Multilingual Query-by-Example KWS for Indian Languages using
Transliteration

Kirandevraj R, Vinod K Kurmi?, Vinay Namboodiri®, CV Jawahar"

HIIT Hyderabad, India
21ISER Bhopal, India
3University of Bath, UK

kirandevraj.r@research.iiit.ac.in,

vinodkk@iiserb.ac.in, vpn22@bath.ac.uk,

jawahar@iiit.ac.in

Abstract

Query-by-Example Keyword Spotting (QbE KWS) detects
query audio within target audio. A common approach for multi-
lingual QbE KWS uses phoneme posteriors as representations,
with a shared phoneme dictionary across languages. We pro-
pose a novel method that replaces phoneme-based representa-
tions with transliteration, unifying transcripts from multiple In-
dian languages into the Devanagari script, a text script used for
Hindi and Marathi. We train a Multilingual ASR model to pre-
dict transliterated Devanagari text from audio across 10 Indian
languages. The character logits from this ASR serve as both
query and target audio features. Using the Kathbath dataset
for training and the IndicSUPERB QbE evaluation set, our ap-
proach achieves significant improvements. The average MTWV
increased from 0.015 (IndicSUPERB) to 0.504, and perfor-
mance rose from 0.387 to 0.504, surpassing the best-performing
Marathi ASR baseline. This demonstrates the effectiveness of
transliteration for multilingual KWS.

Index Terms: keyword spotting, multilingual, transliteration,
automatic speech recognition

1. Introduction

In real-world applications such as voice assistants, call center
analytics, and accessibility tools, detecting specific audio key-
words is crucial for providing meaningful and efficient services.
With the growing volume of audio data being generated and
stored, efficiently retrieving relevant audio documents has be-
come critical. A common approach involves transcribing audio
into text and performing text-based searches. However, search-
ing in the embedding space offers a practical alternative for lan-
guages where Automatic Speech Recognition (ASR) systems
lack robustness or sufficient training resources. QbE KWS ad-
dresses this challenge by determining whether a query phrase
exists in target audio by comparing their respective embed-
dings [1].

The alignment between query and target embeddings is
typically achieved using either neural networks or a dynamic
time warping (DTW) algorithm applied to their similarity ma-
trix [2]. We adopt a DTW-based alignment approach due to
its simplicity and effectivenes in this work. Existing multilin-
gual QbE KWS systems often rely on bottleneck features and
phoneme-based representations but these systems lose higher-
level linguistic and contextual details, introduce cross-language
ambiguities, and require extensive phoneme dictionaries, mak-
ing them resource-intensive and hard to scale [3, 4, 5]. To ad-
dress these challenges, we propose a transliteration-based ap-
proach that converts text from multiple Indic languages—Tamil,
Malayalam, Kannada, Telugu, Odia, Gujarati, Punjabi, and
Bengali—into the Devanagari script, a common text represen-

@(Q)’j'f_fz@ @@5}5 Guosd @mmuﬁ@mmm @[_ﬁmﬂru—’”&? o &5 Audio Transcript
& werngHe apepudl Ceuant(Hid (Tamil)

‘l ‘ .l 'l' "“ I | .'l Input Audio

[Wav2Vec2 ’ ASR

@-
A

A P AT Rgpers IR Fafasfie R IgH

CTC Loss

Ecsl gﬁﬁﬂ el 'ﬁa‘l@mﬁ SR SEr Heft defder 3{’31 égr{ Devanagiri Transliterated

Ground Truth

Character Logits
(QbE Embeddings)

Predicted Characters

Loss Function

Transliteration

Audio Transcript

Caige @Nss G wpanuihsmer Chriquns o f& P
. ami

& wermsdled papmui. Couem(Hd

Figure 1: Multilingual Transliteration ASR for QbE KWS

tation used for Hindi and Marathi. Transliteration preserves
linguistic information, reduces ambiguities, and eliminates the
need for extensive phoneme resources, enabling scalable and
effective multilingual KWS.

We build the transliteration model using the Aksharantar
dataset [6], adopting a methodology similar to IndicXlit [6].
The character logits produced by a Wav2Vec2 ASR model
trained on transliterated text serve as embeddings for the queries
and target audio. These embeddings provide a robust, language-
independent representation, eliminating the need for word-level
alignments. We compute a cosine similarity matrix between
their embeddings, followed by applying the DTW algorithm to
determine the presence of a query in target audio.

Our main contribution is the development of a
transliteration-based multilingual QbE KWS system for
regional languages. By converting text from multiple Indic
languages into a unified script, we overcome the limitations of
phoneme-based systems and address the scalability challenges
inherent in multilingual keyword spotting. Using the Kathbath
dataset for training and evaluating the IndicSUPERB QbE
evaluation set, we demonstrate significant improvements. This
work underscores the potential of transliteration as a scalable
and effective solution for multilingual QbE KWS across diverse
regional languages.

2. Related Work

QbE KWS has seen significant advancements with the emer-
gence of deep learning. Early approaches relied on dynamic
time warping and phonetic posteriorgrams for similarity com-
parison [7], but modern methods leverage neural embeddings
and attention mechanisms to enhance performance [3]. CNN-
based spoken term detection has also been explored for QbE
KWS, demonstrating improved robustness [2]. Other ap-
proaches use text-based queries to search within audio embed-
dings [8, 9, 10, 11], while ASR posterior probabilities are uti-
lized to predict fixed command sets [12].

Recent advancements in QbE KWS include multi-head
attention with SoftTriple loss for improved feature ex-
traction [13], spectral-temporal graph attentive pooling for
speaker-invariant embeddings [14], and the MLP-based QbyE-
MLPMixer for efficient open-vocabulary detection with re-
duced complexity [15].

Recent advancements in multilingual KWS focus on scal-
ability, accuracy, and adaptability. Few-shot learning enables
effective KWS with minimal data [16], while metric learning
with phoneme-to-embedding mapping improves generalization
across languages [4]. Transliteration has been used to convert
Tamil keywords into English to leverage pretraining in low-
resource KWS [17], and to map English keywords to Chinese
phonemes for KWS without accented speech data [18]. In the
Indic context, IndicSUPERB provides a comprehensive multi-
lingual benchmark for speech processing evaluation [19].

3. Proposed Multilingual KWS Approach
3.1. Text Transliteration

We developed monolingual transliteration models using the
Aksharantar dataset [6]. Parallel transliteration pairs were
created for eight non-Devanagari script languages—Bengali,
Gujarati, Kannada, Malayalam, Punjabi, Tamil, Telugu, and
Odia—mapping their scripts to Devanagari. The original text
was included in Hindi and Marathi, which natively use Devana-
giri. Few examples of transliteration shown in Figure 2.

Language Source Transliteration
Bengali e (dlil) &<t (dil)
Guijarati el (jaman) SHM (jaman)
Kannada 9023, (anchu) 31 (anchu)

Malayalam |eoe-d.u (aakarsha) |3TYT (aakarsha)

Odia @LQRQ (nahara) 9 (nahar)
Punjabi ¥37 (khadak) ESh (khadak)
Tamil <2s6u (aadhav) 3Tcd (aathav)
Telugu eseo (akala) 3Tehedl (akala)

Figure 2: Devanagiri Transliteration Samples with approximate
english pronunciation in paranthesis

The vocabulary from these languages is converted into De-
vanagiri script using the trained transliteration model for eight
languages. This formed the ground truth for building a multi-
lingual ASR dataset tailored to our keyword spotting task com-
bined with existing Hindi and Marathi text.

3.2. Transliteration ASR

We build a multilingual transliteration-based ASR model for
QbE KWS. We propose using the character logits from the ASR

model as representations for both the input query and target au-
dio. The ASR system is designed to predict transcripts in De-
vanagari, regardless of the input language. This is achieved by
training the model with audio from multiple languages paired
with their Devanagari transliterations obtained from Sec. 3.1.

The model outputs logits corresponding to 62 unique to-
kens, representing the Devanagari character set. These include
vowels, consonants, diacritics, and special symbols such as
word-boundary markers. We apply a log-softmax function to
the model outputs, converting them into probabilities for each
token. These probabilities are then used as embeddings for
query and target audio in the keyword spotting task.

The ASR model is trained using the Connectionist Tempo-
ral Classification (CTC) loss function, which minimizes the dif-
ference between the predicted token sequences and the translit-
erated ground truth text in Devanagari script. This loss function
ensures that the predicted sequences align effectively with the
transliterated transcripts, enabling accurate token-level embed-
dings for QbE KWS. These steps are illustrated in Figure 1. The
CTC loss function can be mathematically expressed as:

Lere = —logp(l|z) M

where the probability of a label sequence 1 given an input se-
quence X is defined as:

plx)= > prlx)= > J[ASRS()[r]

meB~1(1) reB—1(1)t=1
(@)

where B removes blanks and repeated symbols, B~ " is its
inverse image, 7 is the length of the label sequence 1, and
ASR{ (x) [m¢] is unit j of the model output after the top
softmax layer at time ¢, interpreted as the probability of ob-
serving label j at time ¢. The model outputs one frame of
62-dimensional logits every 20 ms at the final layer. The
ASR predicts the transliteration of input audio from eight non-
Devanagari script languages into the Devanagari character vo-
cabulary, along with direct transcription for two native Devana-
gari script languages.

1

3.3. Query-by-Example KWS using DTW

The trained transliteration-based Wav2Vec2 ASR model gener-
ates softmax character logits as embeddings for both the query
and audio document, which are compared using cosine similar-
ity to construct a similarity matrix between their frames.

The Dynamic Time Warping (DTW) alignment [20, 21] is
applied to locate the query within the audio. The DTW algo-
rithm computes the optimal alignment between the query and
document embeddings, providing a matching score that reflects
the similarity between the two sequences. A slope-constrained
DTW algorithm is employed to ensure a valid alignment, where
the warping path is normalized by its partial path length at each
step. This normalization helps manage variable query lengths
and ensures robust alignment.

The warping path is flexible, allowing it to start and end
at any point within the audio document, making it suitable for
detecting queries regardless of their position. The DTW scores
are normalized to have zero mean and unit variance for each
query to account for variability across different queries and en-
sure consistency in score interpretation. This normalization step
enhances comparability and helps reduce bias across queries of
varying difficulty.

Dataset Entries bn gu hi kn ml mr or pa ta te
Kathbath Dataset [19] Vocabulary Size 61,061 88,677 33621 159957 157962 141376 30059 49,037 191,494 136,189
Clean Audio Hours 1158 1293 1502 1658 1473 1852 1116 1369 1850 1549

: Utterances 830 1,046 1089 1,086 1089 1031 942 732 1047 1,088
IndicSUPERB QbE Eval Set [19] e 50 50 50 50 50 50 50 50 50 50
. . Training pairs 144,076 174,081 145,700 87,581 - 48,531 122,850 66,443 132,682
Aksharantar Devanagiri Pairs (6] y, jaion pairs 77 108 54 52 - 12 122 37 27

Table 1: Datasets used for training transliteration models (Aksharantar), KWS models (Kathbath) and evaluation set (IndicSUPERB)

4. Experimentation
4.1. Dataset

Aksharantar Dataset The Aksharantar dataset [6] is a translit-
eration resource for English-to-Indic and Indic-to-English text.
The dataset does not provide direct transliteration pairs from
non-Devanagari languages to Devanagari. Instead, these
pairs are created by identifying common words between non-
Devanagari to English and English to Devanagari datasets, en-
abling the mapping of non-Devanagari scripts to Devanagari.
The number of pairs generated for each language is shown in
the table. This dataset is used to train transliteration models to
convert non-Devanagari scripts into Devanagari, standardizing
text representation for multilingual ASR and QbE KWS.
Kathbath Dataset The Kathbath [19] training dataset consists
of 1,506 hours of clean audio across 10 Indic languages, with a
combined vocabulary size of 1.4M words. Details of audio du-
ration and vocabulary size for each language are provided in Ta-
ble 1. Audio from the train split is used to train our Multilingual
KWS system, with the corresponding transcripts transliterated
into Devanagari for training.

IndicSUPERB QDbE Eval A separate QbE evaluation dataset,
derived from the Kathbath dataset, consists of approximately
50 queries and 1,000 utterances per language Table 1. Each
language features 20 speakers, with 10 providing the queries
and 10 contributing to the target utterances. This dataset is used
to evaluate the performance of our system.

4.2. Training
4.2.1. Transliteration Model

To enable text conversion from non-Devanagari scripts into a
unified Devanagari script, we trained 8 monolingual transliter-
ation models using the Fairseq framework. Each model was
designed to transliterate between a specific non-Devanagari
language—Bengali, Gujarati, Kannada, Malayalam, Punjabi,
Tamil, Telugu, and Urdu—and Devanagari script.

The models were trained using parallel transliteration pairs
prepared from the Aksharantar dataset. A transformer archi-
tecture with 6 encoder and decoder layers, multi-head attention,
and GELU activation was employed. The training configuration
included a batch size of 1024, a learning rate of 0.001 with an
inverse square root scheduler, a 4000-step warmup phase, and a
dropout rate of 0.5. The models were fine-tuned over 51 epochs
to ensure robust performance. This approach closely followed
the training methodology of IndicXlit [6], but with specialized
monolingual models tailored for transliteration between each
non-Devanagari language and Devanagari script.

4.2.2. Transliteration ASR-KWS Training

We use the Fairseq toolkit to train our transliteration ASR
model, adopting the Wav2Vec2 large architecture for our ex-
periments. The model comprises a feature extractor with 6 con-

volutional layers, a transformer encoder with 24 layers, and a
projection layer for predicting character labels from the input
audio. The Wav2Vec2-CTC large model implemented in fairseq
comprises approximately 315 million parameters.

The Wav2Vec2 model is initialized with pre-trained weights
from IndicWav2Vec [22], which was trained on 17,000 hours of
audio data spanning 40 Indian languages. Our ASR model is
trained to directly predict the transliterated text for the input
audio. The transliterated text generated by the trained translit-
eration model is used as ground truth to compute the CTC loss.

Training is conducted with a maximum token size of 1.28M
per batch using the Adam optimizer. The feature extractor is
frozen for the first 10,000 updates to stabilize training. A mask-
ing probability of 0.5 and a layer drop probability of 0.1 are
applied during training, while input features remain unnormal-
ized to maintain compatibility with the pretraining setup. The
model is trained for 10 epochs, and we report results from the
best-performing model evaluated on the development set.

We used an NVIDIA RTX 4090 GPU for training, which
took 24 hours to complete 10 epochs. The WER stopped de-
creasing after 10 epochs. The code is available here'.

4.3. Baseline

IndicSUPERB We evaluate our system against the IndicSU-
PERB baseline, which uses a Wav2Vec2-based model pre-
trained [22] on 17,000 hours of audio data from 40 Indian lan-
guages. This model is initialized with a publicly available pre-
trained Wav2Vec2 model and fine-tuned using the training split
of the Kathbath dataset. For the QbE KWS task, results are
extracted from the best-performing layer of the baseline model
and evaluated on the IndicSUPERB QbE evaluation set. These
results are directly taken from [19].
Monolingual Wav2Vec2 ASR Logits The training approach
involved is similar to IndicWav2Vec [22]. We also train mono-
lingual ASR models for each of the languages using the Kath-
bath dataset. Pretrained weights from IndicWav2Vec are used
to initialize the models, and each dataset is fine-tuned with
the CTC loss specific to the respective language. The models
are trained to predict the character dictionary of their respec-
tive languages, with training parameters kept consistent with
those used for the transliteration ASR. These monolingual ASR
models predict character labels tailored to their respective lan-
guages. We extract the character logits from each monolingual
model as representations for both the query and the target audio,
similar to how embeddings are generated by our transliteration
ASR. The performance of these monolingual models serves as
the second baseline for comparison in our evaluation. We used
the character dictionaries for all languages provided from the
IndicWav2Vec [22].

A comparison of the performance of these monolingual
models for the multilingual QbE KWS task helped in selecting
the Devanagari script as the target for transliteration.

1 https://github.com/Kirandevraj/TranslitASR-KWS

Model Full Name Bengali | Gujarati | Hindi | Kannada | Malayalam | Marathi | Punjabi | Tamil | Telugu | Odia | Average
IndicSUPERB [19] 0.026 0.003 0.004 0.023 0.017 0.046 0.008 0.021 0.012 | 0.007 0.017
Kannada ASR-KWS [22] 0.234 0.344 0.421 0.570 0.234 0.333 0.285 0369 | 0.218 | 0.259 0.326
Punjabi ASR-KWS [22] 0.289 0.382 0.522 0.571 0.215 0.365 0.420 0.415 | 0.261 | 0.259 0.370
Marathi ASR-KWS [22] 0.282 0.392 0.537 0.598 0.253 0.445 0.372 0.439 | 0.273 | 0.274 0.387
Tamil ASR-KWS [22] 0.198 0.331 0.425 0.586 0.150 0.314 0.283 0.539 | 0.205 | 0.225 0.326
Gujarati ASR-KWS [22] 0.191 0.399 0.447 0.487 0.172 0.256 0.267 0.250 | 0.171 | 0.219 0.286
Odia ASR-KWS [22] 0.254 0.359 0.449 0.520 0.204 0.342 0.252 0.292 | 0.177 | 0.288 0.314
Hindi ASR-KWS [22] 0.175 0.295 0.442 0.517 0.084 0.351 0.295 0.331 0.188 | 0.217 0.290
Bengali ASR-KWS [22] 0.212 0.247 0.340 0.453 0.113 0.289 0.181 0228 | 0.146 | 0.168 0.238
Telugu ASR-KWS [22] 0.199 0.315 0.352 0.464 0.212 0.218 0.231 0333 | 0.260 | 0.257 0.284
Malayalam ASR-KWS [22] 0.196 0.359 0.345 0.594 0.234 0.313 0.276 0.431 0.251 | 0.264 0.326
Phoneme ASR-KWS 0.061 0.223 0.245 0.176 0.060 0.076 0.104 0.126 | 0.074 | 0.034 0.118
Devanagiri Translit ASR-KWS (hi-pairs) 0.399 0.555 0.649 0.624 0.299 0.469 0.575 0.559 | 0331 | 0.484 0.495
Devanagiri Translit ASR-KWS (mr-pairs) | 0.407 0.531 0.664 0.670 0.343 0.512 0.547 0.534 | 0.321 | 0.512 0.504

Table 2: MTWV values of IndicSUPERB, Monolingual trained ASR, Phoneme ASR, Devanagiri Translit ASR for QbE KWS task

evaluated on IndicSUPERB QbE KWS eval dataset.

Multilingual Phoneme ASR The third baseline is a multilin-
gual phoneme-based ASR model, which predicts phoneme se-
quences instead of characters. This system utilizes the eS-
peak [23] module to convert textual transcriptions from all
languages into their corresponding phoneme representations.
These phoneme sequences are then used as training targets for
the multilingual Phoneme ASR model. All the baseline models
use Wav2Vec?2 large architecture.

4.4. Metrics

We use the Maximum Term-Weighted Value (MTWYV) as the
primary metric to evaluate the performance of our QbE KWS
system. MTWYV balances the trade-off between missed detec-
tions and false alarms, with the cost of a false alarm set to 1
and the cost of a missed detection set to 100. The first base-
line is also evaluated using this metric ensuring consistency in
comparison. The DTW score derived from the similarity ma-
trix evaluates the alignment between these representations. By
varying the threshold on the DTW score, the MTWV score is
computed. The MTWYV is defined as:

MTWV =1 — Il’lgl’l [Pmiss(e) + 6 . }Dfa(a)] 3)
where Piss(0) is the probability of missed detections at thresh-
old 0, Py (0) is the probability of false alarms at threshold 6, and
[is a parameter balancing the cost of misses and false alarms.

4.5. Results

Table 2 summarizes the results for the baseline models (In-
dicSUPERB, monolingual ASR, and Phoneme ASR) and the
transliteration-based ASR models on the QbE KWS task across
ten Indic languages: Bengali, Gujarati, Hindi, Kannada, Malay-
alam, Marathi, Punjabi, Tamil, Telugu, and Odia. We applied
Voice Activity Detection [24] to the eval set before running in-
ference on these models as well as baseline models, as we ob-
served that this led to improved performance.

Baseline Performance It can be observed that the performance
of various baseline models ranges from 0.017 for IndicSUPERB
to 0.387 for the Marathi Monolingual ASR. Unexpected trends
in cross-lingual evaluation, where models perform better on a
different language than their training language, can arise from
linguistic similarity across languages and variability in evalu-
ation conditions such as speaker characteristics, audio quality,
and keyword distribution.

Transliteration ASR Models Transliteration-based ASR mod-
els significantly outperform all baseline models. The Transliter-

ation ASR model (using Marathi pairs for Devanagari translit-
eration) achieves the highest average score of 0.504, deliver-
ing strong performance across all languages. The Translitera-
tion ASR model (using Hindi pairs for Devanagari transliter-
ation) achieves a comparable score of 0.495. The closer lin-
guistic and phonetic alignment of Marathi and Hindi with other
Indic languages likely contributes to its superior performance.
The results demonstrate that transliteration-based approaches
significantly enhance multilingual QbE KWS performance for
diverse regional languages. Among these, the Transliteration
ASR model (using Marathi pairs) showcases robust scalability
and cross-lingual capabilities.

The KWS performance improved after unfreezing the
model’s backbone (after epoch 2) and training it end-to-end.
However, when training exceeded 10 epochs, we observed a de-
crease in WER alongside a decline in KWS performance. This
suggests that early stopping is essential to ensure the charac-
ter logits retain maximum information for optimal KWS per-
formance.

Text Transliteration The character error rates (CER) for the
transliteration models range from 16.94% (Odia to Hindi) to
35.34% (Tamil to Hindi). The weighted average CER across all
language pairs is 21.07%, calculated over 753 valid entries from
the transliteration models.

Ablation We conducted an experiment in which all text was
transliterated into English using IndicXlit [6] transliteration
models. We then trained and evaluated the English Translit-
eration ASR-KWS QbE performance. This setup resulted in an
average MTWYV value of 0.243, highlighting the importance of
selecting the appropriate target transliteration language.

We also conducted an experiment using the Wav2Vec2
base (small) model with 95M parameters to train the Devana-
gari Transliteration ASR. The pretrained weights from the In-
dicWav2Vec base [22] were used. We observed that the average
MTWYV value was 0.272, indicating that the model size signifi-
cantly influences overall performance.

5. Conclusion

We proposed a transliteration-based approach for multilingual
QbE KWS, demonstrating its scalability and effectiveness in
diverse regional languages. Our method eliminates reliance
on phoneme-based systems and achieves significant improve-
ments, attaining an MTWYV score of 0.504 by leveraging in-
formation from multiple languages. Future work could extend
this framework to languages of diverse origins and further refine
transliteration models to enhance performance.

6. Acknowledgement

This work was partly supported by Meity, Govt. of India.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

7. References

W. He, W. Wang, and K. Livescu, “Multi-view recurrent neural
acoustic word embeddings,” ArXiv, vol. abs/1611.04496, 2016.

D. Ram, L. Miculicich, and H. Bourlard, “Cnn based query by
example spoken term detection,” in Interspeech, 2018.

B. Kim, M. Lee, J. Lee, Y. Kim, and K. Hwang, “Query-
by-example on-device keyword spotting,” 2019 IEEE Automatic
Speech Recognition and Understanding Workshop (ASRU), pp.
532-538, 2019.

P. Reuter, C. Rollwage, and B. T. Meyer, “Multilingual query-
by-example keyword spotting with metric learning and phoneme-
to-embedding mapping,” ICASSP 2023 - 2023 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 1-5, 2023.

D. Ram, L. Miculicich, and H. Bourlard, “Multilingual bottleneck
features for query by example spoken term detection,” in 2079
IEEE Automatic Speech Recognition and Understanding Work-
shop (ASRU), 2019, pp. 621-628.

Y. Madhani, S. Parthan, P. A. Bedekar, R. Khapra, V. Seshadri,
A. Kunchukuttan, P. Kumar, and M. M. Khapra, “Aksharantar:
Towards building open transliteration tools for the next billion
users,” ArXiv, vol. abs/2205.03018, 2022.

G. Chen, C. Parada, and T. N. Sainath, “Query-by-example key-
word spotting using long short-term memory networks,” 2015
IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 5236-5240, 2015.

H.-K. Shin, H. Han, D. Kim, S.-W. Chung, and H.-G. Kang,
“Learning audio-text agreement for open-vocabulary keyword
spotting,” in Interspeech, 2022.

A. Navon, A. Shamsian, N. Glazer, G. Hetz, and J. Keshet, “Open-
vocabulary keyword-spotting with adaptive instance normaliza-
tion,” ICASSP 2024 - 2024 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 11 656—
11660, 2023.

Y.-H. Lee and N. Cho, “Phonmatchnet: Phoneme-guided zero-
shot keyword spotting for user-defined keywords,” ArXiv, vol.
abs/2308.16511, 2023.

K. Nishu, M. Cho, P. Dixon, and D. Naik, “Flexible keyword spot-
ting based on homogeneous audio-text embedding,” ICASSP 2024
- 2024 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 5050-5054, 2023.

D. Seo, H.-S. Oh, and Y. Jung, “Wav2kws: Transfer learning
from speech representations for keyword spotting,” IEEE Access,
vol. 9, pp. 80682-80691, 2021.

J. Huang, W. Gharbieh, H. S. Shim, and E. Kim, “Query-by-
example keyword spotting system using multi-head attention and
soft-triple loss,” ICASSP 2021 - 2021 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP), pp.
6858-6862, 2021.

Z. Wang, S. Kong, L. Wan, B. Zhang, Y. Huang, M. Jin, M. Sun,
X. Lei, and Z. Yang, “Query-by-example keyword spotting using
spectral-temporal graph attentive pooling and multi-task learn-
ing,” ArXiv, vol. abs/2409.00099, 2024.

J. Huang, W. Gharbieh, Q. Wan, H. S. Shim, and C. Lee, “Qbye-
mlpmixer: Query-by-example open-vocabulary keyword spotting
using mlpmixer,” ArXiv, vol. abs/2206.13231, 2022.

M. Mazumder, C. R. Banbury, J. Meyer, P. Warden, and V. J.
Reddi, “Few-shot keyword spotting in any language,” in Inter-
speech, 2021.

K. R., V. Kurmi, V. Namboodiri, and C. V. Jawahar, “Generalized
keyword spotting using asr embeddings,” in Interspeech, 2022.

[18]

[19]

[20]

[21]

[22]

[23]

[24]

S. Zhang, Z. Shuang, and Y. Qin, “Automatic pronunciation
transliteration for chinese-english mixed language keyword spot-
ting,” 2010 20th International Conference on Pattern Recognition,
pp. 1610-1613, 2010.

T. Javed, K. Bhogale, A. Raman, A. Kunchukuttan, P. Kumar,
and M. M. Khapra, “Indicsuperb: A speech processing univer-
sal performance benchmark for indian languages,” ArXiv, vol.
abs/2208.11761, 2022.

P. Tormene, T. Giorgino, S. Quaglini, and M. Stefanelli, “Match-
ing incomplete time series with dynamic time warping: an algo-
rithm and an application to post-stroke rehabilitation,” Artificial
intelligence in medicine, vol. 45 1, pp. 11-34, 2009.

T. Giorgino, “Computing and visualizing dynamic time warping
alignments in r: The dtw package,” Journal of Statistical Soft-
ware, vol. 31, pp. 1-24, 2009.

T. Javed, S. Doddapaneni, A. Raman, K. S. Bhogale, G. Ramesh,
A. Kunchukuttan, P. Kumar, and M. M. Khapra, “Towards build-
ing asr systems for the next billion users,” in Proceedings of the
AAAI Conference on Artificial Intelligence, 2022.

eSpeak NG contributors, “eSpeak NG: Speech Synthesizer,”
https://github.com/espeak-ng/espeak-ng/tree/master, 2025.

M. Wise, “py-webrtcvad,”
py-webrtcvad, 2017.

https://github.com/wiseman/

	 Introduction
	 Related Work
	 Proposed Multilingual KWS Approach
	 Text Transliteration
	 Transliteration ASR
	 Query-by-Example KWS using DTW

	 Experimentation
	 Dataset
	 Training
	 Transliteration Model
	 Transliteration ASR-KWS Training

	 Baseline
	 Metrics
	 Results

	 Conclusion
	 Acknowledgement
	 References

