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Figure 1: We present a semi-analytic method for interactive single-scattering in homogeneous media with polygonal area lights. Our method
achieves biased but noise-free renderings and better performance compared to Volume-RIS [LWY21]. This figure shows equal-time render-
ings of two scenes, Sponza (left) with four area lights and a spherical light shaft (right) with two area lights inside the sphere. Our core
unshadowed method (left) is completely noise-free, while Volume-RIS exhibits noise especially near the area light. Our method with the ratio
estimator formulation for shadows (right) can handle volumetric shadows due to light shafts, rendering plausible light beams. Note that the
we denoise the entire image for Volume-RIS and only shadows of our method for the figure on the right.

Abstract
Single scattering in scenes with participating media is challenging, especially in the presence of area lights. Considerable
variance still remains, in spite of good importance sampling strategies. Analytic methods that render unshadowed surface illu-
mination have recently gained interest since they achieve biased but noise-free plausible renderings while being computationally
efficient. In this work, we extend the theory of Linearly Transformed Spherical Distributions (LTSDs) which is a well-known
analytic method for surface illumination, to work with phase functions. We show that this is non-trivial, and arrive at a solution
with in-depth analysis. This enables us to analytically compute in-scattered radiance, which we build on to semi-analytically
render unshadowed single scattering. We ground our derivations and formulations on the Volume Rendering Equation (VRE)
which paves the way for realistic renderings despite the biased nature of our method. We also formulate ratio estimators for
the VRE to work in conjunction with our formulation, enabling the rendering of shadows. We extensively validate our method,
analyze its characteristics and demonstrate better performance compared to Monte Carlo single-scattering.

CCS Concepts
• Computing methodologies → Ray tracing; Reflectance modeling;
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1. Introduction

Monte Carlo (MC) path tracing supported by GPU hardware has
gained a lot of interest in offline and real-time rendering. The com-
bination of state-of-the-art importance sampling, hardware acceler-
ated ray tracing and efficient denoising has facilitated high-quality
direct lighting with a small number of samples per pixel (spp), even
with area lights. The visible noise from MC however increases in
the presence of participating media. Monte Carlo direct lighting
or single scattering in participating media with area lights remains
challenging at low spp which is necessary for interactive and real-
time applications. Beyond MC methods, analytic methods that can
plausibly approximate direct lighting hold promise in many situa-
tions. These methods are typically combined with MC resulting in
overall reduced noise, while being computationally efficient. The
reduction in noise or lower variance comes at the cost of bias, which
is often tolerable, especially for real-time applications.

The most well-known analytic method for direct lighting with
area lights uses Linearly Transformed Cosines (LTCs), which are
a type of Linearly Transformed Spherical Distributions (LTSDs)
[HDHN16]. LTCs are used to analytically approximate unshad-
owed surface illumination from area lights and combined with MC
ratio estimators [HHM18] to account for the shadows. The combi-
nation of LTCs with ratio estimators preserves high-frequency de-
tails when used with denoising, as opposed to the denoising of MC
direct lighting which suffers from over-blurring. While the LTC
formulation and method can be used for direct lighting in surface-
based scenes, it cannot be used for single scattering in participating
media.

In this paper, we develop a new formulation based on LTSDs
to analytically render unshadowed single scattering in infinite ho-
mogeneous participating media with polygonal area lights. At the
core of single scattering is a spherical in-scattering integral and a
spherical surface integral. These integrals have a form that is sim-
ilar to the surface rendering equation where LTCs are applicable.
However, they differ in two aspects: (1) the presence of an addi-
tional transmittance term and (2) usage of phase functions instead
of Bi-directional Reflectance Distribution Functions (BRDF) in the
in-scattering integral, making the application of LTSDs non-trivial.
We present a simple and practical approximation of the transmit-
tance term that can be analytically computed at render time. While
this approximation already enables analytic evaluation of the spher-
ical surface integral, the presence of a phase function in the in-
scattering integral makes such a direct application non-trivial. We
analyze LTSDs and determine the exact reasons that prevent their
application to phase functions and propose a new and efficient
LTSD precomputation approach.

An analytic solution to the in-scattering integral is however not
sufficient. This integral is nested in a line integral which forms
the Volume Rendering Equation (VRE). Analytic evaluation of the
VRE is not straightforward due to this nesting and the fact that
the in-scattering integral can only be evaluated at individual points
on the media. We show that the line integral can instead be eval-
uated using quadrature rules. Although not analytic, they are well
behaved across pixels thanks to their deterministic nature and pro-
duce noise-free renderings. Finally, we also formulate ratio estima-
tors for the line and surface integral to render shadows in a separate

denoised pass. Since only the shadow pass is denoised, renderings
preserve high-frequency details, similar to the combination of LTCs
with ratio estimators for surface rendering.

We comprehensively validate our method against Monte Carlo
single-scattering references and show that it produces high-quality
plausible single scattering renderings. We also compare our method
with Volume-RIS [LWY21] for unshadowed and shadowed con-
figurations of both methods. Figure 1 shows two scenes rendered
using our method compared to renderings of Volume-RIS. The
left section of this figure shows unshadowed renderings where our
method is completely noise-free. The right section shows shadowed
renderings using denoised ratio estimators on a light shaft scene,
demonstrating that our approach is capable of rendering volumet-
ric shadows.

In summary, the following are the contributions of this paper:

• A new LTSD fitting approach for phase functions which paves
the way for analytic evaluation of the in-scattering integral.

• A noise-free semi-analytic formulation of the unshadowed Vol-
ume Rendering Equation (VRE).

• Ratio-estimator formulation of the VRE to handle shadows.

2. Related Work

In this section we discuss related works which are grouped by the
approach used to solve the VRE.

2.1. Stochastic Methods

Monte-Carlo integration can naively be applied to solve the VRE.
However, better importance sampling strategies are needed to en-
sure better convergence. Sampling proportional to the transmit-
tance [PJH16] is a good strategy, however it disregards the con-
tribution of the light term which increases variance. Kulla et al.
[KF12] propose a method of sampling the initial distance which
considers the incoming light from a point light source. Villeneuve
et al. [VGGN21] further propose a method to sample proportional
to the product of transmittance, the phase function and the orien-
tation of a point light source. Both of the above methods can be
applied to estimate the illumination due to a polygonal light source
by randomly sampling a point on the light source at the cost of
additional variance. Instead of sampling proportional to the prod-
uct of phase function and light one can use Resampled Importance
Sampling (RIS) [TCE05]. RIS operates by generating a set of ran-
dom initial candidates and chooses one of them by weighing them
according to the target PDF. In the case of single scattering, one
can sample the distance with a simple sampling strategy (for eg.
proportional to the transmittance) and use RIS to obtain a sample
which is distributed according to the VRE. RIS is at the core of
Volume-ReSTIR [LWY21] which is the state of the art method to
render volumes.

2.2. Analytic Methods

Previous work in this area has mainly focused on obtaining closed-
form solutions to single scattering in a homogeneous medium un-
der the influence of punctual lights. Sun et al. [SRNN05] propose a
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combination of analytic evaluation and precomputation to achieve
real-time rendering of single scattering under isotropic point lights.
They also extend their formulation to render single scattering from
distant complex illumination such as environment and achieve real-
time frame rates. However, the interpolation of the precomputed
data introduces artifacts in the rendering. Pegoraro et al. [PP09]
propose an analytical solution for isotropic phase functions which
does not rely on any pre-computation and storage and produces
more accurate results. However it is not suited for real-time appli-
cations. Further efforts to optimize the method [PSP09b, PSS11]
and relax the condition of isotropic phase functions and lighting
[PSP09a, PSP10] were also made. It is important to note that all of
the analytic methods do not support shadows and additional meth-
ods need to be employed to add shadow information.

Our method works in a similar fashion, in that the core method
itself does not support shadows and we show how ratio estimators
can be formulated and combined for shadow support. We would
like to point out that any other method that can render volumet-
ric shadows [WR08, Wym11, BSA10, CBDJ11] could potentially
be used as well. Like the works of [ED10, KSE14], our method
is based on the principles of volumetric scattering (VRE) and thus
produces plausible renderings. Finally, similar to the usage of LTCs
for better unbiased importance sampling of area lights for surface
based scenes [Pet21,SKN23], our LTSD formulation could be used
for better sampling in participating media instead.

3. Preliminaries

We begin with a recap on the preliminaries of volume rendering
which also helps establish the notation of our paper.

The outgoing radiance L at a point y in the direction ωo in the
presence of homogeneous participating media is given by the Vol-
ume Rendering Equation (VRE) [NGHJ18] as:

L(y,ωo) = µs

∫ x

0
T (y,z)Ls(z,ωo)dz+T (y,x)Lc(x,ωo), (1)

where µs is a spatially constant scattering coefficient. We refer to
the first term in the above equation as the air-light integral, inspired
by Sun et al. [SRNN05]. In the following, we will assume that the
scene contains one area light A with A(x) denoting the solid angle it
subtends on the unit sphere around x. Our method trivially extends
to multiple area lights by summing up individual contributions due
to the linearity of light transport.

The point z = y − zωo is a point in the medium and Ls is its
in-scattered radiance. With single scattering, we need to explicitly
account for the visibility and the transmittance in Ls with the inte-
gration domain over the solid angle of the area light:

Ls(z,ωo) = Li

∫
A(z)

ρ(z,ωo,ωi)Tv(z,ωi)dωi, (2)

where ρ is the media’s phase function which describes forward or
back scattering. Similarly, the point x = y− xωo lies on a surface
and its radiance Lc towards ωo is given by:

Lc(x,ωo) = Li

∫
A(x)

f (x,ωo,ωi)Tv(x,ωi)|nx ·ωi|dωi. (3)

where f is the Bi-Directional Reflectance Distribution Function

(BRDF) describing the surface’s reflectance and nx is the normal
vector at x. In both equations, Li denotes the spatially constant in-
coming radiance from the area light A and Tv is defined as:

Tv(x,ωi) = T (x, t(x,ωi))V (x,ωi), (4)

where t(x,ωi) is the ray-casting function that returns the intersec-
tion point of a ray towards ωi from x. The visibility V = 1 if the
area light A is visible from x in direction ωi or V = 0 otherwise.

The function T in Eq. 1 and Eq. 4 gives the transmittance (or
attenuation) between two points in a homogeneous medium:

T (y,x) = e−µt ||y−x||2 . (5)

3.1. Linearly Transformed Spherical Distributions

Linearly Transformed Cosines or LTCs are a class of Linearly
Transformed Spherical Distributions (LTSD) as defined by Heitz
et al. [HDHN16]. An LTSD is defined by a matrix M that maps a
source distribution Do to a target distribution D as:

D(ω) = Do(ω
′)

∂ω
′

∂ω
= Do

(
M−1

ω

||M−1ω||

)
M−1

ω

||M−1ω||3
(6)

Heitz et al. [HDHN16] also establish the following equivalence for
integral of a LTSD over an arbitrary solid angle P:∫

P
D(ω)dω =

∫
Po

Do(ω
′)dω

′, (7)

where Po = M−1P is the transformation of the original solid angle
by the LTSD matrix M.

LTCs use the clamped cosine distribution for Do(ω
′) = 1

π
max(n ·

ω
′,0) and approximate D(ω)≈ f (ωo,ω)|n ·ω| i.e. the BRDF times

cosine target. In this setting, the unshadowed surface radiance can
be analytically approximated as:

Lc(x,ωo) = Li

∫
A(x)

f (x,ωo,ωi)|nx ·ωi|dωi

≈ Li

∫
A(x)

D(ωi)dωi

≈ Li

∫
Ao(x)

Do(ωo)dωo = LiE(x,Ao(x)),

(8)

where Ao(x) = M−1A(x) and E represents the cosine irradiance
expression [BRW89].

LTC matrices are precomputed in a table for different parameter
combinations of the target distribution and fetched during render-
ing. For an isotropic BRDF, a two-dimensional table parameter-
ized by (α, θ) is precomputed, where α is the BRDF’s roughness
and θ is the elevation of ωo. For an anisotropic BRDF, this table
is four-dimensional parameterized by (αx, αy, θ, φ) [KHDN22],
where similarly αx,αy and BRDF roughness in x and y and θ,φ are
the spherical angles are of ωo.

4. Semi-Analytic Single Scattering

Our goal is to develop a semi-analytic method to render unshad-
owed single-scattering in homogeneous media with polygonal area
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lights. Achieving this goal involves deriving expressions for (1) un-
shadowed surface radiance Lc, (2) unshadowed in-scattered radi-
ance Ls and (3) the air-light integral.

To this end, we first derive a practical closed-form approximation
of the transmittance at a point towards an area light (Sect. 4.1). This
expression is useful to derive analytic expressions for Lc (Sect. 4.2)
and Ls (Sect. 4.3) using appropriate LTSDs. Finally, in Sect. 4.4, we
describe the usage of quadrature rules that use analytic expressions
of Lc and Ls to evaluate the air-light integral.

It is straightforward to apply LTSDs for analytic surface radi-
ance as we show in Sect. 4.2, which is not the case for analytic
in-scattered radiance due to the usage of phase functions. In Sect.
5, we discuss the challenges in fitting LTSDs to phase functions,
identify the core problem and propose our solution that is used in
Sect. 4.3.

We ignore the visibility V in our derivations of analytic Lc and
Ls. In Sect. 6, we formulate ratio estimators to take visibility into
account.

4.1. Aggregated transmittance towards an area light

The aggregated transmittance T from a point x towards an area light
A can be written as an integral of the point trasmittance (Eq. 5) over
the area light’s solid angle A(x):

T (x) =
∫

A(x)
e−µt ||t(x,ωi)−x||2 dωi. (9)

To find an analytic approximation of the above equation, we take
the exponent out of the integral as follows:

T (x) = e−µt d
∫

A(x)
dωi = e−µt dA(x), (10)

where d is a statistical quantity related to A. We use d = min(A).
This expression is a reasonable closed-form approximation, and re-
quires only the minimum distance to the light and the solid angle
subtended by it. As such, Eq. 10 can be computed on the fly at
rendering time.

4.2. Analytic surface radiance

Applying LTCs to obtain an analytic expression for Lc seems intu-
itive at first glance, due to similar forms of Eq. 3 and Eq. 8. How-
ever, LTCs can only be applied in the absence of the transmittance
term. We thus split the transmittance out as a separate integral, sim-
ilar to the split sum strategy used in image-based lighting [Deb05]:

Lc(x,ωo) = Li

∫
A(x)

T (x,ωi)dωi

∫
A(x)

f (x,ωo,ωi)|nx ·ωi|dωi. (11)

In the above equation, the integral on the right is now in a form
where LTCs can be applied. Using also the result from Eq. 10, we
get the expression for analytic surface radiance Lc:

Lc(x,ωo) = LiT (x)E(x,Ao(x)), (12)

where E is the cosine irradiance.

Figure 2: Equal-time (∼ 40 ms) comparison of our semi-analytic
unshadowed single scattering with Volume-RIS. Thanks to our use
of analytic in-scattered and surface radiance (Eqs. 4.3, 4.2) and
deterministic quadrature for the air-light integral (Eq. 15), we ob-
tain noise-free renderings.

4.3. Analytic in-scattered radiance

To derive an analytic expression for the in-scattered radiance, we
similarly split transmittance out of Eq. 2 and use the result from
Eq. 10:

Ls(z,ωo) = LiT (z)
∫

A(z)
ρ(z,ωo,ωi)dωi︸ ︷︷ ︸

Phase Function Integral

. (13)

Define S to be the analytic expression of the phase function integral,
we get the final expression for analytic in-scattered radiance Ls:

Ls(z,ωo) = LiT (z)S(z;A(z)). (14)

S approximates the phase function integral by fitting LTSD matrices
to the phase function. We show in Sect. 5 that the choice of source
distribution Do to compute these matrices is non-trivial: we cannot
simply use a clamped cosine distribution, like done in LTCs.

4.4. Air-light integral

We now turn our attention to the air-light integral in Eq. 1. We
observe that in the presence of the analytic in-scattered radiance Ls,
the air-light integral is a simple one-dimensional integral. In such a
low dimensional setting, it is beneficial to use quadrature rules for
better convergence.

We thus approximate the outgoing radiance in Eq. 1 using the
Riemann sum, a formulation used also in ray-marching. With N
partitions of the air-light integral, noise-free unshadowed single
scattering L is computed as:

L(y,ωo) = µs

N

∑
i=1

T (y,z∗i )Ls(z∗i ,ωo)∆z︸ ︷︷ ︸
A

+T (y,x)Lc(x,ωo), (15)

where A is the semi-analytic solution to the air-light integral,
∆z = zi−zi−1 and z∗i ∈ [zi−1,zi]. An added benefit of using quadra-
ture rules is that they do not produce noise in the final renderings,
thanks to their deterministic nature. Fig. 2 shows an equal-time
comparison with Volume-RIS, demonstrating the noise-free nature
of our method.
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g =−0.6 g =−0.15

D

Do

(a) (b) (c) (d)

M−1

Figure 3: Approximating HG target (D(ω) = ρ(ωo,ω), top row)
with a clamped-cosine source (Do(ω

′) = max(n · ω
′,0), bottom

row) with a LTSD matrix M. (d) A solid angle with non-zero inte-
gral in D is transformed to have zero integral in Do, demonstrating
that fitting to clamped-cosine fails for near isotropic values of g.

5. Fitting Linearly Transformed Spherical Distributions to
Phase Functions

In this section, we describe our approach to fit LTSDs to phase
functions. The resultant LTSD matrices are used to compute S for
the analytic in-scattered radiance (Eq. 14).

The equation for Ls has a similar form to Eq. 8 albeit with a
major difference: the BRDF is replaced by a phase function. In our
work, we use the Henyey-Greenstein (HG) [HG41] phase function
which has the following form:

ρ(x,ωo,ωi) = ρ(cosθ) =
1

4π

1−g2

(1+g2 −2gcosθ)3/2
, (16)

where cosθ = (ωo ·ωi) and g ∈ [−1,1] is the asymmetry param-
eter controlling the scattering (forward or back scattering). Unlike
BRDFs, phase functions are defined on the entire sphere.

We work in a co-ordinate frame where ωo is aligned with the z-
axis. In this setting, the only parameter that controls the phase func-
tion’s shape is g. We thus need to compute a one-dimensional table
of matrices parameterized by g and approximate D(ω)≈ ρ(ωo,ω)
for the target. In the next subsections, we discuss different choices
of the source distribution Do to compute these matrices and their
failure cases.

5.1. Clamped-cosine distribution for Do

Fig. 3 visualizes the usage of clamped cosine distribution on the
upper hemisphere for Do. The top row of this figure shows the
distribution D with a solid angle defined by a black boundary.
The bottom row shows this solid angle and the distribution trans-
formed with the corresponding LTSD matrix. While a clamped-
cosine source distribution works well for highly directional lobes
of Henyey-Greenstein, it fails as its lobes approach isotropic. The
failure case is demonstrated at g =−0.15 when the solid angle lies
in the lower hemisphere of D with a non-zero integral (Fig. 3(d)).
After transformation, this solid angle still remains lower and will
get clipped, giving a value of zero. This gives incorrect analytic in-
tegration for near isotropic values of g. Fig. 5 (b), top row shows

g =−0.6 g =−0.15

D

Do

(a) (b) (c) (d)

M−1

Figure 4: Approximating HG target (D(ω) = ρ(ωo,ω), top row)
with a uniform sphere source (Do(ω

′) = 1/4π, bottom row) with
a LTSD matrix M. (b) A solid angle with a zero integral in D is
transformed to have non-zero integral in Do, demonstrating that
fitting to uniform sphere fails for highly directional values of g.

the failure case of using LTSD matrices fitted to clamped-cosine
for rendering, demonstrating the inability to render isotropic scat-
tering.

5.2. Uniform spherical distribution for Do

Next, consider using the uniform spherical distribution for Do as
shown in Fig. 4, which follows the layout of Fig. 3. This choice

(a) (b) (c)

g =−0.9 g = 0 g = 0.9

Figure 5: Renderings using our approach with LTSD matrices fit-
ted to clamped-cosine source and uniform spherical source (top
row). The bottom row shows renderings with our method and the
proposed fitting approach in Sect. 5. Fitting to clamped cosine
source is unable to render isotropic scattering ((b), top row) while
fitting to uniform spherical source is unable to render directional
scattering ((a), (c), top row). Our fitting approach renders all ef-
fects accurately, in accordance to reference ray-tracing (bottom
row).
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g = −0.8

Target D

(a)
Uniform Samples S

(b)

M · S

Uniform Sph. Do

(c)

M · S

Clamped-cosine Do

(d)

Figure 6: Fitting LTSDs to the Henyey-Greenstein phase function
at g=−0.8 with uniform spherical and clamped-cosine source dis-
tributions. We randomly sample and visualize directions from (a)
Henyey-Greenstein distribution, (b) uniform spherical distribution
S. In (c), we visualize samples S transformed by a LTSD matrix
fitted to uniform spherical source and in (d), we visualize S trans-
formed by a LTSD matrix fitted to clamped cosine source. LTSD
transforms are symmetric across the horizon and cannot capture a
asymmetric distribution over the sphere.

fails in the opposite case: at highly directional lobes of Henyey-
Greenstein, and works well for near isotropic lobes. For example, at
g =−0.6 with the solid angle in the lower hemisphere (Fig. 4(b)).
The true integral has a value of zero, but after transformation, it
evaluates to a non-zero value. In effect, this choice fails to capture
forward and back scattering of phase functions. The result of ren-
dering with matrices fitted to uniform spherical source is shown in
Fig. 5(a), (c) top row, demonstrating that forward and back scatter
effects are not reproduced.

5.3. Symmetric nature of Linearly Transformed Spherical
Distributions

The core issue is that LTSDs are symmetric across the horizon
plane. More generally, these transformations are point-symmetric
across the origin; however in our case, the rotational symmetry of
Henyey-Greenstein results in plane symmetry. The symmetric na-
ture is illustrated in Fig. 6 by fitting different source distributions
Do to a HG target D with g = −0.8. The figure also visualizes di-
rections S sampled uniformly on the sphere (Fig. 6 (b)). Fig. 6 (c)
shows S transformed by a LTSD matrix fitted to uniform sphere
source and Fig. 6 (d) similarly shows S transformed by a LTSD
matrix fitted to clamped cosine source. Note that symmetry exists
between the upper and lower hemisphere, and the transformed dis-
tribution in (c) and (d) do not match the target. This is precisely
the challenge in fitting LTSDs to target distributions defined on the
entire sphere, as they cannot capture asymmetric distributions on it.

5.4. Fitting to symmetric distributions on the unit sphere

Drawing from the analysis above, we propose the following. For a
given value of g, we fit two LTSD matrices Mu and Ml . Mu trans-
forms samples of HG in the upper hemisphere while Ml transforms
samples of HG in the lower hemisphere. Effectively, we split the
phase function integral in Eq. 13 as:∫

Au(z)
ρ(z,ωo,ωi)dωi +

∫
Al(z)

ρ(z,ωo,ωi)dωi, (17)

where Au(z) is the solid angle in the upper hemisphere and Al(z) is
the solid angle in the lower hemisphere. Given this, we can compute
S in Eq. 13 using Mu and Ml as:

S(z,A(z)) =
∫

Au
o(z)

Du
o(ω

′)dω
′+

∫
Al

o(z)
Dl

o(ω
′)dω

′, (18)

where Au
o(z) = MuAu(z) and Al

o(z) = MlA
l(z).

The source distribution to which these matrices are fitted de-
pends on the value of g:

for Mu : Du
o(ω

′) =

{
max(ω′ ·n,0), if g < 0

1−max(ω′ ·n,0), if g ≥ 0
,

for Ml : Dl
o(ω

′) =

{
1−max(−ω

′ ·n,0), if g < 0
max(−ω

′ ·n,0), if g ≥ 0
,

(19)

where n = (0,0,1). In effect, we fit to a clamped cosine source
if the HG peak is in the upper hemisphere for Mu and if not, we
fit to a inverse clamped cosine source. For Ml we fit the reverse.
We found that renderings for forward and back scattering are better
when using inverse clamped cosine to fit the hemisphere where the
HG peak is not present.

The integral over an arbitrary solid angle of the clamped cosine
is well known and used above in Eq. 8, Eq. 12 (cosine irradiance).
Similarly, the integral over an arbitrary solid angle Ao of the inverse
clamped cosine distribution is:∫

Ao

(1−max(n ·ω′,0))dω
′ =

∫
Ao

dω
′−

∫
Ao

max(n ·ω′,0)dω
′

= Ao −E(Ao),
(20)

that is, the cosine irradiance subtracted from the solid angle.

Combining Eq. 18, Eq. 19 and Eq. 20 we obtain an analytic ex-
pression for S:

S(z,A(z)) =


au ·E(z,Au

o(z)) + if g < 0
al · [Al

o(z)−E(z,Al
o(z))]

au · [Au
o(z)−E(z,Au

o(z))] + if g ≥ 0
al ·E(z,Al

o(z))

(21)

where E is the cosine irradiance [BRW89] as before, au is the am-
plitude of HG the upper hemisphere and al is its amplitude in the
lower hemisphere. These amplitudes are defined as an integral over
a given solid angle and are trivially precomputed, by integrating
Henyey-Greenstein over the upper hemisphere for au and the lower
hemisphere for al .

6. Ratio Estimators for Visibility

With our approach, using the formulation from Sect. 4 and LTSD
matrices from Sect. 5, we can render biased but noise-free unshad-
owed single scattering. We now formulate ratio estimators to render
shadows, following the work of Heitz et al. [HHM18].

Since the final radiance L is given by a sum of two terms (Eq.
1, Eq. 15), we need to formulate two ratio estimators: one for the
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Figure 7: We perform equal-time comparisons on three scenes of our method with Volume-RIS, for both unshadowed and shadowed configu-
rations. We used denoised Volume-RIS and denoised ratio estimators of our method in the shadowed comparison. We also show the variance,
which is error between the rendered image and it’s fully converged counterpart. Our method is preserves all visual details, thanks to the
semi-analytic unshadowed part while also achieving lower variance in most cases. All scenes are rendered with N = 8 quadrature samples.

air-light integral and one for the surface radiance. A ratio estimator
for the air-light integral can be formulated as:

RĀ =
�µs

∫ x
0 T (y,z)

[
Li

∫
A(z) ρ(z,ωo,ωi)Tv(z,ωi)dωi

]
dz

�µs
∫ x

0 T (y,z)
[
Li

∫
A(z) ρ(z,ωo,ωi)T (z,ωi)dωi

]
dz

, (22)

where the numerator uses Tv (transmittance with visibility) and the
denominator uses T (only transmittance). We can similarly formu-
late a ratio estimator RC̄ for the surface integral. The semi-analytic
radiance L in Eq. 15 can be modified with these ratio estimators to
render shadows:

L(y,ωo) =A·⟨RĀ⟩+T (y,x)Lc(x,ωo) · ⟨RC̄⟩, (23)

where ⟨.⟩ denotes a MC estimator. A benefit of this formulation
is that the noise due to ratio estimators can be denoised indepen-
dently. This denoising does not over-blur the final render thanks
to its combination with noise-free semi-analytic radiance L. More

specifically, we separately denoise the numerator and denominator
of RĀ and RC̄ before evaluating Eq. 23

Fig. 7 shows an equal-time comparison of our method with de-
noised ratio estimators with denoised Volume-RIS. Denosing the
output of Volume-RIS leads to blurring of details, most visible
in the red curtain in Sponza and the floor in San Miguel. Our
method preserves these details thanks to the semi-analytic unshad-
owed contribution.

7. Implementation

We implement our semi-analytic single scattering approach with
CUDA and OptiX [PBD∗10] for hardware accelerated ray-tracing.
We refer the reader to the supplementary document for the pseudo-
code of our rendering algorithm. We also implement Volume-RIS,
which is the method of Lin et al. [LWY21] without spatial and tem-
poral reuse. This choice was made for easier evaluation, and as such
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Figure 8: Varying values of g rendered using our method and a 2K spp reference. Our method plausibly renders forward and back scattering
effects.
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Figure 9: Varying values of the scattering coefficient µs rendered using our method and a 2K spp reference. Our method plausibly renders
density variations.

any form of reuse will also benefit our method (by applying reuse
to ratio-estimators), proportionally scaling the render quality and
run-times.

Our implementation for fitting LTSDs to phase functions builds
on the fitting approach and the code of KT et al. [KHDN22]. We
modify the code to sample phase functions instead of a BRDF.
We also need sampling routines for the two source distributions:
clamped-cosine and inverse clamped cosine (Eq. 19). The sampling
procedure for the former is well-known, and we derive a sampling
procedure for the latter in the supplementary document.

Since Henyey-Greenstein is symmetric across g = 0, we make
the following optimization to store the LTSD matrices. For a value
of g∈ [−1,0], we fit matrices using the clamped cosine source. This
is done for 128 equally spaced values of g and stored in a table T1.
For a value of g ∈ [0,1], we fit matrices using the inverse clamped
cosine source, and similarly store in a 128 dimensional table T2.
For both cases, we discard samples in the lower hemisphere of HG

during fitting. The matrices Mu and Ml are fetched as follows:

Mu =

{
T1(g) if g < 0
T2(g) if g ≥ 0

Ml =

{
diagonal(1,1,−1) · T2(|g|) if g < 0
diagonal(1,1,−1) · T1(−g) if g ≥ 0

(24)

This avoids repeated storage, requiring only two one-dimensional
tables of size 128 to be precomputed and stored. The fitting pre-
computation takes about six hours on a NVIDIA RTX 3090 GPU.

8. Results & Comparisons

In this section, we validate the renderings of our method, discuss
its characteristics and compare with Volume-RIS [LWY21]. Since
Volume-RIS is unbiased, we use it for large number of samples per
pixel (spp) reference comparisons as well.

Our rendering results are shown on various scenes with varying
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Figure 10: Equal-time renderings of Volume-RIS compared with our renderings for various values of N (no. of quadrature samples), on two
scenes. For all values of N, our method achieves a noise-free result, with bias being more for lower values. N thus serves as a quality-speed
tradeoff slider of our method.

number of area lights, geometric and texture detail. We show both
unshadowed and shadowed renderings and our scenes also help
evaluate volumetric shadows with light shafts (Fig. 1 right, Fig.
7 Big Cat). All images are rendered at a resolution of 1920×1080
or 1080× 1080 on a workstation with NVIDIA RTX 3090 GPU,
unless otherwise specified.

8.1. Validation

We begin by validating our method with ground truth ray traced
2K spp reference. We evaluate renderings at different parameter
values of the medium and setting N = 500 (no. of quadrature sam-
ples). Fig. 8 shows renderings of our method for different values
of g = {−0.95,−0.6,−0.1,0.4,0.9} on two different scenes, com-
pared with the reference. This validation serves to show that our
method plausibly renders backward (negative g) and forward scat-
tering g (positive g), thanks to our fitting approach in Sect. 5. Fig.
9 similarly evaluates renderings of our method for different val-
ues of µs against the reference. Note that µs is a spectrally vary-
ing quantity that is supported by our method as well. However, for
validation purposes, it suffices to use a constant values across the
spectrum. Our renderings faithfully captures the density variation
in the medium.

8.2. Comparisons

In Fig. 7 we perform equal-time comparisons of our renderings
with Volume-RIS on three scenes, in both unshadowed and shad-
owed configurations. Our unshadowed method visually performs
better than Volume-RIS thanks to no noise. In the shadowed con-
figuration, we denoise Volume-RIS and the ratio estimator in our
method. Note that for Volume-RIS, we perform denoising sepa-
rately on the medium and the surface for a fair comparison. The

renderings of Volume-RIS exhibits blurring from the denoiser, es-
pecially of high-frequency details (floor in San Miguel, curtain in
Sponza). This is not the case for our method, since we get exact
details from our semi-analytic unshadowed part. The bottom row
of this figure and the teaser figure show the renderings on a shadow
shaft scene, demonstrating that our ratio estimators work well for
volumetric shadows too.

We also show the variance for each configuration in Fig. 7. The
variance of a method is computed as the error between the cur-
rent render and its converged counterpart. This error estimates ig-
nores the bias and allows us to measure variance. In most cases, we
achieve lower variance than Volume-RIS.

8.3. Characteristics

Number of Quadrature samples. We evaluate equal-time render-
ings of our method compared to Volume-RIS for different values
of N in Fig. 10. For all values of N, our method renders a noise-
free result, thanks to the use of analytic evaluations of Sect. 4.2,
Sect. 4.3 and the use of quadrature rule in Sect. 4.4. The bias in-
creases for lower values of N, but the time taken to render at these
values approaches real-time values. Thus, N can serve as a quality-
speed tradeoff slider of our method, which is useful for gaming and
lookdev applications. Equal-time renderings of Volume-RIS have
significant noise at lower N which quickly startes to disappear for
higher N.

Bias. Fig. 11 shows the renderings of our method for N = 500
and a false-color difference with ray-traced 2K spp reference. This
figure shows the bias of our method, due to the approximation of
LTSDs and aggregated transmittance approximation (Eq. 10). The
bias of our method is acceptable for many applications and the ren-
derings are plausible since our method is derived directly from the
VRE.
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Figure 11: We show bias of our method with false color images, computed by taking a difference with a 2K spp reference. .
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Figure 12: Polar plots of the Henyey-Greenstein phase function
(orange solid line) and our LTSD approximation from Sect. 5.2
(blue dotted line). Our approximation follows the overall shape of
HG, but is discontinuous across the horizon and doesn’t match HG
values for individual angles (similar to previous LTC fits not exactly
matching the GGX BRDF). We thus do not recommend to use it for
applications such as importance sampling (a similar observation
was drawn by KT et al. [KHDN22]). However, our approximation
results in plausible rendering, owing to it being integrated over the
solid angle of the area light.

Temporal Consistency. Our method is temporally consistent, in-
spite of no temporal information sharing, as shown in our supple-
mentary video. This is because our renderings have no noise and
our approximations smoothly vary across frames. This is also true
with shadows, where the ratio estimator is denoised. Since denois-
ing is done only on the ratio part and combined with our analytic
result, it hides most temporal inconsistencies [HHM18].

9. Conclusion, Limitations & Future work

We presented a method for semi-analytic interactive and unshad-
owed single scattering in homogeneous media with area lights. We
formulated our method in a way that permitted the application of
LTSDs for analytic evaluation. We showed that applying LTSDs
to the in-scattered radiance is not straightforward due to the pres-
ence of a phase function that is defined on the entire sphere. This
required analysis on the failure cases of LTSDs and identification
of the core problem that prevents their application. We then pro-
posed a solution that accurately fits phase functions and plausibly
renders forward and back scattering effects. We also provided de-
tails to efficiently fit LTSDs to phase function using our approach,

taking advantage of symmetries. Finally, we thoroughly validated
our method’s renderings and discussed its various characteristics.
We also showed equivalent to better quality results compared to
equal-time renderings of Volume-RIS.

Limitations. The biggest limitation of our method is that it is
not physically correct, even though we base our formulation on
the VRE. Although the resulting renderings are plausible, they
may contain subtle artefacts: Fig. 8, rightmost shows an example
over-brightening due to the transmittance approximation. Evalua-
tion with quadrature of the air-light could also cause ringing arte-
facts, for example, if samples for two adjacent rays cross a light
boundary, and should be carefully handled.

For a scene with a large number of area lights, the LTSD eval-
uation starts to get expensive and may not hold benefit over pure
Monte Carlo evaluation, especially with a good importance sam-
pling strategy like Volume-RIS. A minor drawback of our method
is also that we now have two hyper-parameters controlling the ren-
der quality: (1) the number of quadrature samples and (2) the num-
ber of ratio estimator samples. This can be problematic for artists
as these parameters, like the number of samples in traditional MC,
are not intuitive.

In our current formulation, we have not considered emissive me-
dia and our method assumes homogeneous infinite media - thus it
cannot handle bounded or heterogeneous media.

Finally in Fig. 12 we show polar plots of the HG phase function
in orange solid lines and our fits in blue dotted lines. Our fits match
the overall shape of the Henyey-Greenstein phase function, it may
not be exact for most individual angles. We thus do not recommend
to use our LTSD fits for sampling applications. Furthermore, our fit
is not continuous across the horizon for near isotropic values of g.
This is akin to previous fits shown in Heitz et al. [HDHN16] and
KT et al. [KHDN22], where the LTC fits do not exactly match the
GGX BRDF. We note that a similar recommendation was made by
KT et al. [KHDN22].

Future Work. In the future, we would like to minimize the
discontinuities and the deviations of our fits from the Henyey-
Greenstein phase function. We would also like to explore the use
of other phase functions like the SGGX phase function [HDCD15].
This should be possible with the fitting approach presented, but
needs to be carefully explored. We would further like to derive
a better approximation of the aggregated transmittance than the
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one in Eq. 10. It may be possible to use Stokes theorem for this.
The extension to bounded and heterogeneous media is an inter-
esting future direction, along with exploring the extension to non-
exponential media.
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