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A B S T R A C T

Despite the progress seen in classification methods, current approaches for handling videos with distribution
shifts in source and target domains remain source-dependent as they require access to the source data during
the adaptation stage. In this paper, we present a self-training based source-free video domain adaptation
approach to address this challenge by bridging the gap between the source and the target domains. We use the
source pre-trained model to generate pseudo-labels for the target domain samples, which are inevitably noisy.
Thus, we treat the problem of source-free video domain adaptation as learning from noisy labels and argue that
the samples with correct pseudo-labels can help us in adaptation. To this end, we leverage the cross-entropy loss
as an indicator of the correctness of the pseudo-labels and use the resulting small-loss samples from the target
domain for fine-tuning the model. We further enhance the adaptation performance by implementing a teacher–
student (TS) framework, in which the teacher, which is updated gradually, produces reliable pseudo-labels.
Meanwhile, the student undergoes fine-tuning on the target domain videos using these generated pseudo-
labels to improve its performance. Extensive experimental evaluations show that our methods, termed as
CleanAdapt, CleanAdapt + TS, achieve state-of-the-art results, outperforming the existing approaches on various
open datasets. Our source code is publicly available at https://avijit9.github.io/CleanAdapt.
1. Introduction

The availability of large-scale action recognition datasets, coupled
with the rise of deep neural networks, have significantly advanced the
field of video understanding [1]. Similar to other machine learning
models, these action recognition models often encounter new domains
with distribution-shift when deployed in real-world scenarios where the
data distribution of training (source domain) and test (target domain)
data is different, resulting in degraded performance. A trivial solution
to alleviate this problem is fine-tuning the models with labeled target
domain data, which is not always feasible due to expensive target
domain annotations. Unsupervised domain adaptation (UDA) tackles
this problem by transferring knowledge from the labeled source domain
data to the unlabeled target domain, thus eliminating the need for
comprehensive annotations for the target domain [2]. Source-free UDA
takes this approach one step further, where we assume that the source
domain data is unavailable during the adaptation stage. This setting
is more realistic than the source-dependent one primarily due to (a)
privacy concerns, it is not always possible to transfer data between
the vendor (source) and the client (target), (b) storage constraints to
transfer the source data to the client side (e.g., Sports-1M is about 1
TB), and (c) source-free models reduce computation time and thus cost
by not using the source domain data during the adaptation stage.
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There has been a recent surge of interest in source-dependent unsu-
pervised domain adaptation for videos [3–5]. These approaches either
propose to directly extend the adversarial learning framework [6]
from image-based methods [2] or couple it with some temporal atten-
tion weights [7,8] and self-supervised pretext tasks [8,9] to align the
segment-level features between the domains. However, these strategies
produce only a modest ∼ 2% gain over the source-only model (see
Fig. 1). Recently, there has been a paradigm shift from adversarial to
contrastive learning framework [3,4,10] for video domain adaptation.
As shown in Fig. 1, CoMix [10] achieves 6.4% and 5.1% gain over the
source-only model on the UCF → HMDB and HMDB → UCF datasets,
respectively. However, all these methods are inherently complex and
use source domain videos during the adaptation stage, which is unten-
able in several scenarios [11], as discussed earlier. Due to its practical
relevance, source-free domain adaptation is a well-known problem
for different computer vision tasks such as image classification [11],
and semantic segmentation [12] but relatively under-explored in the
context of the video classification task. Therefore, there is a need
to investigate source-free domain adaptation for video classification
tasks in order to improve the practicality and efficiency of today’s
approaches.
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Fig. 1. Existing approaches have a source-dependent adaptation stage achieving marginal performance gain over the source-pretrained models. On the other hand, our proposed
methods CleanAdapt and CleanAdapt + TS achieve significant performance improvements over the source-only model while being source-free (i.e., the adaptation stage does not
require videos from the source domain). (Best viewed in color.).
Fig. 2. The radar plot illustrates the performance improvements of our proposed
methods, CleanAdapt and CleanAdapt + TS (shown in orange and red, respectively),
compared to the source-only model on multiple benchmarks. The source-only model
(shown in yellow), trained on the source domain and tested on the target domain,
serves as the lower bound of adaptation performance, while the target-supervised model
(shown in blue), trained and tested on target domain videos, represents the upper
bound. (Best viewed in color.). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

In this work, we present an effective approach that leverages the
self-training framework for source-free video UDA, where we do not
have access to source-domain videos during the adaptation stage. We
generate pseudo-labels for the unlabeled target domain videos using a
source pre-trained model. These pseudo-labels are indeed noisy due
to the existing domain gap. Finetuning the source pre-trained model
with these noisy pseudo-labels is a sub-optimal solution as the presence
of incorrect pseudo-labels hinders the adaptation stage, as discussed
in Section 4.4. However, we observe that these pseudo-labeled target
domain videos are not completely unusable, and in fact, there is a
substantial number of target domain videos with correct pseudo-labels.
For example, in the case of HMDB → UCF, the HMDB pre-trained
model produces pseudo-labels with ∼ 90% accuracy on the UCF dataset,
and we experimentally show that this amount of data is sufficient for
adaptation. Throughout this paper, we refer to these samples with
correct pseudo-labels as clean, whereas the samples with incorrect
pseudo-labels are termed noisy.

We treat the problem of source-free domain adaptation as learning
from noisy labels and propose a self-training based approach that
selects clean samples from the noisy pseudo-labeled target domain
samples to re-train the model for gradually adapting to the target
domain in an iterative manner. We observe that deep neural networks
tend to learn from the clean samples first before memorizing the
2 
noisy samples in the later stage of training according to the deep
memorization effect [13]. In Fig. 3, we validate this effect empiri-
cally for both appearance (RGB) and motion (flow) modalities. From
Fig. 3, it is clear that the model produces small-loss for the clean
samples. In contrast to that, the noisy samples have high loss values for
both the modalities. In our paper, we exploit this connection between
small-loss and clean instances and propose an approach for source-
free video domain adaptation. We discuss this in detail in Section 3.3.
This method progressively adapts the model to the target domain
in an iterative fashion. Thus, we name our approach as CleanAdapt.
Additionally, we employ a teacher–student network [14] to produce
more resilient pseudo-labels, where the teacher network is continuously
updated by incorporating the temporal ensemble of student networks.
This approach generates more consistent pseudo-labels, thus aiding the
enhancement of the student network. We refer to this version of our
method as CleanAdapt + TS. Our proposed methods surpass all other
source-dependent state-of-the-art methods by a large margin on UCF
↔ HMDB and EPIC-Kitchens datasets, despite being source-free (see
Figs. 1 and 2).

An earlier version of our approach was published as a confer-
ence paper [15]. This manuscript proposes the following significant
improvements.

1. We comprehensively survey existing video domain adaptation
approaches for different domain adaptation setups in Section 2.

2. We propose a strategy to filter out the incorrect pseudo-labeled
(noisy) samples based on the deep memorization effect [13] and
utilize the clean samples in the adaptation stage.

3. In Section 3, we propose an improved version of our pseudo-
label generation process using a teacher–student framework.
This modification yields reliable pseudo-label generation, thereby
enhancing the overall performance.

4. We conduct a comprehensive analysis of the results obtained
with the popular UCF ↔ HMDB and EPIC-Kitchens datasets and
detailed in Section 4.

5. We also include evaluations and comparisons in Section 4 with
recently developed source-free video domain adaptation tech-
niques like [16–18]. Our CleanAdapt and CleanAdapt + TS
outperform all the existing video domain adaptation approaches.

The paper is organized as follows. In Section 2, we review some of
the notable and recent works in this domain. Section 3 describes the
CleanAdapt and CleanAdapt + TS methods. In Section 4, we present
the experimental analyses and finally conclude in Section 5.

2. Related work

Supervised action recognition. Convolutional neural networks
(CNNs) are now the de facto solution for action recognition tasks. Var-
ious efforts have been made in this context to capture spatio-temporal
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Table 1
Summary of domain adaptation for action recognition methods. ‘‘N/A" denotes the unavailability of source code.

Methods Venue Code Link Backbone Core Components Types of Videos

Unsupervised Video Domain Adaptation

AMLS [6] BMVC’18 N/A C3D Subspace alignment Third person
DAAAA [6] BMVC’18 N/A C3D Domain invariant feature learning; Adversarial

learning with domain discriminator
Third person

TA3N [7] ICCV’19 PyTorch ResNet-101 Attention alignment; Temporal discrepancy;
Adversarial alignment

Third person

TCoN [20] AAAI’20 N/A BN-Inception, C3D Cross-domain co-attention; Adversarial learning for
temporal adaptation

Third person

MM-SADA [9] CVPR’20 Tensorflow I3D Self-supervised cross-modal alignment; Adversarial
Learning

First person

Choi et al. [21] WACV’20 N/A I3D Adversarial learning Third-person
SAVA [8] ECCV’20 N/A I3D Align important clips; Self-supervised clip-order

prediction
Third-person

STCDA [4] CVPR’21 N/A BN-Inception, I3D Spatio-temporal contrastive learning;
pseudo-labeling

First and Third person

Kim et al. [22] ICCV’21 N/A I3D Contrastive learning; cross-modal and cross-domain
alignment

First and Third person

CoMix [10] NeurIPS’21 PyTorch I3D Temporal contrastive learning; background mixing;
pseudo-labeling

First and Third person

CO2A [23] WACV’22 PyTorch I3D Dual head contrastive network; Synthetic data Third person
MA2LTD [24] WACV’22 PyTorch ResNet-101 Multi-level temporal features; Multiple domain

discriminators
Third person

CIA [25] CVPR’22 N/A I3D Cross-modal complementarity and consensus First and Third person
TranSVAE [26] NeurIPS’23 PyTorch I3D Disentanglement of domain-related and

semantic-related information
First and Third person

MD-DMD et al. [17] MM’22 N/A I3D Dynamic modal distillation First and Third person
Broome et al. [27] WACV’23 N/A SlowFast (video),

Resnet-18 (audio)
Audio-adaptive encoder First and Third person

CTAN [5] TCSVT’23 PyTorch I3D Channel-temporal attention network First person

Source-free Video Domain Adaptation

CleanAdapt [15] ICVGIP’22 PyTorch I3D Pseudo-labeling; Learning from noisy labels First and Third person
ATCoN [16] ECCV’22 PyTorch ResNet-50 Temporal consistency network Third person
MTRAN [18] MM’22 N/A I3D, Transformer Temporal relative alignment; Mix-up First and Third person
p
t
c
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n

f

information in videos, starting from two-stream networks with 2D [19]
o 3D CNNs [1]. However, a common limitation of existing methods is

their dependence on training data that closely matches the distribution
of the test data. When there is a subtle difference in the distribution
between the training and the test domains, these models struggle to
generalize effectively. Consequently, fine-tuning with a large amount
of labeled data from the target domain is often required, which can be
oth time-consuming and expensive. To address this issue, our focus
s on unsupervised video domain adaptation, aiming to overcome the
eed for labeled target domain data.

Domain adaptation for action recognition. Early works [7–9] on
ideo UDA are inspired by the adversarial framework [2] for image-
ased UDA tasks. Jamal et al. [6] proposes to align the source and the
arget domains using a subspace alignment technique and outperform
ll the previous shallow methods. Chen et al. [7] show the efficacy of

attending to the temporal dynamics of video for domain adaptation.
TCoN [20] is a cross-domain co-attention module for matching the
source and the target domain features with appearance and motion
streams. Munro et al. [9] were among the first to show the effectiveness
of learning multi-modal correspondence for video domain adaptation.
SAVA [8] is an attention-augmented model with a clip order prediction
task to re-validate the effectiveness of self-supervised learning for video
omain adaptation, as shown in [9]. Overall, the adversarial methods
re complex and sensitive to the choice of hyperparameters [10].

There has been a recent shift from adversarial to contrastive
learning-based methods for the video UDA task. Song et al. [4] propose
to bridge the domain gap using a self-supervised contrastive framework
named cross-modal alignment. In a similar direction, Kim et al. [3] use
 cross-modal feature alignment loss for learning a domain adaptive

feature representation. CoMix [10] represents videos as graphs and uses
emporal-contrastive learning over graph representations for transfer-
ble feature learning. Additionally, these methods [3,4,10] generate

pseudo-labels from the source pre-trained model for the target domain
3 
videos and use only the target domain samples with high-confident
seudo-labels in their contrastive loss in each iteration. However,
he source-only model often makes incorrect predictions with high
onfidence due to the distribution shift for target domain videos, which
an hinder adaptation. To address this, we treat target pseudo-labels as
oisy and formulate the domain adaptation problem as learning from
oisy labels. Moreover, the adaptation stage in these methods [3,4,10]

is source-dependent. This is an impractical requirement as source data
transfer during the deployment phase of the model is often infeasible.

Recently, ATCoN [16] and our conference paper CleanAdapt [15]
have addressed this issue of source data dependency. These methods
introduce a source-free adaptation approach, i.e., it does not rely on
source domain videos during the adaptation stage. In Table 1, we
provide an overview of existing methods for unsupervised and source-
ree video domain adaptation. Xu et al. [28] provide an extensive

survey of video domain adaptation, encompassing a variety of setups.

Learning from noisy-labels. Self-training based methods with careful
design choices may still produce over-confident, incorrect predictions.
To alleviate this issue, we resort to learning from label-noise literature.
One of the popular approaches to reducing the effect of noisy-labels
is to design noise-robust losses [29]. However, these methods fail to
handle real-world noise [30]. According to [13], deep neural networks
produce small loss values for samples with correct pseudo-labels. Thus,
a popular direction for handling label-noise is to use the cross-entropy
loss to indicate label correctness [31] and leverage these small-loss
samples for re-training the networks. In this work, we demonstrate
that the small-loss samples are potentially clean samples and are ef-
fective in helping our source pre-trained model adapt to the target
domain if these samples are used for fine-tuning. Therefore, our pro-
posed approach is simpler that the existing approaches, requiring solely

pseudo-labeled samples from the target domain.

https://github.com/cmhungsteve/TA3N
https://github.com/jonmun/MM-SADA-code
https://github.com/CVIR/CoMix
https://github.com/vturrisi/CO2A
https://github.com/justchenpp/MA2L-TD
https://github.com/ldkong1205/TranSVAE
https://github.com/xianyuanliu/CTAN
https://github.com/avijit9/CleanAdapt
https://github.com/xuyu0010/ATCoN
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Fig. 3. Average cross-entropy loss per epoch of training with pseudo-labeled target domain videos for clean vs. noisy samples with (a) RGB modality and (b) Flow modality. We
term the target domain samples with correct pseudo-labels as clean samples and with incorrect pseudo-labels as noisy samples. Note that, the groundtruth labels are only used to
identify the clean vs. the noisy samples for visualization purposes and not used for training the model. Deep neural networks learn the clean samples first before memorizing the
noisy samples according to the deep memorization effect as proposed in [13]. In our proposed approach CleanAdapt, we exploit this connection to select the clean samples for
fine-tuning the model to adapt to the target domain. (Best viewed in color.)
Fig. 4. Overview of the three stages of our CleanAdapt + TS framework for source-free video domain adaptation, which has three stages. (a) The model (𝑓𝑎) is first pre-trained
on the labeled source domain videos from 𝑠. For brevity, only the single-stream model is shown here. (b) This source pre-trained model is then used to generate pseudo-labels �̂�
for the unlabeled target domain videos from 𝑡. Inevitably, these pseudo-labels are noisy due to the domain shift between the source and the target domains. (c) A clean sample
selection module is used to select a set 𝑐 𝑙 of small-loss samples as potential clean samples. The source pre-trained model is finetuned on these clean samples from 𝑐 𝑙 using their
corresponding pseudo-labels �̂�. We repeat this step multiple times. See Section 4 for implementation details. (Best viewed in color.).
3. Approach

3.1. Problem definition

In the source-free UDA task for videos, we are given a labeled source
domain dataset of videos 𝐷𝑠 = {(𝑥𝑠, 𝑦𝑠) ∶ 𝑥𝑠 ∼ 𝑃 }, where 𝑃 is the source
data distribution and 𝑦𝑠 is the corresponding label of 𝑥𝑠. We are also
given an unlabeled target domain dataset 𝐷𝑡 = {𝑥𝑡 ∶ 𝑥𝑡 ∼ 𝑄}, where 𝑄
is the target distribution that is different from the source distribution
𝑃 . We assume that the source and the target domains share the same
label-set 𝐶, i.e., closed-set domain setup.

For a video clip 𝑥 from any domain, we consider two modalities,
𝑥 = {𝑥𝑎, 𝑥𝑚}, where 𝑥𝑎 is the appearance (RGB) stream and 𝑥𝑚 is the
motion (optical flow) stream. We use two 3D CNN backbones 𝑓𝑎 and
𝑓𝑚, one for each modality that classifies a video into one of the |𝐶|

classes. We aim to adapt the 3D CNNs (𝑓𝑎 and 𝑓𝑚) to the target domain.
We also note that the source domain videos are only available during
the pre-training stage and we do not use this dataset 𝑠 during the
adaptation stage as we are interested in the more realistic source-free
setup. We show an overview of the proposed method in Fig. 4.
4 
3.2. Self-training based domain adaptation

In contrast to the adversarial learning based approaches [7–9], we
take the path of self-training primarily due to its simplicity in the
adaptation stage. First, we pre-train the 3D CNN models using the la-
beled source videos from 𝐷𝑠. Second, we generate pseudo-labels for the
unlabeled target dataset 𝐷𝑡 using the source pre-trained model referred
to as pseudo-labels. Third, we retrain the networks 𝑓𝑎 and 𝑓𝑚 using the
pseudo-labeled target domain videos from 𝐷𝑡 for adaptation. One of the
possibilities is to use all the samples with their corresponding pseudo-
labels to retrain the networks. However, pseudo-labels are noisy due to
the domain gap between the source domain 𝐷𝑠 and the target domain
𝐷𝑡. Retraining 𝑓𝑎 and 𝑓𝑚 with all these pseudo-labeled samples from
𝐷𝑡 leads to a sub-optimal result, as discussed in Section 4. We aim to
answer the following question in this paper: How do we choose the
pseudo-labeled samples from 𝐷𝑡 that can help the model in adaptation?

3.3. Clean samples are all you need

The pseudo-labels contain a large number of samples with correct
pseudo-labels (clean samples). For example, there are ∼90% samples
with correct pseudo-labels in the UCF dataset when generated using
the HMDB pre-trained networks. Thus, if we can filter out the noisy
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Fig. 5. The clean sample selection module. The pseudo-labeled target domain videos
from 𝑡 are grouped according to their pseudo-labels �̂� and sorted in ascending order
of the loss generated by the model against their pseudo-labels. The keep-rate 𝜏 (𝜏 = 0.6
in this example) decides the number of samples to be selected for adaptation, having
small-loss values for each class. For simplicity, we have used only four classes here.
We show the videos with the correct pseudo-labels inside green border, whereas the
videos with incorrect pseudo-labels are inside the red border solely for visualization
purposes. (Best viewed in color.). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

samples and keep only the clean ones, we can finetune our networks
(𝑓𝑎 and 𝑓𝑚) using these clean samples and their corresponding pseudo-
labels. Thus, we argue that these clean samples are the ones that can
help us in domain adaptation. Now, the important question here is how
to separate the clean samples from the noisy ones.

In Fig. 3, we observe that deep neural networks learn from clean
samples easily and have a hard time learning from noisy samples due
to the memorization effect [13]. Thus, samples with low-loss values
are the potential clean samples and can be filtered out using the
loss as an indicator. In this work, we design two approaches without
bells and whistles, CleanAdapt and CleanAdapt + TS, aiming to select
the clean samples based on the loss generated by the model against
their corresponding pseudo-labels for adaptation. In each epoch of the
adaptation stage, we select these clean samples from the target domain
and use them to re-train the source pre-trained models 𝑓𝑎 and 𝑓𝑚.

There are three key advantages to this: (1) we do not need to
modify the overall training regime (e.g ., contrastive learning for do-
main alignment [3,4,10]) during adaptation, (2) we do not need to
make any domain adaptation specific design choices (e.g ., background
mixing [10]), and (3) we implicitly design an adaptation method that
does not need any source data during the adaptation stage (refer Fig. 4).

3.4. Source pre-training

In the source pre-training stage, we train the 3D CNNs 𝑓𝑎 and 𝑓𝑚
using the labeled source domain dataset 𝐷𝑠, and we refer to these as
source-only models. For a sample (𝑥, 𝑦) ∈ 𝐷𝑠, we average the logits
obtained from 𝑓𝑎(𝑥) and 𝑓𝑚(𝑥) to compute the final score 𝑝(𝑥) as follows:

𝑝(𝑥) = 𝜎(𝑓𝑎(𝑥) + 𝑓𝑚(𝑥)). (1)

We use the conventional cross-entropy loss between the predicted class
probabilities 𝑝(𝑥) and the one-hot encoded ground-truth label 𝑦 as the
loss function for training:

𝑐 𝑒(𝑥) = −
|𝐶|

∑

𝑦𝑐 log(𝑝𝑐 (𝑥)), (2)

𝑐=1

5 
where 𝑦𝑐 and 𝑝𝑐 represent the 𝑐th element of 𝑦 and 𝑝(𝑥) respectively for
class 𝑐. The main goal for this pre-training step is to equip our model
with the initial knowledge of the classes present in the source dataset
𝐷𝑠. Fig. 4(a) depicts this step.

3.5. Pseudo-label generation

The next step, as illustrated in Fig. 4(b), is to generate the pseudo-
labels for the unlabeled target domain samples. Once the model is
pre-trained on the source domain videos, we use the learned notion
of the class semantics of the model to generate labels for the target
domain data. Note that these generated labels are not the actual
labels for the target domain videos. Thus, we term these source-only
model-generated labels as pseudo-labels �̂�. Formally,

�̂�(𝑥) = arg max
𝑐

𝑝𝑐 (𝑥), (3)

where 𝑥 ∈ 𝐷𝑡. Due to the domain shift between the source and the
target, these pseudo-labels �̂� are noisy.

3.6. CleanAdapt + TS : A strong video adaptation method

Once the pseudo-labels are obtained for the target domain videos,
we use them for adaptation, as shown in Fig. 4(c). As discussed earlier,
the pseudo-labels are noisy, and we aim to extract samples with the
correct pseudo-labels (clean samples) for adaptation. Each epoch of the
adaptation stage has two key steps in our framework: (a) clean sample
selection and (b) fine-tuning the models 𝑓𝑎 and 𝑓𝑚 using these clean
samples.

Clean sample selection. To filter out the target domain videos
with noisy pseudo-labels, we start with the pseudo-labels generated
in Section 3.5 and exploit the relation between the small-loss and
the clean samples. We use the source pre-trained models (𝑓𝑎, 𝑓𝑚) to
select the clean samples reliably. In each epoch, the videos are first
grouped into |𝐶| classes based on their pseudo-labels generated by the
model and sorted in ascending order of their cross-entropy loss values
computed using the prediction made by the models (𝑝(𝑥) = 𝜎(𝑓𝑎(𝑥) +
𝑓𝑚(𝑥))) and their corresponding pseudo-labels (�̂�):

𝐷𝑐 𝑙 , 𝐷𝑛𝑜 ←←← 𝑐 𝑒(𝑝(𝑥), �̂�(𝑥)), (4)

where 𝜎(.), 𝐷𝑐 𝑙, and 𝐷𝑛𝑜 represent the softmax function, sets of clean
samples and noisy samples, respectively. If the pseudo-labels are cor-
rect, the model is likely to produce a small loss, and thus, there is a high
possibility that the sample belongs to 𝐷𝑐 𝑙. Inspired by [31], we define
a hyper-parameter keep-rate 𝜏. For each group, we select 𝜏 proportion
of the total number of samples with small losses (See Fig. 5). We call
this updated dataset of small-loss samples as 𝐷𝑐 𝑙 ⊂ 𝐷𝑡 and discard the
samples in 𝐷𝑛𝑜. We update the pseudo-labels as follows:

�̂�(𝑥) ←←← arg max
𝑐

𝑝𝑐 (𝑥). (5)

This version of our proposed model is referred to as CleanAdapt.
Inspired by the success of the teacher–student framework [14,32],

we adopt it along with our small-loss based clean sample selection to
combat the label-noise, and we call this model as CleanAdapt + TS.
The teacher and student networks share the same architecture and are
initialized with the source pre-trained weights. We use temporally av-
eraged teacher models to select reliable pseudo-labeled target domain
videos. To accomplish this, we generate two copies of the models 𝑓𝑎
and 𝑓𝑚: one operates as the teacher model (𝑓𝑇

𝑎 , 𝑓𝑇
𝑚 ), while the other

functions as the student model (𝑓𝑆
𝑎 , 𝑓𝑆

𝑚 ) in their respective modalities.
The parameters of the teacher models (𝜃𝑇𝑎 and 𝜃𝑇𝑚) are not updated
through loss back-propagation, rather they are an exponential moving
average of student parameters 𝜃𝑆𝑎 and 𝜃𝑆𝑚 respectively. To this end,
we create two different versions of the same video 𝑥 in each modality
using two transformations. Let 𝑇𝑤(𝑥) and 𝑇𝑠(𝑥) denote the weakly and
strongly augmented versions of the same video 𝑥 ∈  as defined below:
𝑡
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Weak augmentations. We refer to common geometric transforma-
ions like flipping and shifting as weak augmentations. In particular, we

incorporate a random horizontal flip, applied universally to the video,
with a 50% probability.

Strong augmentations. To achieve robust augmentation, we im-
lement RandAugment [33] for each video 𝑥. This method randomly
elects three augmentations from a predefined list and applies them to
he video 𝑥.

The teacher networks, denoted as 𝑓𝑇
𝑎 and 𝑓𝑇

𝑚 , use the weakly
augmented version of the video 𝑥 to produce pseudo-labels. In contrast,
the student networks, represented by 𝑓𝑆

𝑎 and 𝑓𝑆
𝑚 , undergo fine-tuning

using the strongly augmented version of the video 𝑥. This fine-tuning
process enhances their resilience to noise.

As for CleanAdapt, here also the samples are divided into the clean
and the noisy sets as follows:

𝐷𝑐 𝑙 , 𝐷𝑛𝑜 ←←← 𝑐 𝑒(𝑝𝑇 (𝑥), �̂�(𝑥)), (6)

where 𝑝𝑇 (𝑥) = 𝜎(𝑓𝑇
𝑎 (𝑇𝑤(𝑥)) + 𝑓𝑇

𝑚 (𝑇𝑤(𝑥))). We also update the pseudo-
abels using the teacher model, as shown below.

�̂�(𝑥) ←←← arg max
𝑐

𝑝𝑇 ,𝑐 (𝑇𝑤(𝑥)), (7)

where 𝑃 𝑇 ,𝑐 denotes the probability of the sample 𝑥 belonging to class
as predicted by the teacher model.
Fine-tuning. In this step, the student networks 𝑓𝑆

𝑎 and 𝑓𝑆
𝑚 are

re-trained using the strongly augmented samples 𝑇𝑠(𝑥) and their cor-
responding pseudo-label ̂𝑦(𝑥) from 𝐷𝑐 𝑙 using the cross-entropy loss as
shown below.

𝑐 𝑒(𝑥) = −
|𝐶|

∑

𝑐=1
�̂�𝑐 log(𝑝𝑆 ,𝑐 (𝑇𝑠(𝑥))). (8)

where (𝑥, �̂�) ∈ 𝐷𝑐 𝑙 and 𝑃 𝑆 ,𝑐 denotes the probability of the sample 𝑥
elonging to class 𝑐 as determined by the student model. The parame-
ers of the teacher networks are updated using the exponential moving
verage of the updated student networks as follows:

𝜃𝑇𝑎 ←←← 𝜖 𝜃𝑇𝑎 + (1 − 𝜖)𝜃𝑆𝑎 ,

𝜃𝑇𝑚 ←←← 𝜖 𝜃𝑇𝑚 + (1 − 𝜖)𝜃𝑆𝑚 ,
(9)

where 𝜖 is the momentum parameter. We repeat these two steps in an
terative manner until the networks converge.

4. Results and analysis

4.1. Datasets and metrics

We consider both first-person and third-person videos for bench-
arking our proposed approach. Following [4,10], we use publicly

available UCF101 [34] and HMDB51 [35] for third-person and EPIC-
itchens [36] for first-person videos. We show experimentally that our
pproach adapts well to both of these scenarios.
UCF ↔ HMDB. We use the official split released by Chen et al. [7]

or UCF ↔ HMDB to evaluate our CleanAdapt on video domain adap-
tation. In total, this dataset has 3209 third-person videos with 12
ction classes. Specifically, all the videos are a subset of the original
CF101 [34] and HMDB51 [35] datasets with 12 classes common be-

ween them. Following [7], we use two settings: UCF101 → HMDB51,
nd HMDB51 → UCF101.
UCF ↔ HMDBsmall. This dataset has 5 shared classes from UCF101

nd HMDB51 datasets with a total of 1271 videos.
EPIC-Kitchens. This is the largest video domain adaptation dataset,

which contains egocentric videos of fine-grained actions recorded in
different kitchens. We follow the official split provided by Munro et
al. [9]. This dataset contains videos from the three largest kitchens,
.e., D1, D2, and D3, with 8 common action categories. EPIC-Kitchens
as more class imbalance than UCF ↔ HMDB, making it more challeng-
ng [9].
6 
Ego2Exo. We examine and evaluate the effectiveness of our pro-
posed approach for cross-view transfer in videos using the challenging
go2Exo [37] dataset. This dataset includes videos sourced from the
go-Exo4D [38] dataset, leveraging their keystep annotations for action

labels (e.g ., make dough, prepare skillet, etc.). In total, it comprises 4,100
ego videos and 4,986 exo videos for training, while the validation set
consists of 3,168 samples from each view.

Metrics. We follow the standard protocol defined by [7,9] to com-
are our approach with state-of-the-art unsupervised domain adapta-
ion methods [3,4,10] in terms of top-1 accuracy. We perform cross-

domain retrieval experiments to evaluate the feature space learned by
our model before and after adaptation. We report retrieval performance
in terms of Recall at 𝑘 (R@k), implying that if 𝑘 closest nearest neigh-
bors contain one video of the same class, the retrieval is considered
correct.

4.2. Implementation details

We use the Inception I3D [1] network as the backbone for both
RGB and Flow modalities. Following the prior video domain adaptation
works [3,4,8,9], we use the Kinetics [1] pre-trained weights to initialize
he I3D network. During training, we randomly sample 16 consecutive
rames and perform the same data augmentation used in [3,8,9] for

all our steps. We set the batch size to 48 for both UCF ↔ HMDB and
EPIC-Kitchens datasets. We pre-compute optical flow using the TV-L1
algorithm.

Source pretraining stage.We train the model on the source dataset
for 40 and 100 epochs with learning rates 1𝑒− 2, and 2𝑒− 2 for UCF ↔
HMDB and EPIC-Kitchens datasets, respectively. We reduce the learning
rate by a factor of 10 after 10, 20 epochs for UCF ↔ HMDB. For EPIC-

itchens, we decrease the learning rate by 10 after 50 epochs. We
ollow [8] for other hyperparameters.
Adaptation stage. We use the source pre-trained weights during

he adaptation stage to initialize the I3D [1] network. The network is
rained for 100 epochs with learning rates 1𝑒− 2 and 2𝑒− 3 for UCF ↔
MDB and EPIC-Kitchens, respectively. The learning rate is reduced by
0 after 20, 40 epochs for UCF ↔ HMDB. In the case of EPIC-Kitchens,
e reduce the learning rate by 10 after 10, 20 for EPIC-Kitchens. We

set the values of momentum parameters 𝜖 as 0.99 in all experiments.
Our entire framework is implemented in PyTorch and uses 4 NVIDIA

2080Ti GPUs. On average, training takes around 1 h for UCF ↔ HMDB
nd approximately 7 h for EPIC-Kitchens datasets.

We now first provide a detailed comparison of our proposed ap-
roaches with state-of-the-art video domain adaptation methods on
CF ↔ HMDB, UCF ↔ HMDBsmall, and EPIC-Kitchens datasets in Sec-

tion 4.3. We provide some discussions to understand the effect of
high-loss samples and over-confident pseudo-labels on the adaptation
stage. In Section 4.3, we also show and compare the heatmaps gener-
ated by our CleanAdapt and source pre-trained model. In Section 4.4,
we illustrate the impact of the hyperparameter 𝜏 and explore consider-
ations for selecting an appropriate value for it. We also experimentally
show the retrieval performance of our proposed approach as well as the
ource pre-trained model in Section 4.6. In Section 4.5, we discuss the

impact of the teacher–student framework in detail.

4.3. Comparisons to the state-of-the-art methods

UCF ↔ HMDB. We present the quantitative results of both of our
pproaches CleanAdapt and CleanAdapt + TS for UCF ↔ HMDB dataset
n Table 2 and compare our results with the state-of-the-art unsu-

pervised source-free video domain adaptation approaches. For each
approach in Table 2, we also report source-only and target-supervised re-
sults for fair comparisons wherever applicable. The source-only method
refers to the 𝑓𝑎 and/or 𝑓𝑚 models trained only on the train split of
the source dataset as described in Section 3.4 and tested directly on
the validation split of the target dataset, which serves as a lower
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Table 2
Performance comparison with state-of-the-art video domain adaptation methods on UCF101↔ HMDB51. Result for MM-SADA
[9] is taken from Kim et al. [3]. The results for our methods are highlighted in gray . The average gains over the source-only
model for the first and second best source-free approaches are highlighted in green and red, respectively.

Method Venue Two-stream? Source-free? Backbone Datasets

UCF → HMDB HMDB → UCF

Source only [7] I3D 80.6 88.8
TA3N [7] ICCV’19 ✗ ✗ I3D 81.4 90.5
Target supervised [7] I3D 93.1 97.0

Source only [8] I3D 80.3 88.8
SAVA [8] ECCV’20 ✗ ✗ I3D 82.2 91.2
Target supervised [8] I3D 95.0 96.8

Source only [9] I3D 82.8 90.7
MM-SADA [9] CVPR’20 ✓ ✗ I3D 84.2 91.1
Target supervised [9] I3D 98.8 95.0

Source only [4] I3D 82.8 89.8
STCDA [4] CVPR’21 ✓ ✗ I3D 83.1 92.1
Target supervised [4] I3D 95.8 97.7

Source only [3] I3D 82.8 90.7
Kim et al. [3] ICCV’21 ✓ ✗ I3D 84.7 92.8
Target supervised [3] I3D 98.8 95.0

Source only [10] I3D 80.3 88.8
CoMix [10] NeurIPS’21 ✗ ✗ I3D 86.7 93.9
Target supervised [10] I3D 95.0 96.8

Source only [16] TRN 72.8 72.2
ATCoN [16] ECCV’22 ✗ ✓ TRN 79.7 ▴ +6.9 85.3 ▴ +13.1

Source only [17] I3D 80.8 91.0
MD-DMD [17] MM’22 ✓ ✗ I3D 82.2 92.8
Target supervised [17] I3D 98.8 95.0

Source only [18] Transformer 81.1 86.8
MTRAN [18] MM’22 ✓ ✓ Transformer 92.2 ▴ +11.1 95.3 ▴ +8.5

Costa et al. [23] WACV’22 ✗ ✗ I3D 87.8 95.8

Source only ResNet-101 76.4 78.1
M𝐴2LTD [24] WACV’22 ✗ ✗ ResNet-101 85.0 86.6

Source only [25] I3D 85.8 93.5
CIA [25] CVPR’22 ✓ ✗ I3D-TRN 91.9 94.6
Target supervised [25] I3D 96.8 99.1

Source only [26] I3D 86.1 92.5
TranSVAE [26] NeurIPS’23 ✓ ✗ I3D-TRN 87.8 99.0

Source only I3D 80.6 89.3
CleanAdapt Ours ✗ ✓ I3D 86.1 ▴ +5.5 96.1 ▴ +6.8
CleanAdapt + TS Ours ✗ ✓ I3D 88.6 ▴ +8.0 96.7 ▴ +7.4
Target supervised I3D 93.6 98.4

Source only I3D 82.5 91.4
CleanAdapt Ours ✓ ✓ I3D 89.8 ▴ +7.3 99.2 ▴ +7.8
CleanAdapt + TS Ours ✓ ✓ I3D 93.6 ▴ +11.1 99.3 ▴ +7.9
Target supervised I3D 95.3 99.3
[
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bound of the adaptation performance. The target-supervised model is
trained and tested on the train and validation split of the target
ataset, respectively. This serves as an upper bound to the adaptation
erformance.

Next, we shift our focus towards comparing our method with
he most advanced unsupervised video domain adaptation techniques
vailable. TA3N [7], SAVA [8], CoMix [10], ATCoN [16], M𝐴2LTD [24]
nd Costa et al. [23] use only appearance stream in their methods.
n contrast to these methods, STCDA [4], MM-SADA [9], and Kim et
l. [3], MD-DMD [17], MTRAN [18], CIA [25], and TransVAE [26]
everage both appearance and motion streams. We show the results for

both single-stream and two-stream versions of our model.
To show that the efficacy of our proposed approach is not solely

ue to the addition of the motion stream with appearance, we show
ur adaptation results for both single-stream (appearance only) and
wo-stream (appearance and motion) models. Our single-stream model
chieves 86.1% and 96.1% top-1 accuracy with a gain of 5.5% and
.8% over the source-only model for UCF → HMDB and HMDB → UCF
atasets respectively. Further improvement in the adaptation perfor-
ance is observed when we couple our method CleanAdapt with the

eacher–student framework [14,32] resulting in CleanAdapt + TS. The
eacher network serves as a regularization mechanism by producing

consistent pseudo-labels, which, in turn, incentivizes the student model
to make more confident predictions. This improved method CleanAdapt
+ TS achieves 88.6% and 96.7% top-1 accuracy, resulting in 8.0% and
7.4% gains over the source-only models, respectively.
 p

7 
In comparison, the best performing earlier existing model CoMix
10], which uses a temporal contrastive learning framework with back-

ground mixing, gives 6.4% and 5.1% gain for these two datasets,
respectively. Note that all of these methods use the source data along

ith the target data during adaptation, whereas we use only target data
in our approach and attain similar gains. Although the source-free video
domain adaptation approaches such as ATCoN [16] and MTRAN [18]
achieve better performance for HMDB ←←→ UCF than our proposed ap-
proaches CleanAdapt and CleanAdapt + TS, it is not consistent across
all the datasets as shown in Tables 2 and 5.

Similarly, our two-stream model CleanAdapt achieves state-of-the-
rt performance on both UCF → HMDB and HMDB → UCF datasets
n terms of top-1 accuracy with the values of 89.8% and 99.2%,
espectively. This is a significant gain of 7.3% for UCF → HMDB and
.8% for HMDB → UCF over the source-only model without using
ny source-domain data which is much higher than the other source-
ependent adaptation models. Our improved method CleanAdapt + TS
chieves a further gain of 11.1% for UCF → HMDB and 7.9%. This

affirms the assertion that in source-free, unsupervised video domain
adaptation, utilizing the low-loss samples from the target domain dur-
ing the adaptation phase is justified. It also highlights the efficacy of
employing a slowly updated teacher network for generating pseudo-
labels to fine-tune the student network using strongly augmented target
domain videos.

We now aim to show the effect of using high-loss samples for adap-
ation and discuss if overconfident pseudo-labels can affect adaptation
erformance.
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Table 3
Comparison with state-of-the-art image-based source-free domain adaptation techniques

Method Backbone U → H H → U

Source only TRN 72.7 72.2
Kim et al. [22] TRN 69.9 74.9
Li et al. [39] TRN 74.4 67.3
Yang et al. [40] TRN 75.3 76.3
Qiu et al. [41] TRN 75.8 68.2

Source only I3D 80.6 89.3
Yang et al. [11] I3D 86.6 91.4
Liang et al. [42] I3D 82.5 91.9
CleanAdapt I3D 86.1 96.1
CleanAdapt + TS I3D 88.6 96.7

Table 4
Performance comparisons with state-of-the-art video domain adaptation methods on
UCF ↔ HMDBsmall.

Method U → H H → U

Source only 97.3 96.8
SHOT [42] 99.3 99.5
3C-GAN [39] 98.3 99.5
SFDA [22] 98.0 99.3
HCL [43] 99.3 99.5
MTRAN [18] 100 100

Source only 98.3 97.8
CleanAdapt + TS 100 100
Target Supervised 100 100

What happens if we use only high-loss samples for adaptation?
e trained our two-stream network with the high-loss samples instead

f the proposed low-loss samples. For UCF → HMDB, we obtained
84.7% accuracy after adaptation with the high-loss samples, which
is 5.1% less when adapted with the low-loss samples. We observe a
similar drop for HMDB → UCF. This difference is even more significant
when the noisy pseudo-labels are dominant (e.g., more than 12% on
Epic-Kitchens). Nevertheless, these outcomes are in line with expec-
tations, as demonstrated in Fig. 3, where it is evident that the noisy
samples typically exhibit elevated loss values, thereby detrimentally
affecting the fine-tuning performance when incorporated during the
adaptation stage.

Do the overconfident pseudo-labels trigger error accumula-
ion? A potential question arising here is whether the degradation
f models and the further decline in the quality of pseudo-labels can
ccur due to the presence of overconfident yet incorrect pseudo-labels.
lthough error accumulation could be a possibility, we have found
rror accumulation to be negligible in practice. For example, the UCF
re-trained model selects low-loss samples with ∼98% accuracy in each
poch of the adaptation stage from HMDB.
Comparisons with self-training based methods. In Table 2, we

compare our approach with the other self-training approaches [3,4,
10]. Our method re-purposed the learning from noisy labels based
pseudo-label selection method that shows better performance than all
these.

Comparisons with image-based source-free methods. In Table 3,
we compare our approach with state-of-the-art image-based source-
free methods. For [22,39–41], we report the values with TRN [48] as
their backbone network. Our model CleanAdapt + TS achieves higher
gain over their corresponding source-only model than all these image-
ased source-free methods. We have also adopted the frameworks
roposed by [11,42] with our 3D backbone network. Liang et al. [42]
erform marginally better than the source-only model. Yang et al. [11]
erformance is comparable to ours on UCF → HMDB, but significantly
orse on HMDB→UCF.
UCF ↔ HMDBsmall. To provide a thorough evaluation and com-

are fairly with existing methods, we compare the performance of
ur method CleanAdapt + TS on the UCF ↔ HMDBsmall dataset in

Table 4. The dataset size is very limited, and thus CleanAdapt +
 e

8 
TS achieves scores comparable to the target-supervised baseline for
both the UCF → HMDBsmall and HMDB ↔ UCFsmall. We compare our
pproach CleanAdapt + TS with state-of-the-art techniques such as
18,22,39,42,43] and achieves superior performance.
EPIC-Kitchens. In Table 5, we compare the results of our approach

with state-of-the-art image-based methods extended for videos as well
as video-based domain adaptation. We implement our model to repli-
cate the source-only and target-supervised performance as reported
in [3]. Note that there is a minor difference (∼2.7% and ∼3.5%) in the
performance of the source-only model reported in MM-SADA [9] and
both of our models. Comparable distinctions to those observed in [9]
can be identified in [10], primarily attributable to the non-deterministic
operations associated with CUDA. However, such minor differences of
source-only accuracy is not a concern for evaluating domain adaptation
performance. The most important metric here is the gain achieved
after adaptation over the source-only model. On average, the source-
free methods demonstrate a maximum improvement of 3% over the
source-only model. In contrast, our improved method, CleanAdapt +
TS, achieves 7.6% improvement despite being simple.

MM-SADA [9] is the first to report domain adaptation results on
the EPIC-Kitchens dataset, achieving an average of 4.8% gain on top of
their source-only model followed by Song et al. [4] reporting an average
gain of 5.7%. Kim et al. [3] show an improvement of 5.5% averaged
over 6 datasets. CTAN [5] achieves a modest gain of 1.5% over the
ource-only models. However, all of these methods use the source
ataset for adaptation. In contrast to these prior approaches, our simple
et powerful source-free approaches, CleanAdapt and CleanAdapt + TS,

achieve an average of 7.5% and 7.6% gain over the source-only model,
respectively. The primary source of the performance boost achieved
by our methods, despite their simplicity, can be attributed to the
bundance of clean samples with low-loss values compared to the noisy

ones.
Ego2Exo. Following [37], we use the pre-extracted Omnivore Swin-

L [51] features in the Ego-Exo4D [38] dataset. We train a 2-layer linear
classifier on top of this features keeping all other hyper-parameters as
escribed above.

As shown in Table 6, TA3N [7] and TransVAE [26] achieve average
improvements of 5.41% and 5.67%, respectively, over the source-only
model on the Ego2Exo dataset. In contrast, the zero-shot baselines,
EgoVLP [52] and LaViLA [50], deliver more modest gains of 0.59%
and 0.47%, respectively. Although LaGTran [37] achieves a 9.52%
improvement over the source-only model, it relies on text data associ-
ated with the videos, which requires manual effort and contradicts our
assumption. In contrast, our proposed method, CleanAdapt, achieves a
9.76% improvement over the source-only model without needing any
ext data in the target domain.
Visualization. In Fig. 6, we show the Class Activation MAP (CAM)

isualizations of our adapted model and compare them with the source-
nly model. The visualization shows that the source-only model attends
o the background of the scene and makes incorrect predictions, while
he adapted model focuses on the action component of the video to
ake correct predictions.
Comparisons with Zero-Shot Vision-Language Models. In addi-

tion to the state-of-the-art video domain adaptation approaches, we
also compare our methods CleanAdapt and CleanAdapt + TS with the
following pre-trained vision-language models.

Video-LLaVA [53]. These baselines integrate visual representations
into the language feature space, contributing to the development of
unified Large Vision-Language Models (LVLMs). We prompt this LVLM
with the following text - ‘‘USER: < 𝑣𝑖𝑑 𝑒𝑜 > Pick the action being
performed in the video from the list below: [‘take’, ‘put’, ‘open’, ‘close’,
wash’, ‘cut’, ‘mix’, ‘pour’] ASSISTANT:".
EgoVLP [49]. A zero-shot baseline leverages the video-language

pre-trained backbone from the Ego4D [54] dataset. We compute the
mbeddings for the class names using the distilbert-base-uncased model,
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Table 5
Performance comparison with state-of-the-art video domain adaptation methods on EPIC-Kitchens dataset. Results with single-stream models are highlighted in
cyan whereas the results with two-stream networks are highlighted in gray . The average gains over the source-only model for the first and second best

source-free approaches are highlighted in green and red, respectively. See [44–47].
Method Venue Source-free? Backbone D2→D1 D3→D1 D1→D2 D3→D2 D1→D3 D2→D3 Mean

Source only I3D 42.5 44.3 42.0 56.3 41.2 46.5 45.5
MMD [44] ICML’15 ✗ I3D 43.1 48.3 46.6 55.2 39.2 48.5 46.8

AdaBN [45] PR’18 ✗ I3D 44.6 47.8 47.0 54.7 40.3 48.8 47.2
MCD [46] CVPR’18 ✗ I3D 42.1 47.9 46.5 52.7 43.5 51.0 47.3

MM-SADA [9] CVPR’20 ✗ I3D 48.2 50.9 49.5 56.1 44.1 52.7 50.3
STCDA [4] CVPR’21 ✗ I3D 49.0 52.6 52.0 55.6 45.5 52.5 51.2

Kim et al. [3] ICCV’21 ✗ I3D 49.5 51.5 50.3 56.3 46.3 52.0 51.0
MD-DMD [17] MM’22 ✗ I3D 50.3 51.0 56.0 54.7 47.3 52.4 52.0

CIA [25] CVPR’22 ✗ I3D 52.5 47.8 49.8 53.2 52.2 57.6 52.2
Target Supervised I3D 62.8 62.8 71.7 71.7 74.0 74.0 69.5

Source only I3D 35.5 38.1 39.4 40.5 32.0 39.2 37.5
CTAN [5] TCSVT’23 ✗ I3D 36.6 39.3 41.3 41.3 35.0 40.6 39.0

Target Supervised I3D 60.2 60.2 64.7 64.7 52.8 52.8 59.2

Source only I3D 35.4 34.6 32.8 35.8 34.1 39.1 35.3
DANN [2] ICML’15 ✗ I3D 38.3 38.8 37.7 42.1 36.6 41.9 39.2
ADDA [47] CVPR’17 ✗ I3D 36.3 36.1 35.4 41.4 34.9 40.8 37.4
TA3N [7] ICCV’19 ✗ I3D 40.9 39.9 34.2 44.2 37.4 42.8 39.9

CoMix [10] NeurIPS’21 ✗ I3D 38.6 42.3 42.9 49.2 40.9 45.2 43.2
Target Supervised I3D 57.0 57.0 64.0 64.0 63.7 63.7 61.5

Source only Transformer 43.7 51.1 40.5 36.2 48.9 45.2 44.2
Liang et al. [42] ICML’20 ✓ Transformer 44.1 53.9 40.8 36.5 49.0 45.3 44.9

Li et al. [39] CVPR’20 ✓ Transformer 44.7 54.3 41.0 36.7 49.9 45.4 45.4
Kim et al. [22] TAI’21 ✓ Transformer 44.4 54.9 41.3 37.2 49.8 45.2 45.5

HCL [43] NeurIPS’21 ✓ Transformer 45.1 55.6 41.5 36.9 50.2 45.7 45.8
MTRAN [18] MM’22 ✓ Transformer 46.3 58.2 42.2 38.1 52.3 46.1 47.2 ▴ +3.0

Source only I3D 40.9 38.6 39.3 41.3 37.3 42.4 39.9
CleanAdapt Ours ✓ I3D 44.6 ▴ +3.7 40.7 ▴ +2.1 44.5 ▴ +5.2 47.1 ▴ +5.8 40.9 ▴ +3.6 45.7 ▴ +3.3 43.9 ▴ +4.0

Target Supervised I3D 60.5 60.5 68.4 68.4 68.8 68.8 65.9

Source only I3D 41.8 40.0 46.0 45.6 38.9 44.4 42.8
CleanAdapt Ours ✓ I3D 46.2 ▴ +4.4 47.8 ▴ +7.8 52.7 ▴ +6.7 54.4 ▴ +8.8 47.0 ▴ +8.1 52.7 ▴ +8.3 50.3 ▴ +7.5

Target Supervised I3D 62.1 62.1 72.8 72.8 72.3 72.3 69.1

Source only I3D 41.8 41.1 41.9 46.1 37.3 43.9 42.0
CleanAdapt + TS Ours ✓ I3D 48.3▴ +6.5 48.7 ▴ +7.6 49.9 ▴ +8.0 56.3 ▴ +10.2 44.6 ▴ +7.3 48.9 ▴ +5.0 49.6 ▴ +7.6
Target Supervised I3D 62.3 62.3 72.7 72.7 71.1 71.1 68.4
Fig. 6. Class activation map (CAM) on target-domain videos of the UCF ↔ HMDB dataset. The actions in green are correct predictions, while actions in red are incorrect. It is
worth noting that the adapted model in the bottom row emphasizes the action component rather than the contextual scene aspect. (Best viewed in color.). (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 6
Performance comparison of state-of-the-art video domain adaptation method on
Ego2Exo [37] dataset.

Ego→Exo Exo→Ego Avg.

Unsupervised Adaptation
Source Only 8.39 15.66 12.03
TA3N [7] 6.92 27.95 17.44
TransVAE [26] 12.06 23.34 17.70

Zero-shot Video Recognition
EgoVLP [49] 5.89 19.35 12.62
LaViLA [50] 5.86 19.13 12.50

LaGTran [37] 12.34 30.76 21.55

Target Sup. 17.91 33.19 25.55

Source-free Unsupervised Adaptation
Source-only 18.08 40.02 29.05
CleanAdapt (𝜏 = 0.5) 27.14 50.47 38.81
Target Sup. 30.99 52.05 41.52

and similarly, we extract video embeddings using the Ego4D [54] pre-

trained backbone. Finally, the class name with the highest similarity is
9 
selected.
LaViLA [50]. This zero-shot baseline leverages the video-language

pre-training by making a large-language model (LLM) conditioned on
the visual inputs using the cross-attention layer on the Ego4D [54]
dataset. Following [50], we compute the embeddings for the class names
using the distilbert-base-uncased model, and similarly, we extract video
embeddings using the Ego4D [54] pre-trained backbone. Finally, the
class name with the highest similarity is selected.

The results of the zero-shot baselines on the EPIC-Kitchens dataset
are presented in Table 7. From the table, it is evident that zero-shot
vision-language models do not perform particularly well on egocentric
video recognition tasks. For instance, Video-LLaVA [53], which is
trained on generic third-person videos, achieves only 33.76% average
top-1 accuracy. In contrast, EgoVLP [49], and LaViLA [50], pre-trained
on egocentric videos from the Ego4D [54] dataset, outperform Video-
LLaVA but still fall short by 22.4% and 1.53% when compared with our
proposed method CleanAdapt + TS.
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Table 7
Performance comparison with zero-shot vision-language models on EPIC-Kitchens dataset. Results with zero-shot vision-language models are highlighted in cyan

whereas the results our proposed model are highlighted in gray .

Method D2→D1 D3→D1 D1→D2 D3→D2 D1→D3 D2→D3 Mean

Zero-shot Baselines
Video-LLaVA [53] 32.64 32.64 33.73 33.73 34.90 34.90 33.76
EgoVLP [49] 23.60 23.60 28.00 28.00 30.08 30.08 27.22
LaViLA [50] 46.44 46.44 50.13 50.13 47.64 47.64 48.07
Source-free Domain Adaptation
Source only 41.8 41.1 41.9 46.1 37.3 43.9 42.0
CleanAdapt + TS 48.3▴ +6.5 48.7 ▴ +7.6 49.9 ▴ +8.0 56.3 ▴ +10.2 44.6 ▴ +7.3 48.9 ▴ +5.0 49.6 ▴ +7.6
Target Supervised 62.3 62.3 72.7 72.7 71.1 71.1 68.4
Fig. 7. Hyperparameter search for the value of keep-rate 𝜏 for UCF101↔ HMDB51 and EPIC-Kitchens dataset. The keep-rate 𝜏 controls the number of samples to be selected as
clean due to low-loss values computed against the pseudo-labels. The results reported here are for the two-stream network. (Best viewed in color.)
Fig. 8. Analysis of the effect of CleanAdapt + TS on the target validation accuracy as
compared to source-only, CleanAdapt, and target-supervised methods. (Best viewed in
color.).

4.4. Hyperparameter search

The only hyperparameter our model introduces is the keep-rate 𝜏.
It controls the number of target domain samples to be chosen from
each class with low loss values in the adaptation stage. Fig. 7 shows
the ablation results of varying 𝜏 in terms of validation accuracy for the
target domain.

Empirically, we verify that the choice of keep-rate 𝜏 is important.
As mentioned earlier, the samples from the target domain train set
pseudo-labeled by the source-only model have inherently noisy labels.
The choice of keep-rate 𝜏 = 1 is equivalent to choosing all the samples
for retraining the model on the target domain. However, the noisy
pseudo-labels lead to a sub-optimal adaptation performance for all the
datasets. For example, the adapted model gives top-1 accuracy of 86.1%
on UCF → HMDB and 95.2% on HMDB → UCF respectively when 𝜏 is
set to 1. However, when keep-rate 𝜏 is set to 0.6 gives top-1 accuracy
of 89.8% and 99.2% on UCF → HMDB and HMDB → UCF respectively.
10 
Table 8
Cross-domain video retrieval results on UCF ↔ HMDB dataset. Given queries from the
target domain, we evaluate retrieved videos from the source domain in terms of R@k,
where 𝑘 ∈ {1, 5, 10}. Note that, all models reported here are two-stream networks and
we average the similarity score from each modality to retrieve the source videos.

Method UCF → HMDB HMDB → UCF

R@1 R@5 R@10 R@1 R@5 R@10

Source Only 0.82 0.87 0.90 0.88 0.94 0.95
CleanAdapt 0.92 0.97 0.99 0.91 0.97 0.98

4.5. Impact of teacher–student framework

To assess the effectiveness of the teacher–student framework, we
generate a plot of target validation accuracy for each epoch during the
training phase. We compare the performance of the source-only model,
CleanAdapt, and CleanAdapt + TS, and target-supervised models. Fig. 8
clearly demonstrates that the teacher–student framework contributes
to stable pseudo-label generation, resulting in improved adaptation
performance. To be precise, the teacher model serves as a regular-
izing factor for the student model, accomplishing this by producing
consistent pseudo-labels. Consequently, the student model is guided to
make gradual changes rather than abrupt ones. These pseudo-labels
are treated by the student model as actual labels and take strongly
augmented videos to generate robust features.

4.6. Cross-domain video retrievals

We examine the feature space learned by our adapted model
CleanAdapt to gain insights into its predictions through cross-domain
video retrieval performance. Given a query video of a particular class
from the target domain, we aim to retrieve videos from the source
domain with the same semantic category. We show the results for
the two-stream networks, where we first compute the similarity scores
for the individual modalities and average them for final retrieval. We
evaluate both the source-only and the proposed method CleanAdapt
quantitatively as well as qualitatively.
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Fig. 9. Nearest neighbor retrieval results for the UCF → HMDB and the HMDB → UCF dataset. The left column shows the query videos from the target domain. The middle
column shows the retrieved source videos using the source-only model, and the right column shows the source videos retrieved using our proposed model. (Best viewed in color.).
Table 9
Cross-domain video retrieval results on the EPIC-Kitchens dataset. Given queries from the target domain, we evaluate retrieved videos from the source domain in terms of R@k,
where 𝑘 ∈ {1, 5, 10}. All the models reported here are two-stream networks and we average the similarity score from each modality to retrieve the source videos.

Method D2 → D1 D3 → D1 D1 → D2 D3 → D2 D1 → D3 D2 → D3

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

Source only 0.35 0.65 0.77 0.38 0.68 0.79 0.35 0.75 0.86 0.41 0.77 0.84 0.34 0.68 0.82 0.42 0.74 0.84
CleanAdapt 0.42 0.68 0.80 0.37 0.75 0.83 0.42 0.74 0.87 0.46 0.77 0.85 0.35 0.69 0.83 0.40 0.70 0.82
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In Table 8, we show the quantitative results for the cross-domain
ideo retrieval task for the UCF ↔ HMDB dataset. Our model retrieves
etter source videos from the target queries with R@1 of 0.92 and
.91 as compared to the source-only model, which achieves only 0.82
nd 0.88 on UCF → HMDB and HMDB → UCF datasets respectively. In
ig. 9, we show qualitative retrieval results for the UCF → HMDB. Our
odel can correctly retrieve the source videos of the same semantic

ategories as the target query videos.
As shown in Table 9, our proposed approach achieves better re-

rieval performance in most of the cases than the source-only model for
he EPIC-Kitchen dataset. Only for D2 → D3, our model under-performs
he source-only model. This can be attributed to the fact that our model
oes not use source data during the adaptation stage, and thus, the
odel might start forgetting some attributes of the source dataset.

.7. Limitations and future work

In our model, we do not explicitly incorporate the spatiotemporal
elationships inherent in videos. This information is crucial for captur-
ng how objects and actions evolve over time, which can significantly
nhance the model’s ability to understand complex video content. With-
ut modeling these relationships, the model may struggle to effectively
dapt to more challenging tasks such as video object segmentation,
here it is essential to accurately track and delineate objects across

rames.
A key assumption of our method is that each sample in both the

ource and target domains is associated with a single label and that
hey share a common label space 𝐶. While this is a standard setup in
he literature, it may not always apply. For instance, CharadesEgo [55]
ontains both first- and third-person videos, with each video having
ultiple labels. Our proposed approaches cannot be directly applied to

uch scenarios, and extending them to handle multi-label settings is left
s future work.
 T

11 
However, we believe that the fundamental concept of selecting
lean samples from noisy pseudo-labeled data will still be advantageous
or tasks beyond video domain adaptation.

. Conclusion

In this work, we address the relatively under-explored problem
f source-free video domain adaptation and propose two simple yet
ffective approaches: CleanAdapt and CleanAdapt + TS. Our framework
s based on self-training in which we generate noisy pseudo-labels for
he target domain data using the source pre-trained model. Moreover, if
e can filter out the noisy samples with varying 𝜏 using our proposed
pproach and use only the clean samples for fine-tuning, we achieve
tate-of-the-art performance without any video-specific modeling. To
itigate this issue of noisy pseudo-labels impeding the adaptation
erformance, we leverage the deep memorization effect [13] to identify
nd select the clean samples. Furthermore, we demonstrate that the
uality of the clean samples can be improved by introducing a teacher–
tudent framework, which in turn enhances the overall reliability of
he adaptation training process and results in further performance im-
rovements. Our methods consistently outperform recent image-based
nd video-based UDA methods without any source domain videos, thus
stablishing a new state of the art across several benchmarks.

While it is true that we get approximately 90% accurate pseudo-
abels for the HMDB ←←→ UCF task, we want to emphasize that this
s not always the case. For instance, in the EPIC-Kitchens dataset,
he source-only model generates pseudo-labels with only about 42.0%
lean samples. As demonstrated in Table 5 and Fig. 7, training with
ll pseudo-labels without filtering the clean samples leads to sub-
ptimal performance. This underscores the importance of selecting an
ppropriate keep-rate (𝜏). We would like to emphasize that the success
f our method relies on the noise level in the pseudo-labeled target
omain samples and the network’s ability to avoid memorizing them.
hese might fail when the amount of noise is too much (e.g., 90%
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noisy samples). Nonetheless, as demonstrated empirically, our method
s effective even with a reasonable noise level.
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