ratio.

𝑦′
𝑡𝑇

= 1

𝑁

∑𝑁
𝑗=1 𝑓𝜃𝑇 (𝑥

𝑗
𝑡 )


𝑁 = 4 for ratio(𝑓𝜃𝑇 (𝑥𝑡 )) ≤ 0.3

𝑁 = 16 for 0.3 < ratio(𝑓𝜃𝑇 (𝑥𝑡 )) ≤ 0.7

𝑁 = 32 for 0.7 < ratio(𝑓𝜃𝑇 (𝑥𝑡 )) < 1

(1)

Here, 𝑦′
𝑡𝑇

represents the average segmentation mask from the

teacher model, 𝑓𝜃𝑇 (𝑥
𝑗
𝑡 ) denotes the augmented version of the target

image 𝑥𝑡 , and 𝑁 signifies the number of augmentations applied,

(𝑓𝜃𝑇 (𝑥𝑡 )) is the source pre-trained model’s prediction confidence

on the current input 𝑥𝑡 . We apply temperature scaling [19] with

a parameter 𝜏 > 1 to make the obtained segmentation masks less

prone to overconfidence. We hereby obtain the average segmenta-

tion mask, using various 𝑦𝑖
𝑇
, denoted as 𝑦𝑎

𝑇
.

For each slice, 𝑥𝑡 , the student model generates an initial seg-

mentation mask, 𝑦𝑆 = 𝑓𝜃𝑆 (𝑥). We calculate the cross-entropy loss

by comparing the student’s segmentation mask and the teacher’s

mean segmentation mask at each pixel as follows:

L1 = −sum
(∑︁

𝑐

𝑦𝑎𝑇 [:, 𝑐] log (𝑦𝑆 [:, 𝑐])
)
. (2)

Here, we only focus on the pixels within the segmentation mask

that exhibit low variance across the augmented versions. This pri-

oritizes regions with consistent predictions across different aug-

mentations, leading to a more reliable pseudo-segmentation mask.

We capture user input through a scribble mask𝑚 and label 𝑦𝑈 to

incorporate user feedback. Here,𝑚 is a 𝑛 dimensional binary vector

with 1 indicating user feedback provided for the pixel in the form

of scribble, and 0 otherwise. 𝑦𝑈 is a 𝑛 × 𝑐 dimensional matrix, with

each row representing a 1-hot vector indicating the user provided

label at the pixel, and zero vector at other pixels. To simulate thick

user scribbles, we blur the mask𝑚 and copy the user-provided label

on each non-zero pixel in𝑚. For capturing multiple scribbles, we
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Algorithm 1 Interactive Medical Image Segmentation using Scrib-

bles through Continuous Adaptation

• Input: Input Image 𝑥𝑡 , User Interaction (Scribbles) 𝑢𝑡
• Output: Refined Segmentation Mask𝑀

• Requirement: Model 𝑓𝜃 0 (𝑥) with the pre-trained weights

𝜃0, learning rate 𝜆, hyperparameters 𝛼 , 𝜏 , 𝑘

• Initialization: Teacher model (𝑓𝜃𝑇 (𝑥)) and the Student

model (𝑓𝜃𝑆 (𝑥)) are initialized with pre-trained interactive

segmentation 𝑓𝜃 0 (𝑥)
1: procedure 𝑢𝑡 = 𝑢𝑡𝑝𝑟𝑒𝑣 ∪ New Scribbles

2: for 𝑖 = 1→ 𝑘 do
3: for 𝑗 = 1→ 𝑛 do ⊲ 𝑛 = number of augmentations

based on 1

4: 𝑀
𝑗

𝑇
← 𝑓𝜃𝑇 (𝑥

𝑗
𝑡 , 𝜏) ⊲ perform inference using 𝜃𝑇 and

scale it using 𝜏

5: 𝑀̂
𝑗

𝑇
← 𝑀

𝑗

𝑇
⊲ Only pixels variance less than 0.05 are

allowed

6: 𝑀𝑇 ← 1

𝑛

∑𝑁
𝑗=1 𝑀̂

𝑗

𝑇
⊲ Average Teacher Segmentation

Mask

7: 𝑀𝑆 ← 𝑓𝜃𝑇 (𝑥𝑡 ) ⊲ Student Segmentation Mask

8: ⊲ Determine 𝑙1 from L1 using Equation 2

9: 𝑀 ← 𝑀𝑆 ∪ 𝑢𝑡
10: ⊲ Determine 𝑙2 from L2 using Equation 3

11: ⊲ Determine 𝑙𝑡 from L𝑡
12: 𝜃𝑆

𝑡+1 ← 𝜃𝑆𝑡 − 𝜆 𝑑
𝑑𝜃𝑆
L𝑡 (𝑀,𝑀𝑆 , 𝑀𝑇 , 𝜃

𝑆 , 𝜃𝑇 ) ⊲ Update

Student Weights using Equation 4

13: if 𝑙𝑏𝑒𝑠𝑡 ≥ 𝑙𝑡 then
14: 𝜃𝑇

𝑡+1 ← 𝛼 𝜃𝑇𝑡 + (1 − 𝛼) 𝜃𝑆𝑡+1 ⊲ Update Teacher

Weights via EMA

15: 𝑙𝑏𝑒𝑠𝑡 = 𝑙𝑡
16: Stochastically restore student weights 𝜃𝑆

repeat the above process for each scribble separately and then do

an element-wise add for both 𝑚 and 𝑦𝑈 , such that if there is an

overlap between the two masks, we consider none. In an abuse of

notation, we denote the added mask and label matrix using𝑚 and

𝑦𝑈 , respectively. The interactive loss, L2, is computed as follows:

L2 = −sum
(∑︁

𝑐

𝑚[:] 𝑦𝑈 [:, 𝑐] log (𝑦𝑆 [:, 𝑐])
)
. (3)

We define the cumulative loss, L𝑡 , as the sum of individual

loss terms L1 and L2. We update student model parameters from

𝜃𝑆𝑡 → 𝜃𝑆
𝑡+1 by performing standard stochastic gradient descent on

L𝑡 . Following the student model update, we also update the teacher

model. This ensures that the teacher retains valuable knowledge

from previous training while progressively accumulating new in-

formation acquired through student adaptation. This knowledge

transfer is achieved by updating the teacher model’s parameters

with an exponential moving average (EMA) of the student’s param-

eters:

𝜃𝑇𝑡+1 = 𝛼 𝜃𝑇𝑡 + (1 − 𝛼) 𝜃𝑆𝑡 . (4)

Here 𝛼 is a smoothing factor. Our final prediction for the slice 𝑥

is the segmentation mask obtained from the updated teacher model.

Figure 2: Improvement in Dice Score per user interaction: Our
framework achieves the highest accuracy with minimum user inter-
actions. 1st row: CHAOS(CT), 2nd row: LiTS (CT), and 3rd row: DSB
(Cell Image)

This EMA approach helps mitigate catastrophic forgetting, a critical

challenge in continual learning scenarios. The specific details of

the procedure are outlined in Algorithm 1.

4 Experiments and Results
We have performed tests on datasets primarily composed of medical

images. These datasets encompass the Combined (CT-MR) Healthy

Abdominal Organ Segmentation (CHAOS) dataset, which is em-

ployed for the segmentation of four abdominal organs - spleen, right

kidney, left kidney, and liver [16], and liver segmentation dataset -

Liver Tumor Segmentation (LiTS) [4]. Moreover, we have utilized

the Abdominal multi-organ segmentation (AMOS) dataset, which

contains 15 abdominal organs, including the ones mentioned above,

along with the gallbladder, esophagus, stomach, aorta, inferior vena

cava, pancreas, right adrenal gland, left adrenal gland, duodenum,

bladder, and prostate/uterus [15]. We use the Data Science Bowl

dataset for microscopic cell segmentation [5].
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Slice 𝑡 GrabCut Initial Interaction 1 Interaction 2 Interaction 3 Interaction 4 Final Result Ground Truth

Result on Slice 1 for Slice 1

Slice 𝑡 + 1 GrabCut Initial Interaction 1 Interaction 2 Interaction 3 Final Result Ground Truth

Result on Slice 𝑡 + 1 for Slice 𝑡 + 1

Slice 𝑡 fBRS Initial Interaction 1 Interaction 4 Interaction 7 Interaction 12 Final Result Ground Truth

Result on Slice 1 for Slice 1

Slice 𝑡 + 1 fBRS Initial Interaction 1 Interaction 4 Interaction 7 Interaction 12 Final Result Ground Truth

Result on Slice 𝑡 + 1 for Slice 𝑡 + 1

Slice 𝑡 iSegFormer Interaction 1 Interaction 2 Interaction 3 Interaction 4 Final Result Ground Truth

Initial Result on Slice 1 for Slice 1

Slice 𝑡 + 1 iSegFormer Interaction 1 Interaction 2 Interaction 3 Interaction 4 Final Result Ground Truth

Initial Result on Slice 𝑡 + 1 for Slice 𝑡 + 1

Slice 𝑡 FocalClick Interaction 1 Interaction 2 Interaction 3 Final Result Ground Truth

Initial Result on Slice 1 for Slice 1

Slice 𝑡 + 1 FocalClick Interaction 1 Interaction 2 Interaction 3 Final Result Ground Truth

Initial Result on Slice 𝑡 + 1 for Slice 𝑡 + 1

Slice 𝑡 Our Initial Interaction 1 Interaction 2 Final Result Ground Truth

Result on Slice 1 for Slice 1

Slice 𝑡 + 1 Our Initial Interaction 1 Final Result Ground Truth

Result on Slice 𝑡 + 1 for Slice 𝑡 + 1

Figure 3: Comparison on two LiTS slices. Left to right: original images, initial mask, Results after certain interactions, final
segmentation mask, and Ground Truth. We have shown the results for Slice 𝑡 and 𝑡 + 1 (in this case, slices 55 and 56) for GrabCut,
fBRS, iSegFormer, FocalClick, and Our Results for the consecutive slices. We have evaluated the same results for other datasets
as well in our supplementary work
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Slice 1 SAM Initial Interaction 1 Interaction 2 Interaction 3 Interaction 4 Final Result Ground Truth

Result

Slice 1 MedSAM Initial Interaction 1 Interaction 2 Interaction 3 Interaction 4 Final Result Ground Truth

Result

Slice 1 MiDeepSeg Interaction 1 Interaction 2 Interaction 3 Interaction 4 Final Result Ground Truth

Initial Result

Slice 1 ScribblePrompt Interaction 1 Interaction 2 Interaction 3 Final Result Ground Truth

Initial Result

Slice 1 Our Initial Interaction 1 Interaction 2 Final Result Ground Truth

Result

Figure 4: Comparison on LiTS slice for Foundational Models. Left to right: original images, initial mask, Results after each
interaction, final segmentation mask, and Ground Truth. We have shown SAM, MedSAM, MiDeepSeg, ScribblePrompt and Our
Result results. We have evaluated the same results for other datasets added in our supplementary work

For each dataset, we show the Dice Score [10] after k user inter-

actions and the number of interactions to reach a particular target

Dice Score on the slice.

Our experiments show comparison while utilizing various pre-

trained backbone models, such as UNet, UNet++, and DeepLabv3.

This showcases the ability of our framework to use arbitrary models

as the backbone.

Comparison with state of the art.We conducted a comprehen-

sive evaluation of our interactive segmentation approach against

other state-of-the-art methods on four medical image datasets:

CHAOS (MRI Slice data), LiTS, AMOS, and the 2018 Data Science

Bowl (microscopic cell data) (all primarily CT Volume data), along

with the 95% confidence interval (CI) of segmentation obtained

using manually provided scribbles and clicks over three interaction

loops across different methods. Each interaction loop may involve

multiple scribbles or clicks. Table 1 showcases the significant effi-

ciency gains achieved by our framework. Our method significantly

reduces the User’s Time on all datasets, as tested by amedical expert.

The first row displays the results when the medical expert anno-

tated the slices in the volume from scratch (without external help).

The second row shows the results of the experts’ annotation aided

by tools. Compared to complete human annotation, our method

reduces user annotation time by a factor of 4.60 (CHAOS - CT), 2.80

(LiTS), 2.64 (AMOS), 6.72 (CHAOS - MRI), and 3.66 (DSB) on the

respective datasets. Similarly impressive gains are observed when

compared to human annotation aided by tools, with factors of 2.33

(CHAOS), 1.30 (LiTS), 1.46 (AMOS), and 1.11 (CHAOS - MRI). We

compared the accuracy of segmentation after each user interaction

for each technique. Figure 2 shows that our framework outperforms

all other methods regarding accuracy and the number of iterations

taken to achieve it. Additionally, our method can accomplish a dice

score exceeding 0.9 with an average of less than four user itera-

tion loops. Our method outperforms baseline methods for all the

user interaction procedures at all numbers of interactions. Figure

3 shows the visual results. Here, we show the visual results for all

interactions and the final results for segmenting two consecutive

slices using all the mentioned methods.

Comparison with prompting foundation models. We com-

pared our interactive segmentation method against existing gener-

alized approaches, focusing on baselines like SAM [17], MedSAM

[23], ScribblePrompt [38], and MIDeepSeg [22]. We evaluated (ViT-

h) versions of the Segment Anything Model (SAM) [17] trained on

natural images. SAM takes bounding boxes, clicks, and the logits of

the previous prediction as input for segmentation. MedSAM [23]

builds upon a ViT-B SAM model, further fine-tuned with bounding

box prompts on a dataset of 1.5 million biomedical image segmen-

tation pairs. MIDeepSeg [22] is an interactive segmentation frame-

work designed for unseen tasks on medical images. It starts with
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Dataset

Methods CHAOS (CT) LiTS (CT) DSB (Cell)

Int. Dice Final Dice Int. Dice Final Dice Int. Dice Final Dice

SAM [17] 0.628 0.741 0.573 0.772 0.498 0.521

MedSAM [23] 0.755 0.804 0.786 0.838 0.667 0.685

MIDeepSeg [22] 0.853 - 0.837 - -

ScribblePrompt [38] 0.843 0.903 0.847 0.913 0.853 0.920

Our Method (UNet) 0.843 0.928 0.854 0.934 0.887 0.929

Our Method (UNet++) 0.881 0.933 0.898 0.912 0.867 0.931

Our Method (DeepLab-V3) 0.889 0.931 0.891 0.936 0.881 0.942

Table 2: User Interaction. We have effectively determined the mean Dice Score for segmentations predicted by different methods
after ten rounds of user interaction. During each interaction loop, users can provide multiple scribbles, bounding boxes, and
clicks to facilitate the segmentation process. We terminate the interaction loop if the method attains a dice score of 0.9.

interior margin points (positive clicks) and crops the image based

on these points before utilizing a CNN for initial prediction. We

evaluated the pre-trained MIDeepSeg model, initially developed for

placenta T2 MRI segmentation tasks. Lastly, ScribblePrompt [38]

leverages various user guidance modalities like scribbles, clicks, and

bounding boxes for interactive medical image segmentation. Scrib-

blePrompt inputs include positive and negative scribble and click

prompts alongside bounding boxes and the predicted segmentation

results to generate final predictions. Table 2 shows the comparison

with prompting various foundational models. Our method outper-

forms the foundation models, achieving a dice score of 0.931, 0.936,

and 0.942, compared to ScribblePrompt’s scores of 0.903, 0.913, and

0.929, SAM’s scores of 0.741, 0.772 and 0.521, MedSAM’s scores

of 0.804, 0.838 and 0.685, for CHAOS, LiTS, and the Data Science

Bowl (DSB) dataset, respectively. We observed that the foundation

models produce inadequate results after ten interactions, and per-

formance stagnates. In our experiments with SAM and MedSAM,

we observed that Clicks can often misguide the model and lead to

the production of the output the user did not expect. SAM does not

generalize well to click inputs (which they were not trained for).

MedSAM has better predictions than other SAM baselines using

the SAM architecture; however, it primarily relies on the initial

bounding box as input and cannot use negative clicks. Scribbles, on

the other hand, are an intuitive form of interaction that the algo-

rithm can leverage to understand better the segmentation desired

by the user. Figure 4 displays visual results for a slice’s interactions

and final segmentation using the foundation models.

5 Conclusion
This paper proposes a continual test time adaptation framework for

interactive segmentation of medical image volumes. Our approach

dynamically updates model parameters during inference based on

user-provided scribbles and retains the knowledge gained from

interactions on previous slices using the proposed continual adap-

tation framework. Consistently effective and efficient performance

on unseen datasets with diverse modalities (CT, MRI, microscopic

cells) validates the superiority of our method over the current state

of the art, including prompting foundation models.
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