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Abstract

A fundamental aspect of compositional reasoning in a
video is associating people and their actions across time.
Recent years have seen great progress in general-purpose
vision/video models and a move towards long-video under-
standing. While exciting, we take a step back and ask: are
today’s models good at compositional reasoning on short
videos? To this end, we introduce VELOCITI, a bench-
mark to study Video-LLMs by disentangling and assessing
the comprehension of agents, actions, and their associa-
tions across multiple events. We adopt the Video-Language
Entailment setup and propose StrictVLE that requires cor-
rect classification (rather than ranking) of the positive and
negative caption. We evaluate several models and observe
that even the best, LLaVA-OneVision (44.5%) and Gemini-
1.5-Pro (49.3%), are far from human accuracy at 93.0%.
Results show that action understanding lags behind agents,
and negative captions created using entities appearing in
the video perform worse than those obtained from pure
text manipulation. We also present challenges with Clas-
sicVLE and multiple-choice (MC) evaluation, strengthening
our preference for StrictVLE. Finally, we validate that our
benchmark requires visual inputs of multiple frames making
it ideal to study video-language compositional reasoning.

1. Introduction
Near a parking lot, a man in a black hat smiles in a friendly
way at a woman in a purple shirt. To a reader, this dense de-
scription paints a clear picture about a short snippet (event)
of a video clip. We build a mental model of two people (re-
ferred here by their clothing), at a specified location, and a
short interaction between them. Reading further, the woman
claps as a man in grey pants spins on one leg. We are able
to associate that it is the same woman who is now cheering
at a third person (likely) that is performing stunts.

The above example illustrates an intelligent agent’s abil-
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Figure 1. A Venn diagram grouping VELOCITI’s seven tests (in
black) that evaluate a Video-LLM across different facets: Agent
Understanding, Action Understanding, and Multi-event Under-
standing. The benchmark is formulated as video-language entail-
ment, where negative captions are created by manipulating text
(Text-inspired Negation) or from other parts of the same video (In-
Video Negation). Best seen in color.

ity to perform compositional reasoning. For video-language
models, we scope this in two steps: (i) comprehend atomic
entities, e.g. people and actions; and (ii) reason about them
compositionally and across time by building associations1.

In recent years, strong visual (image) encoders are com-
bined with powerful Large Language Models (LLMs) to
advance general-purpose vision [5, 9, 11, 23, 45]. A
similar approach is adapted for videos to create Video-
LLMs [23, 28, 45, 48]. Keeping pace with the development
of new models, there is a flurry of work on evaluating them
(Tab. 1). Video researchers are also creating benchmarks to
study long video comprehension [7, 13, 15, 37]. However,
we take a step back and ask, are today’s Video-LLMs ready
to take on such challenges? Specifically, are they good at
compositional reasoning in short videos, arguably a prereq-
uisite to tackle complex and long videos?

To this end, we introduce the VELOCITI, a benchmark

1Associations can be thought as implicit tuples that a model attempts to
build while watching a video. Some examples include person-attribute
tuples: (man1, black hat), (woman, purple shirt), (man2, grey pants);
agent-action tuples: (man1, smiles at, woman), (man2, spins on one leg),
(woman, claps at, man2); or action-manner tuples: (smile, friendly way).
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that studies Video et Language Compositionality through
Time. We adopt the video-language entailment (VLE)
evaluation setup [4] where a model is prompted to predict
whether a video entails a caption (‘Yes’ for an aligned or
positive caption and ‘No’ for a misaligned or negative cap-
tion). Through a suite of seven tests, we are able to disentan-
gle and assess a model’s ability to comprehend agents, ac-
tions, and their associations across multiple events through
time. As illustrated in Fig. 1, we group the 7 tests based
on: (i) the specific facet of a model’s ability (agent, ac-
tion, multi-event), or (ii) the strategy used to create the neg-
ative caption (Text-Inspired Negation vs. In-Video Nega-
tion). Note that although the tests (Sec. 3.2) have varying
levels of difficulty, they are all important as they shed light
on whether a model is able to solve a specific facet of video-
language compositional reasoning.

Our videos are sourced from the VidSitu dataset and are
accompanied by action and semantic role label (SRL) an-
notations for multiple events in a short movie clip [39]. The
videos are diverse and feature multiple agents and actions
across complex editing and shot changes, while dense SRL
succinctly describes who did what with/to whom, where,
and (sometimes) how. Importantly, each SRL only de-
scribes a single event, requiring models to implicitly local-
ize the event in the video before solving the test.
Strict entailment. In the classic VLE setup, benchmarks
typically check if the entailment score for the positive
caption is higher than the negative caption [25, 40, 47].
While this traces back to visual-semantic embedding mod-
els [12, 14, 35], it is unsuitable for evaluating modern
Video-LLMs that generate text (and not similarity scores).

We propose a strict entailment scoring mechanism where
Video-LLMs should output ‘Yes’ for an aligned caption and
‘No’ for a misaligned one. Our analysis reveals that mod-
els produce marginally different entailment scores for the
positive and negative captions attaining good performance
on ClassicVLE, but predict ‘Yes’ for both. This is critical
as VLE evaluates a model’s ability to reject (partially) mis-
aligned descriptions. Poor performance here implies that
the model may produce erroneous outputs on other tasks
(e.g. question-answering) and assumes that partial halluci-
nations (like negative captions) are acceptable.
Contributions. We summarize our contributions and find-
ings below: (i) We propose VELOCITI, a new benchmark
that evaluates compositional reasoning of video-language
models. Our test suite sheds light on a model’s ability to
perceive and reason about agents and actions across multi-
ple events, identifying challenges for improvement (Sec. 3).
(ii) We propose a strict metric for video-language entail-
ment that requires a model to produce ‘Yes’ for an aligned
caption and ‘No’ for the corresponding misaligned cap-
tion (Sec. 4). (iii) We evaluate both open and closed mod-
els and show that they struggle with compositional rea-

soning. While larger models such as LLaVA-OneVision-
72B (OV-72B) [23] tend to perform better than smaller
ones (OV-7B), even the best commercial model (Gemini-
1.5-Pro [10]) achieves 49.3% accuracy, about half that of
humans at 93.0%. (iv) Our experiments reveal important
findings: a) Understanding actions is harder than agents for
open models, and b) tests incorporating in-video negation
are more challenging than text-inspired negation (Sec. 5.1).
c) Smaller models are predisposed towards ‘Yes’ for the en-
tailment task (Sec. 5.2). d) ClassicVLE hides information
as entailment scores of positive and negative captions are
often close to each other, likely due to subtle differences be-
tween them (Sec. 5.3). e) Multiple-choice (MC) evaluation
is unsuitable due to a choice bias observed even in large and
closed models (Sec. 5.4). f) Finally, we show that VELOC-
ITI requires visual inputs and multiple frames and cannot
be solved with text-only or single-frame models (Sec. 5.5).

2. Related Work

Several benchmarks exist to evaluate image-language com-
positionality (Winoground [42], COLA [38], MMVP [44],
and others [17, 26, 32, 49, 52]). They require identifying the
correct caption among distractors, exposing models failure
to bind concepts [20]. We focus on short complex videos.

Video-language benchmarks broadly related to our work
are presented in Tab. 1. We discuss differences to closely
related work here. Among previous benchmarks that
study compositional reasoning, our work differs due to the
(i) emphasis on a test suite that provides disentangled un-
derstanding of agents and actions across multiple events;
(ii) task formulation as strict video-language entailment
(unlike TestOfTime [3], VideoCon [4], VITATECS [25],
Vinoground [51]); (iii) explicit use of text-inspired and in-
video negation (unlike TestOfTime [3], VideoCon [4], MV-
Bench [24], VITATECS [25]); and (iv) use of short complex
videos (e.g. compared to indoor, single-agent Charades [41]
in AGQA [16], STAR [46]).

While contrast captions are a popular strategy [3, 4,
8, 24, 25, 33, 51], the structured SRL annotations used
in VELOCITI facilitate evaluating specific aspects of a
model’s capabilities. Further, different from comprehen-
sive benchmarks that evaluate holistic video understand-
ing (e.g. SEED-Bench-2 [21], CVRR-ES [19], Video-
MME [15]), we focus on the fundamental ability of com-
positional understanding and highlight major shortcomings.
Importantly, our tests are designed to prevent text-only and
single-frame models from solving them (validated empiri-
cally), guarding against issues highlighted by ATP [6] and
recently TVBench [8].

Video-Language Entailment (VLE) is posed as a binary
classification task [40]. Given a premise (the video) and a
hypothesis (the caption), a model should determine if the
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Benchmark Task Comp In-V Strict Test Human Video Domain
Setup Neg VLE Creation Eval Duration (Source)

AGQA [16] CVPR’21 OQA, MCQ ✓ ✗ NA T, SG ✓ 30s Open (ActionGenome, Charades)
STAR [46] NeurIPSDB’21 MCQ ✓ ✓ NA H, T, SG ✗ 30s Indoor (Charades)
ContrastSets [33] NAACL’22 MCQ ✓ ✗ NA H, T, LLM ✓ - Mixed (MSR-VTT, LSMDC)
TestOfTime [3] CVPR’23 E ✗ ✗ ✗ T ✗ 5-30s Open (TEMPO, ANet Cap., Charades)
Perception Test [34] NeurIPSDB’23 MCQ ✗ ✗ NA H ✓ 23s Indoor (Manual)
Cinepile [37] CVPRW’24 MCQ ✗ ✗ NA H, GPT-4 ✓ 2-3m Movies (MovieClips channel)
VideoCon [4] CVPR’24 E, OQA ✓ ✗ ✗ H, PaLM-2 ✗ 10-30s Open (MSR-VTT, VATEX, TEMPO)
SEED-Bench-2 [21] CVPR’24 MCQ ✗ ✗ NA H, GPT-4 ✗ - Open (Charades, SSV2, EK100)
MV-Bench [24] CVPR’24 MCQ ✓ ✗ NA T, ChatGPT ✗ 5-35s Mixed (Charades-STA, MoVQA, +9)
TempCompass [31] ACLFindings’24 MCQ, E, VC ✓ ✗ ✗ H, GPT-3.5 ✓ 30s Open (ShutterStock)
MMBench-Video [13] NeurIPSDB’24 OQA ✗ ✗ NA H ✗ 30s-6m Open (YouTube)
VITATECS [25] ECCV’24 E ✓ ✗ ✗ H, GPT-3.5 ✓ 10s Open (MSRVTT, VATEX)

CVRR-ES [19] arXiv-2405 OQA ✗ ✗ NA H, GPT-3.5 ✓ 2-183s Open (SSV2, CATER, +5)
Video-MME [15] arXiv-2405 MCQ ✗ ✓ NA H ✗ 11s-1h Open (YouTube)
VideoVista [27] arXiv-2406 MCQ ✗ ✗ NA T, GPT-4, GPT-4o ✗ 131s Mixed (Panda-70M)
Vinoground [51] arXiv-2410 E ✓ ✗ ✗ H, GPT-4 ✓ 10s Open (VATEX)
TVBench [8] arXiv-2410 MCQ ✓ ✗ NA T ✗ - Mixed (STAR, CLEVRER, +6)

VELOCITI (Ours) E ✓ ✓ ✓ H, T, LLM ✓ 10s Movies (VidSitu)

Table 1. We review video-language benchmarks and highlight key differences to VELOCITI. Benchmarks use various ‘Task Setups’:
Entailment (E), Multiple Choice (MCQ), Open-ended Question-Answering (OQA), and Video Captioning (VC). We compare VELOCITI
against benchmarks that test Compositionality (‘Comp’) or have In-Video Negation (‘In-V Neg’). In ‘StrictVLE’, benchmarks not adopting
VLE are marked not applicable (NA). Acronyms in the ‘Test Creation’ column are: template (T), scene graph (SG), open large language
model (LLM), and human (H). The ‘Domains’ are of 3 types: Open (natural videos), Movies, and Mixed (natural & movies). Different
from others, VELOCITI introduces StrictVLE and features tests with negative captions created from entities appearing in the same video.

hypothesis logically follows (entails) from the premise. En-
tailment was first used with images in [47] and adopted
by [3, 4, 25] for videos. Given the rise of Vision LLMs,
entailment scores are computed using the likelihood over
specific words in the vocabulary [4, 22, 29]. However, most
works only require that the positive caption scores higher
than the negative [25, 47], or with a margin [22]. We pro-
pose a more demanding form, StrictVLE, that unlike Clas-
sicVLE, is applicable to both open and closed models (with-
out likelihood scores). Specifically, we independently re-
quire that the model entails the positive caption and does
not entail the negative caption. While this looks simple, we
find that models do not sufficiently distinguish positive and
negative captions and tend to answer ‘Yes’ for both.

3. VELOCITI Benchmark
We evaluate compositional reasoning using dynamic 10 s
movie clips and SRL annotations from the VidSitu dataset.
We propose seven tests to evaluate model’s comprehension
of agents and actions across multiple events through time.
Each test consists of {V,C+, C−}: video clip V , a pos-
itive caption C+ that is aligned with a part of the video,
and a negative caption C− that is not aligned to the video.
We require models to independently assess each caption and
classify them as V entails C+ and V does not entail C−.

3.1. From SRL to a Video-Caption Pair
In VidSitu, videos are divided into five 2 s events [39] (total
10 s duration). Each event is annotated by the most salient

action and the corresponding SRL capturing: who is doing
the action (agent), with / to whom (patient or receiver), with
what (instrument, if applicable), where (scene or location),
how (manner or adverb), and why (purpose).

We use an open LLM (LLaMA-3 [2]) to convert the
structured SRL dictionary of each event into a caption. The
LLM is prompted to combine the atomic concepts into a flu-
ent caption (prompt in Fig. 10). We filter 864 videos from
the validation set and generate 3101 high-quality (V,C)
pairs with captions that are faithful to the SRL annotations.
Depending on the test, these captions are directly used as
C+ or used to form C+.

Note, movie events are not bounded by 2 s intervals and
the SRL annotations may spill into the neighboring events.
Thus, we make a conscious choice to pair the caption C
with the entire 10 s video V . To correctly decide whether V
entails C, a model needs to implicitly localize to the appro-
priate temporal region in the video. This prevents a single
frame bias as reported by Atemporal Probe in [6].

3.2. VELOCITI Tests
We motivate and describe the seven tests below. Fig. 2
shows an example of each test grouped based on the pro-
cess used to create C−: (i) text-inspired negation typically
creates C− without looking at the video; and (ii) in-video
negation, a key contribution of our work, uses a different
entity appearing in the same video to create C−. Both are
important as they help us identify pitfalls of current models.
0. Control Test. We start with a control test to establish a
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Text-Inspired Negation In-Video Negation

Near a parking lot, a man in grey 
pants is spinning around on one leg

Near a parking lot, the warrior in 
brown is spinning around on one leg

A man in grey pants is greeting a 
man wearing a black hat

A man in grey pants is chasing a man 
in a black hat

Near a parking lot, a man in grey 
pants is spinning around on one leg

Near a parking lot, the man in grey pants 
spins himself around with both feet

First, (A) a man in a black hat gives a 
friendly smile to a woman in a purple 

shirt. Then, (B) the man in grey pants is 
strutting around

First, (B) the man in grey pants is strutting 
around. Then, (A) a man in a black hat 
gives a friendly smile to a woman in a 

purple shirt

Agent Random Test

LLM

…
Man
in gray 
pants
… SRL

…
on 
one 
leg
… SRL

…
warrior 
in
brown
…

…
with
both 
feet
…

Action Adversarial Test

Action Manner Test

Event Chronology Test

Near a parking lot, a man in grey 
pants is spinning around on one leg

Near a parking lot, the man with a 
black hat is spinning around on one leg

Agent Binding Test

A man in grey pants is greeting a 
man wearing a black hat

A man in grey pants is clapping his 
hands

Action Binding Test

The person who is greeting a man 
wearing a black hat is also the one 
who is spinning around on one leg

The person who is greeting a man 
wearing a black hat is also the one 

who is smiling friendly at a woman in 
a purple shirt

Agent Coreference Test

SRL

…
woman
in a
purple
Shirt
…

SRL

…
spins 
around 
on one 
leg
…

…
man in
gray
pants
…

…
claps
his
hands
…

Figure 2. VELOCITI evaluates Video-LLMs’ video-language entailment capabilities on complex movie clips with dense semantic role
label (SRL) annotations from the VidSitu dataset [39]. Positive and negative captions are shown side-by-side for each test with the key
difference highlighted with green/red. Negative captions are created by (i) manipulating text using an LLM (Text-Inspired Negation) or
(ii) replacing agents or actions by others that appear in the same video (In-Video Negation). We also demonstrate how the same positive
caption can be used to create negative captions differently (see Agent Random vs. Agent Binding test; or Action Adversarial vs. Action
Binding test). Each test evaluates models for different facets of compositional reasoning as described in Sec. 3.2. The 10 s video clip used
in this example can be viewed here: https://www.youtube.com/embed/bt6-F11LZsQ?start=25&end=35.

baseline understanding. Here, C+ is as described in Sec. 3.1
and C− is simply a positive caption of some other random
video, making it easily discernible.

1. Agent Random Test. C− is created by replacing the
correct agent with another agent that does not appear in the
video (C+ is as above). Solving this test requires a model
to implicitly localize the event based on the action and iden-
tify who is present/absent in the video. We ensure that the
replacing agent is not a hypernym (e.g., “man in a shirt”
is not replaced by “man”). The SRL dictionary is updated
with the random agent and the LLM generates C−.

2. Agent Binding Test also replaces the agent. Different
from above, the replaced agent is chosen from the same
video making it an in-video negation. This subtle difference
requires models to identify the correct agent and bind or as-
sociate it with the event description. Models cannot rely
purely on presence/absence to solve this task. Fig. 2 shows
how the same C+ can be modified to create both agent tests.
Similar to above, the LLM generates C−.

3. Agent Coreference Test. Coreference groups two or
more phrases that refer to the same entity [18]. In a video,
an agent can be referred to by their actions, e.g. in Fig. 2,
the agent: man in grey pants is referred by: the person who
is (i) greeting a man wearing a black hat or (ii) spinning

around on one leg. To create this test, we identify videos
with the same person acting in two or more events and con-
struct two references for that person. C+ is formed by com-
bining the referring expressions of the same agent, while
C− combines referring expressions of different agents. This
test also features complex in-video negation as all concepts
mentioned in both C+ and C− appear in the video. The
captions are created using the template: The person who is
[Event A] is also the one who is [Event B]. Solving this
test requires models to associate the correct interactions of
an agent across two events. Since the agent description is
masked by the person, a model requires multi-level compo-
sitional reasoning, making this test particularly challenging.
4. Action Adversarial Test. C+ is as described in Sec. 3.1
and C− is created by replacing the action with an adver-
sarial alternative (a plausible action determined through the
text description) that does not appear in the video. Solving
this test requires identifying the action that the agent is per-
forming. Given the SRL dictionary, the LLM is prompted
to first generate the adversarial action followed by C−.
5. Action Manner Test typically features a C+ that in-
cludes an adverb, emotion, or facial expression. C− is gen-
erated by replacing this manner with a contradictory yet
plausible alternative. Solving this test is challenging as it
requires understanding subtle variations in an action. Simi-
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lar to the test above, the LLM is prompted to first generate
the contrasting manner followed by C−.
6. Action Binding Test. Here, C− is created by retaining
the agent from C+ and swapping the action and its modi-
fiers with those from a different event within the same video.
Solving this test requires models to localize events where
the agent appears and bind them with the correct action.
This is another test with in-video negation as actions de-
scribed in both C+ and C− appear in the video. To create
C−, we identify an event in the same video with a different
action performed by a different agent. Next, we replace the
SRL dictionary of C+ with the action (and relevant modi-
fiers) and prompt the LLM to generate C−.
7. Event Chronology Test. Our final test studies a
model’s ability to confirm whether the video and caption
follow the same event progression. Multiple events descrip-
tions can be related through time using before, after, first,
then [3]. C+ is created by concatenating event captions
(from Sec. 3.1) with the template “First, [Event A]. Then,
[Event B].” where event A precedes B. C− simply reverses
them to “First, [Event B]. Then, [Event A].” The events are
sampled at least 2 s apart to prevent a chance of overlap.
Quality control. All test samples in VELOCITI are verified
by humans to ensure that C+ aligns with the video and C−

is misaligned. The number of samples in each test and other
details are presented in Tab. 11.

4. StrictVLE Evaluation Metric
We adopt Video-Language Entailment (VLE) as the evalu-
ation scheme for VELOCITI. Given an instruction I con-
taining a video V and a caption C, model M is prompted
to answer whether the video entails the caption through
‘Yes’/‘No’. We define the entailment score similar to [40]:

e(V,C) =
pM (‘Yes’|I(V,C))

pM (‘Yes’|I(V,C)) + pM (‘No’|I(V,C))
, (1)

where pM denotes the model’s probability distribution over
the entire vocabulary.
ClassicVLE [25, 47] considers that a model is correct when
e(V,C+) > e(V,C−). The random accuracy is 50%.
Narrative example. Consider a simple video of a red traffic
light. Let C+, “The traffic light is red” score p(‘Yes’)=0.7,
p(‘No’)=0.3; and C−, “The traffic light is green” score
p(‘Yes’)=0.6, p(‘No’)=0.4. As e(V,C+) > e(V,C−),
ClassicVLE considers this as a correct prediction. How-
ever, with greedy decoding (constrained to ‘Yes’ and ‘No’),
the model will predict ‘Yes’ for C−, which is objectively
incorrect, and in this example scenario, dangerous.
StrictVLE. As models improve, it is important for our
community to hold them to higher standards. We ar-
gue that relative ordering of the entailment scores is in-
sufficient and we propose StrictVLE that requires models

to predict ‘Yes’ for C+ and ‘No’ for the corresponding
C−. Specifically, StrictVLE considers a sample correct iff
e(V,C+)>0.5 ∧ e(V,C−)<0.52 and has a random chance
accuracy of 25%. The threshold 0.5 arises naturally, and
is equivalent to greedy decoding of ‘Yes’/‘No’ in the re-
sponse. This equivalence means StrictVLE also works on
closed models without access to pM .
Relation to multiple-choice (MC). While VLE performs
independent evaluation of C+ and C−, MC provides both
captions to the model at once. Seeing both captions makes
the task easier as the model needs to predict the more likely
option rather than independently assess each one (similar to
ClassicVLE). In Sec. 5.4 we reveal biases of MC evaluation
and show that our proposed StrictVLE is preferable.

5. Results and Discussion
We evaluate open and closed Video-LLMs on VELOCITI.
First, we present results with StrictVLE, our primary eval-
uation strategy, and analyze entailment scores. We also
compare results with ClassicVLE and MC, discussing some
evaluation pitfalls. Finally, we evaluate blind and single-
frame models to check for bias in the benchmark.
Models. We evaluate multiple open Video-LLMs:
PLLaVA [48], Video-LLaVA (V-LLaVA) [28], Owl-
Con [4], Qwen2-VL (QVL) [45], and LLaVA-OneVision
(OV) [23]; closed models Gemini-1.5-Flash (Gem-1.5F),
Gemini-1.5-Pro (Gem-1.5P) [10], GPT-4o [1]; and humans.
Due to compute and cost constraints, we evaluate QVL-72B
(at native video resolution), closed models, and humans on
a subset of 150 samples from each test (created once by ran-
dom selection). More details in Appendix A.6.

5.1. Evaluation with StrictVLE
We report model performance in Tab. 2 and discuss various
facets of model understanding highlighted in Fig. 1 (agents,
actions, multiple events, and negation strategies).
Control vs. VELOCITI average. Old open models (P-
LLaVA, Owl-Con) struggle on the StrictVLE setup as they
have a strong bias to predict ‘Yes’. This leads to poor per-
formance on the control test and the benchmark average
(first and last column). V-LLaVA and subsequent mod-
els, QVL and OV, obtain decent accuracies on the control
test, ranging from 65-85%. Compared to the control tests,
performance dips strongly on the benchmark average, with
the best model, OV-72B obtaining 43.2% accuracy (36.2%
lower than control). On the benchmark subset, while GPT-
4o posts a 46.2% accuracy on average, it performs poorly
on the control tests (analysis in Sec. 5.2). Inversely, Gem-
1.5F achieves 91.9% on the control tests, but is close to ran-
dom on the benchmark (23.9%). The best model, Gem-1.5P,

2Note, this is different from the Winoground [42] setup that has: (i) 2
images/videos and 2 captions; and (ii) still uses relative scoring.
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Model Ctrl
Ag Ag Ag Act Act Act Ev

Avg
Rand Bind Cref Adv Man Bind Chr

Random 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0

P-LLaVA 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Owl-Con 24.3 3.4 0.7 0.0 4.3 2.8 0.6 0.1 1.7
V-LLaVA 65.8 16.4 7.6 0.3 8.7 3.3 10.6 3.9 7.3

QVL-7B 84.6 39.1 13.5 6.5 17.8 17.5 16.4 0.4 15.9
OV-7B 81.6 56.7 32.9 8.0 29.7 30.6 36.4 30.5 32.1
OV-72B 79.3 63.7 45.4 38.6 33.1 29.3 45.1 46.5 43.1

VELOCITI Subset
Gem-1.5F 91.9 56.4 23.8 4.7 32.9 21.6 25.0 2.7 23.9
QVL-72B 82.7 56.0 29.3 35.3 30.0 24.0 35.3 1.3 30.2
OV-72B 81.3 64.0 46.7 41.3 30.7 32.7 46.0 50.0 44.5
GPT-4o 63.3 54.7 44.7 40.7 55.0 42.0 54.0 32.2 46.2
Gem-1.5P 74.3 60.1 49.7 36.7 52.3 43.5 52.3 50.3 49.3
Human - 91.5 92.9 92.6 92.9 89.9 91.5 100. 93.0

Table 2. Results on VELOCITI using the StrictVLE evaluation
strategy. The tests are abbreviated as Ctrl (Control), AgRand
(Agent Random), AgBind (Agent Binding), AgCref (Agent Coref-
erence), ActAdv (Action Adversarial), ActMan (Action Manner),
ActBind (Action Binding), EvChr (Event Chronology). Avg re-
ports the average accuracy on the 7 tests of VELOCITI. All mod-
els show a large gap to human performance.

achieves 49.3%, far from human performance at 93.0%.
VELOCITI is a challenging benchmark and exposes lack
of reasoning in both open and closed Video-LLMs.
Agent understanding tests include the Agent Random Test
(AgRand), Agent Binding Test (AgBind), and Agent Coref-
erence Test (AgCref). Broadly, they evaluate a model’s abil-
ity to understand the doer of the actions in the videos. Com-
pared to AgRand, models show worse performance on Ag-
Bind and AgCref. For example, the best performing OV-
72B, achieves 63.7%, 45.4%, and 38.6% accuracy respec-
tively. AgRand requires verifying the presence of the agent,
AgBind requires disambiguating between people present in
the video and binding the correct person with the event de-
scription, and AgCref needs resolving identity across mul-
tiple events. This proves the difficulty of in-video nega-
tion. We also note that OV-7B performs worse than OV-72B
on complex tests (AgCref, 8.0% vs. 38.6%) indicating that
multi-level reasoning is slightly better with larger LLMs.
Action understanding tests include the Action Adversarial
Test (ActAdv), Action Manner Test (ActMan), and Action
Binding Test (ActBind). These evaluate the model’s under-
standing of actions and/or its modifiers. We observe that
OV-72B scores worse on action tests (35.8% average over
the 3 tests) as compared to agent tests (49.2%), while GPT-
4o achieves a balanced performance of 50.3% and 46.7%
respectively. While ActAdv is easier than ActBind for most
models, OV shows inverted results. Further, subtle varia-
tions in actions are not captured by most models and Act-
Man is a challenging test with OV-72B at 29.3% and Gem-

1.5P posting the highest accuracy of 43.5%.
Multi-event understanding tests. As AgBind and ActBind
adopt in-video negation, they require some level of multi-
event reasoning, but are ignored in this discussion. Instead,
we focus on Agent Coreference Test (AgCref) and Event
Chronology Test (EvChr) as they have multiple events in
both captions. Time and event order are critical to video
comprehension. However, Video-LLMs are still poor at the
EvChr test that requires establishing the relative order of
two events. Apart from OV-72B (46.5%) and Gem-1.5P
(subset, 50.3%), all models are comparable to or worse
than random. This is likely as all entities mentioned in
both captions are present in the video. AgCref fairs slightly
better, with more models showing performance better than
random: QVL-72B (35.3%), OV-72B (38.6%), Gem-1.5P
(36.7%), GPT-4o (40.7%). However, it is concerning that
the smaller OV-7B model collapses on these tests (AgCref
8.0%, EvChr 30.5%). Both tests highlight challenges of rea-
soning across multiple events in Video-LLMs.
Negation strategies. Finally, we observe that tests adopt-
ing in-video negation and requiring associations are harder
than text-inspired negation. For GPT-4o that achieves bal-
anced accuracy on agent and action understanding, we ob-
serve a 5.5% drop in performance (54.9% AgRand+ActAdv
to 49.4% AgBind+ActBind)3. Solving tests with in-video
negation requires reasoning as it is insufficient to only check
presence of entities (all entities from both captions appear
in the video). Models need to go beyond detecting the agent
and action, and learn to associate them correctly.
Qualitative analysis. Example predictions of OV-72B for
each test are in Fig. 7, Fig. 8, Fig. 9.

5.2. Analyzing Entailment Scores for StrictVLE
We analyze whether a model is better at classifying C+ or
C− in Sec. 5.2. The first number in each table cell corre-
sponds to the accuracy of positive captions, while the sec-
ond number is the accuracy of negative captions when the
positive caption was correct. We see an interesting trend.
As the model size increases, the positive caption accuracy
decreases (85.9% → 80.4%) and negative caption accuracy
increases (38.1% → 53.6%). This holds for both variants:
OV-7B to OV-72B and QVL-7B to QVL-72B (although on
a subset). Small models are eager to say ‘Yes’ for both cap-
tions, while larger models reason better. A similar trend is
seen on the control tests for the 7B and 72B models. How-
ever, negative caption accuracies are far higher, confirming
why control tests are easier compared to our benchmark.

Somewhat unexpectedly, GPT-4o only achieves 64.5%
accuracy on positive captions. But among them, it gets the
highest negative caption accuracy of 72.3%. This hesita-

3The chosen tests provide a head-to-head comparison of text-inspired
vs. in-video negation with the same positive caption as seen in Fig. 2.
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Figure 3. Scatter plot of entailment scores e(V,C+) (x-axis) and e(V,C−) (y-axis) for all tests in VELOCITI subset. We visualize the
scores for Video-LLaVA (top) and OV-72B (bottom). ClassicVLE calls a sample correct in the region below the diagonal (light green).
Instead, StrictVLE requires the dots to lie in the yellow bottom-right quadrant (dark green). Finally, samples whose points are above the
diagonal are wrong for both VLE metrics (red). While recent models have improved, older models concentrate near the diagonal and in the
top-right ‘Yes’ quadrant for both captions. The legend includes the actual number of points (please zoom in). Figure is best seen in color.

Model Control Average

OV-7B 83.0 / 98.3 85.9 / 38.1
OV-72B 79.8 / 99.3 80.4 / 53.6
QVL-7B 92.4 / 91.5 93.9 / 17.1

VELOCITI Subset
QVL-72B 84.0 / 98.4 85.2 / 36.4
Gem-1.5F 93.9 / 97.8 95.8 / 25.4
GPT-4o 63.0 / 100. 64.5 / 72.3
Gem-1.5P 75.0 / 99.1 74.0 / 66.2

Table 3. StrictVLE Anal-
ysis. We study a model’s
failure modes via positive
and negative caption accu-
racy. Each cell shows the
fraction of: (i) correctly
classified positive captions;
and (ii) correctly classified
negative captions among
samples whose positive
captions are correct.

tion to say ‘Yes’ hurts GPT-4o on the control tests as well
and even though negative caption accuracy is perfect, it gets
many positive captions wrong. Similar analysis of each test
(Tab. 7) shows that harder tests tend to have lower negative
caption accuracies.

5.3. Evaluation with ClassicVLE
While we recommend StrictVLE, we present results on the
ClassicVLE setup (Tab. 4) for completeness. First, we
present a language only baseline that evaluates if C+ is
more plausible than C−. VERA [30] scores 58.3% (close
to random 50%), confirming that language biases are in-
sufficient to solve the tests. Next, we evaluate CLIP-style
models [36, 49, 50] that mean-pool video frames and ob-
serve a small improvement (ViFi-C 61.2%). New Video-
LLMs such as QVL and OV (OV-72B: 83.6%) show good
improvement over older ones (e.g. P-LLaVA: 59.5%). How-
ever, this score is worse than 99.4% on the easy control
tests. Even with a relaxed metric, OV-72B gets every sixth
sample wrong. The trends for agent and action understand-
ing are similar: AgRand > AgBind > AgCref, and QVL
and OV perform better on agent than action understanding.

To further analyze entailment scores, we present scatter
plots on the benchmark subset in Fig. 3. While OV-72B is

Model Ctrl
Ag Ag Ag Act Act Act Ev

Avg
Rand Bind Cref Adv Man Bind Chr

Random 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0
VERA 50.9 58.4 53.4 63.7 67.6 58.3 53.3 53.4 58.3

SigLIP 95.3 79.0 54.4 50.4 66.4 55.0 54.0 48.2 58.2
ViFi-C 93.7 82.8 58.9 56.3 63.2 60.3 59.0 48.1 61.2
Neg-C 93.4 83.5 55.3 50.4 61.6 61.1 52.4 50.1 59.2

P-LLaVA 90.7 74.6 48.9 63.7 71.0 57.0 51.8 49.8 59.5
V-LLaVA 89.7 75.1 49.6 64.3 61.6 48.5 52.0 53.8 57.8
Owl-Con 90.8 73.2 49.9 48.1 72.4 61.8 52.7 42.5 57.2

QVL-7B 97.7 93.0 74.6 63.7 75.3 76.2 70.0 63.5 73.8
OV-7B 98.6 94.4 78.8 69.0 79.7 76.9 74.2 84.0 79.6
OV-72B 99.4 95.8 83.3 80.5 84.2 81.2 78.4 81.9 83.6

Table 4. Evaluation with ClassicVLE. Random accuracy is
50%. Beyond Video-LLMs, we report results for a plausibility-
evaluation model (VERA) and contrastive models (SigLIP: ViT-
SO400M-14-SigLIP-384 [50], ViFi-C: VIFICLIP-B16 [36], and
Neg-C: NegCLIP-B32 [49]). The performance of contrastive mod-
els and older Video-LLMs is close to random. However, recent
models (e.g. OV) produce better relative entailment scores, even if
they generate incorrect ‘Yes’/‘No’ responses.

clearly better than Video-LLaVA, it has too many points in
the top-right quadrant indicating a bias to say ‘Yes’ to both
captions. For Video-LLaVA, it is concerning that scores are
close to the diagonal (i.e. both C+ and C− get similar en-
tailment scores). In fact, these plots motivate us to propose
StrictVLE and reveal problems hidden by ClassicVLE. We
visualize such plots for all models in Fig. 4.

5.4. MC Evaluations and Choice Bias
In this setup, we provide the video and both captions to the
Video-LLM and ask it to pick the correct description (A
or B, prompts in Fig. 15, Fig. 16). In Tab. 5, we report
accuracy of the model where C+ is option A or option B.

7



Model
Control Benchmark Average

A B Bias A∧B A B Bias A∧B

Random 50.0 50.0 - 25.0 50.0 50.0 - 25.0
QVL-7B 94.9 98.5 (+3.6) 94.6 38.9 88.0 (+49.1) 38.5
OV-7B 96.0 99.6 (+3.6) 95.9 28.7 96.5 (+67.8) 28.7
OV-72B 99.2 99.4 (+0.2) 99.0 78.0 88.3 (+10.3) 76.0

VELOCITI Subset
QVL-72B 100. 100. (+0.0) 100. 73.1 75.7 ( +2.6) 65.3
OV-72B 100. 100. (+0.0) 100. 77.1 87.8 (+10.7) 75.0
Gem-1.5F 100. 99.3 (-0.7) 99.3 85.1 73.2 (-11.9) 67.7
GPT-4o 100. 100. (+0.0) 100. 83.9 74.8 (–9.1) 68.6

Table 5. Multi-choice (MC) evaluation results. Along with video,
we provide the model both captions as A and B and ask it to pick
the better aligned one. Column headers A (or B) refer to the ac-
curacy when A (or B) is the positive caption. Bias is B minus
A and should be close to 0. A∧B involves evaluating the model
twice, once with correct caption as A and again as B. A sample
is deemed correct when it picks the correct choice in both cases.
While a model’s decision should be unaffected by the order in
which choices are presented, we see a considerable bias.

We see that small 7B models have a strong choice bias and
pick option B more than A (49.1% QVL-7B or 67.8% OV-
7B). While this reduces in larger models (10.7% OV-72B),
it is still high. Even closed models exhibit this behavior with
Gem-1.5F preferring option A over B (11.9%) and GPT-4o
preferring option A over B (9.1%). Interestingly, this bias
becomes a major issue when the tests are challenging and is
negligible in the control tests that are easier.

While one could report accuracy by running the model
twice, once with option A as C+ and again with B as C+

(referred as A∧B), this is tedious and the number of eval-
uations increases as a factorial of the number of choices.
If we compare StrictVLE with the MC evaluation’s A∧B
score (both apply ∧ on binary decisions and have random
chance at 25%), we observe that MC is much easier (OV-
72B: 76.0%) than StrictVLE (43.1%, Tab. 2). This may be
attributed to the MC setup, where a model processes both
captions at once and only needs to pick the more likely op-
tion; in contrast with the StrictVLE setup that requires in-
dependent evaluation of each caption. Even though MC is a
popular evaluation setup for many benchmarks (see Tab. 1),
the choice bias of Video-LLMs makes results difficult to in-
terpret. For all these reasons, StrictVLE is preferred.

5.5. Validating Benchmark Properties
We highlight some additional properties of our benchmark.
Evaluating blind models. Tab. 6A compares Qwen2-LLM
(Q LLM) and OV-72B without the video inputs (OV Blind)
against the default OV-72B model (here, OV ). We see a
dramatic drop (43.1% to 3.7% Q LLM and 8.1% OV Blind).
Solving tests in VELOCITI requires visual understanding.
Evaluating with a single-frame. Tab. 6B reports results on

Model Ctrl
Ag Ag Ag Act Act Act Ev

Avg
Rand Bind Cref Adv Man Bind Chr

A. Comparing against Blind Models
OV  79.3 63.7 45.4 38.6 33.1 29.3 45.1 46.5 43.1
Q LLM 2.2 2.5 2.2 5.3 4.1 1.3 2.7 7.9 3.7
OV Blind 6.0 9.3 6.7 12.7 10.3 3.3 6.9 7.4 8.1

B. Impact of Single Frame Input or Model
OV-7B 81.6 56.7 32.9 8.0 29.7 30.6 36.4 30.5 32.1
1 Frame 39.6 31.6 22.3 18.1 15.5 13.4 22.1 10.3 19.0
OV-7B-SI 78.9 35.7 15.6 2.9 27.6 21.4 22.0 8.8 19.1

Table 6. VELOCITI benchmark validation. Part A. We confirm
that the model requires visual inputs. The base LLM Qwen2-72B
(Q LLM) or OV-72B without providing the video (OV Blind) per-
form poorly compared to OV-72B provided with video frames (OV
). Part B. We also confirm that providing multiple video frames
is necessary. When OV-7B is provided a single frame chosen
randomly (1 Frame) or when the video is fed to a model trained
only on single images (LLaVA-OneVision-SingleImage, OV-7B-
SI), the performance dips compared to showing the video at 1fps
(our default strategy, OV-7B).

OV-7B models. The first row is the default setup (Tab. 2)
and is compared against: (i) OV-7B with a single frame
input (1 Frame) chosen at random from the sampled 1fps
frames. (ii) The OneVision team [23] first train an image-
only model and extend it to multiple images and videos.
We evaluate their single image checkpoint while provid-
ing video inputs (OV-7B-SI). The performance drops from
32.1% to about 19.0% in both cases. This confirms that
VELOCITI requires video inputs and video models.

CoT and FPS ablations are in Appendix A.3 and A.4.

6. Conclusion
We introduced VELOCITI, a benchmark to evaluate the
compositional capabilities of Video-LLMs by disentangling
and assessing the comprehension of agents, actions, and
their associations across multiple events. We improved over
the classic Video-Language Entailment setup that relies on
relative scoring by proposing StrictVLE that requires mod-
els to answer ‘Yes’ for the positive caption and ‘No’ for the
negative caption. All evaluated models, open and closed,
performed poorly with a large gap to human performance.
Our experiments showed that action understanding is harder
than agent understanding, and solving tests with in-video
negation is harder than text-inspired ones. We also analyzed
limitations of ClassicVLE and the choice bias in multiple-
choice evaluations. Overall, our work established that com-
positional reasoning on short videos is still unsolved and
remains challenging for Video-LLMs.
Acknowledgment. MT and ViG thank Adobe Research
for supporting this project and travel. MT thanks SERB
SRG/2023/002544 for compute server and Google Cloud credits.
We thank volunteers for human evaluations.
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der Kolesnikov, Xiao Wang, Daniel Salz, Maxim Neumann,
Ibrahim Alabdulmohsin, Michael Tschannen, Emanuele
Bugliarello, et al. PaliGemma: A versatile 3B VLM for
transfer. arXiv preprint arXiv:2407.07726, 2024. 1
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Supplementary Material

In this supplementary material, we discuss
1. Additional results and analysis, both quantitative and qualitative (Appendix A);
2. Benchmark creation, quality control process, and some statistics (Appendix B);
3. Model prompts used in both setups: entailment and multiple-choice (Appendix C); and
4. Limitations (Appendix D).

A. Additional Results

In Appendix A.1, we present scatter plots of entailment scores for all models across all tests, expanding Fig. 3 from the
main paper. Next, we present the positive and negative entailment scores that are used in StrictVLE (expanding the analysis
in Sec. 5.2) in Appendix A.2. We experiment with Chain-of-Thought prompting in Appendix A.3 and present ablations for
number of sampled frames in Appendix A.4. The multiple-choice (MC) evaluation results are discussed in Appendix A.5
and the human evaluation setup in Appendix A.6. Finally, we share some qualitative results of LLaVA-OneVision-72B on
our benchmark in Appendix A.7.

A.1. Scatter plot of entailment scores
To analyze entailment scores, we present scatter plots for all models on the benchmark subset (150 samples) in Fig. 4.
The ideal scenario is when all samples lie in the bottom-right quadrant (points in dark green, quadrant in light yellow),
which indicates that the model confidently entails the correct caption while rejecting the negative caption, leading to a 100%
StrictVLE accuracy. However, in practice, we observe two undesirable cases: (i) the points are concentrated in the top-right
quadrant, indicating a strong bias towards responding ‘Yes’ regardless of whether the caption is aligned or misaligned; and
(ii) the points are clustered around the diagonal, indicating that the model exhibits similar confidence levels when saying
‘Yes’ to both the positive and negative captions. Major takeaways are highlighted below:

• P-LLaVA has most of its points concentrated in the top-right quadrant, indicating a strong bias towards responding ‘Yes’
regardless of whether the caption is positive or negative, which also explains its near 0% StrictVLE accuracy.

• Owl-Con and Video-LLaVA are strongly clumped near the diagonal in the top-right quadrant (except for the Control Test):
indicating that they tend to respond ‘Yes’ and have similar entailment scores for both the positive and negative captions.
Owl-Con appears to be worse thanVideo-LLaVA with more points in the top-right quadrant.

• Between LLaVA-OneVision-7B (OV-7B) and LLaVA-OneVision-7B-Si (OV-7B-SI), we see that the points in OV-7B-SI
are more clustered near the diagonal while LLaVA-OneVision-7B is more diffused except for AgCref. This is expected
as it is hard for a model trained on single images to distinguish between the positive and the negative caption and nearly
impossible for the EvChr and AgCref. In contrast, both models perform well on the Control Test since the replacements
come from a totally different or random video, making it easier for the models to classify with sufficient confidence.

• For Qwen2-VL-7B (QVL-7B) except for Control Test, the points for all the other tests are concentrated in the top-right
corner while additionally being clustered near the diagonal for the EvChr. QVL-7B performs worse than OV-7B even
though both models are trained using the same base Qwen2 7B parameter LLM.

• Finally, on LLaVA-OneVision-72B, we see that many points are below the diagonal and would score correct on Clas-
sicVLE. However, roughly half of them (on average) are in the bottom right quadrant indicating difficulty of the best model
to predict ‘Yes’ for the positive caption and ‘No’ for the negative caption respectively.

A.2. Analyzing Entailment Scores for StrictVLE

Continuing from findings of Sec. 5.2 in the main paper, we analyze whether a model finds it easier to classify C+ or C− in
Tab. 7 for all tests. Each cell in the table reports two numbers: the first is the accuracy of positive captions, and the second is
the accuracy of negative captions when the positive caption is correct.

An interesting observation (as also noted in the main paper) is that as model size increases, the positive caption accuracy
decreases while the negative caption accuracy improves. This holds for both variants: OV-7B to OV-72B and QVL-7B to
QVL-72B, and indicates that small models are eager to say ‘Yes’ for both captions, while larger models reason better.

Although Qwen2-VL (QVL) models achieve higher accuracy for positive captions than LLaVA-OneVision (OV) models,
the negative caption accuracy is better for OV models. This indicates that QVL models are biased to say ‘Yes’ regardless of
the captions, whereas OV models reason better and are less inclined to respond ‘Yes’. For QVL, specifically for the EvChr
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Figure 4. Scatter plot of entailment scores e(V,C+) (x-axis) and e(V,C−) (y-axis) for all tests in VELOCITI. We visualize the scores
for several models indicated in the left margin. From top to bottom: P-LLaVA, OwlCon, Video-LLaVA, OV-7B-SI, OV-7B, QVL-7B, and
OV-72B. ClassicVLE calls a sample correct in the region below the diagonal (light green). Instead, StrictVLE requires the dots to lie in the
yellow bottom-right quadrant (dark green). Finally, samples whose points are above the diagonal are wrong for both VLE metrics (red).
The legend includes the actual number of points (please zoom in). This figure is best seen in color.

test, the positive caption accuracy is very high, but the negative caption accuracy is extremely low, indicating that the QVL
models are very poor at the temporal order reasoning.

While GPT-4o achieves comparatively lower accuracy on positive captions across all tests, it consistently achieves the
highest accuracy for negative captions, except in the EvChr test, where OV-72B performs best. Another surprising observation
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Model Ctrl Ag Ag Ag Act Act Act Ev AvgRand Bind Cref Adv Man Bind Chrono

OV-7B 83.0 / 98.3 84.2 / 67.3 82.0 / 40.1 97.1 / 8.2 86.3 / 34.4 80.6 / 37.9 81.9 / 44.5 89.0 / 34.2 85.9 / 38.1
OV-72B 79.8 / 99.3 81.6 / 78.1 79.5 / 57.1 87.0 / 44.4 80.6 / 41.1 77.9 / 37.5 78.2 / 57.6 78.3 / 59.4 80.4 / 53.6
QVL-7B 92.4 / 91.5 92.8 / 42.1 90.7 / 14.9 97.6 / 6.6 94.3 / 18.9 93.0 / 18.8 91.0 / 18.1 98.0 / 0.4 93.9 / 17.1

VELOCITI Subset
QVL-72B 84.0 / 98.4 85.3 / 65.6 84.0 / 34.9 77.3 / 45.7 84.0 / 35.7 86.7 / 27.7 80.7 / 43.8 98.7 / 1.4 85.2 / 36.4
OV-72B 81.3 / 100. 79.3 / 80.7 80.7 / 57.9 86.7 / 47.7 79.3 / 38.7 82.0 / 39.8 74.7 / 61.6 80.7 / 62.0 80.5 / 55.5
Gem-1.5F 93.9 / 97.8 93.3 / 60.4 93.9 / 25.4 100. / 4.7 93.3 / 35.3 95.3 / 22.7 95.3 / 26.2 99.3 / 2.8 95.8 / 25.4
Gem-1.5P 75.0 / 99.1 72.3 / 83.2 75.5 / 65.8 71.3 / 51.4 72.5 / 72.2 79.6 / 54.7 75.5 / 65.8 71.4 / 70.5 74.0 / 66.2
GPT-4o 63.3 / 100.0 58.0 / 94.3 64.0 / 69.8 62.0 / 65.6 65.8 / 83.7 65.3 / 64.3 64.7 / 83.5 71.8 / 44.9 64.5 / 72.3

Table 7. StrictVLE Analysis for various models on all tests in VELOCITI. Each cell of the table has two numbers. The first is the fraction
of correctly classified positive captions. The second is the fraction of correctly classified negative captions, among samples whose positive
caption is classified correctly. Refer to Appendix A.2 for a description.

Model Ag Ag Ag Act Act Act Ev AvgRand Bind Cref Adv Man Bind Chr

OV-72B
w/o CoT 64.0 46.7 41.3 30.7 32.7 46.0 50.0 44.5
CoT 40.0 28.0 19.3 26.7 28.0 32.0 30.0 29.1

Gemini-1.5 Pro
w/o CoT 60.1 49.7 36.7 52.3 43.5 52.3 50.3 49.3
CoT 46.6 32.8 45.5 46.2 46.8 46.4 29.2 41.9

Table 8. Average score on VELOCITI subset: without and with CoT

is that Gemini-1.5-Flash (Gem-1.5F), despite achieving the best accuracy for positive captions, performs worse than all other
models for negative captions. This suggests that Gemini-1.5-Flash may also be responding with ‘Yes’ too often. Additionally,
both Gemini-1.5-Flash and Qwen2-VL-72B exhibit very low accuracy for negative captions in the AgCref and EvChr tests.

Finally, in Sec. 5.1 of the main paper, we highlight that AgRand > AgBind > AgCref – this trend is clearly observed in the
negative caption accuracies presented in the Table, and explains the poor performance of some models on Agent Coreference
Test (single-digit accuracies on negative captions).

A.3. Impact of Chain-of-Thought prompting
We experimented with Chain-of-Thought (CoT) prompting for Gemini-1.5-Pro and OV-72B (prompt in Fig. 5). As shown in
Tab. 8, the performance reduced in both cases indicating that models are unable to reason in a step-by-step manner for such
statements.

A.4. Impact of Increased Frame Rate
We explore increasing the video sampling rate to observe if more visual information aids the model to solve the tasks in
VELOCITI to a greater extent. For this, we sample frames at 8 fps, amounting to 80 frames for a 10 s video. From Tab. 9 we
observe that the smaller model (OV-7B) benefits with more frames resulting in improvement across most tests, an average
of +3.5%. Interestingly, its larger counterpart (OV-72B) performs worse with significant drops on action tests, ActAdv and
ActMan, (9-11%). This may be due to the large context size that the model is not trained for. Both models perform better on
EvChr task.

A.5. Multiple-Choice (MC) Evaluation: Results on each test
In the MC setup, we provide the video along with both captions to the Video-LLM and ask it to pick the correct one (A or
B). Results on the control and average over the benchmark were discussed in Sec. 5.4 of the main paper.

Now, we report results across all the tests in Tab. 10. For both OV and QVL models, we see that the smaller variants
have a higher choice bias and tend to prefer option B. While this bias reduces in the larger variants, it is still high. Also, as
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System Prompt

You are an AI assistant specializing in analyzing movie clips to verify captions using a Chain of Thought (CoT) approach. Given
a movie clip and a corresponding caption, your task is to determine whether the caption accurately describes the events in the clip.

A caption is considered accurate (“Yes”) if *all applicable* of the following criteria are met:
1. **Actor/Doer**: The person or entity performing the action is correctly identified.
2. **Attributes**: The characteristics of the actors/doers and the action itself are accurately described (e.g. clothing color, size,

speed).
3. **Instruments/Objects**: Any tools, objects, or instruments used in the action are correctly identified.
4. **Receiver/Patient**: The target or recipient of the action is correctly identified.
5. **Relationships**: The relationships between the entities involved (e.g., “standing next to”,“holding”) are accurately depicted.
6. **Manner**: The way in which the action is performed (e.g., “quickly”, “slowly”, “angrily”) is accurately described.
7. **Location**: The setting or location of the scene is correctly identified.
8. **Clarity**: There is sufficient visual information in the clip to confidently assess the correctness of the caption.
9. **Event Order**: If the caption suggests a specific order of events, then the video should have events happening in the

suggested order.
If any of the above criteria cannot be verified due to a lack of visuals, the caption should not be considered accurate.
Note that the caption is designed to represent a part of the video clip and may not explain all the events in the clip.

Follow these steps:
1. **Analysis:** Carefully examine the provided movie clip.
2. **Reasoning:** Analyze the caption in relation to the clip. Break down the caption into smaller parts and determine if each
part meets the accuracy criteria listed above. Detail your reasoning process within ‘<thinking>‘ tags.
3. **Evaluation:** Based on your reasoning, evaluate the overall accuracy of the caption. If there is insufficient information
in the clip to definitively confirm or deny the caption based on one or more criteria, explain what information is missing within
‘<reflection>‘ tags.
4. **Conclusion:** Provide a clear “Yes” or “No” answer within ‘<output>‘ tags.

Use the following format:
<thinking>
[Detailed step-by-step reasoning, referencing the accuracy criteria. This is your internal thought process.]
</thinking>

<reflection>
[Reflections on your reasoning, including any uncertainties or missing information and which criteria could not be verified. If the
caption cannot be definitively verified, explain why.]
</reflection>

<output>
[ Yes or No ]
</output>
Evaluate the following caption for the accompanying movie clip: {caption}

Figure 5. CoT evaluation prompt.

expected, the accuracy of A∧B improves for larger variants. We observe that harder tests (e.g. AgBind vs. AgRand) tend to
have a higher bias. Among all the tests, the EvChr test has the highest bias and the lowest accuracy across all the models.

Both Gemini-1.5-Flash and GPT-4o show considerable bias. Interestingly, GPT-4o seems to prefer option A, while Gem-
1.5F prefers option B.

A.6. Human Evaluation
Human evaluations were conducted in a standardized manner to establish human performance in the various tasks presented
in VELOCITI. The evaluations included 3 volunteers who were assigned the subset (150 samples for each of the 7 tests). This
amounts to a total of 2,100 video-caption pairs (7 tests × 150 samples × 2 captions). We use the Label Studio [43] annotation
platform for this task. To ensure fair evaluations, humans are first shown a set of instructions to ensure consistency across
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Model Ag Ag Ag Act Act Act Ev AvgRand Bind Cref Adv Man Bind Chr

OV-7B
1fps 56.7 32.9 8.0 29.7 30.6 36.4 30.5 32.1
8fps 59.3 34.7 6.0 34.7 38.3 33.3 42.0 35.6

OV-72B
1fps 64.7 46.0 36.7 42.0 40.7 46.0 46.0 46.0
8fps 63.7 45.4 38.6 33.1 29.3 45.1 46.5 43.1

Table 9. Higher frame rate sampling results.

Model AgRand AgBind AgCref ActAdv ActMan ActBind EvChr
Bias A∧B Bias A∧B Bias A∧B Bias A∧B Bias A∧B Bias A∧B Bias A∧B

QVL-7B 24.2 74.1 42.2 40.8 37.5 33.6 49.6 42.9 51.5 41.5 40.0 36.1 98.5 0.7
OV-7B 41.6 58.1 81.6 17.1 59.9 26.0 71.3 27.6 68.0 30.1 70.0 24.2 81.9 15.9
OV-72B 3.1 94.8 10.9 72.9 8.0 69.0 8.9 79.7 11.1 77.5 14.8 62.5 15.1 75.9

VELOCITI Subset
QVL-72B 6.0 88.7 3.3 64.7 2.7 60.0 6.7 68.0 2.0 74.0 8.6 54.7 -11.3 47.3
OV-72B 2.7 95.3 11.4 75.3 11.3 67.3 9.3 76.7 7.3 77.3 16.0 61.3 16.7 72.0
Gem-1.5F -2.8 94.4 -12.6 73.4 8.0 61.3 -12.9 72.8 -14.3 66.0 0.7 64.8 -49.6 41.4
GPT-4o 4.1 92.5 4.7 79.3 3.4 60.8 -10.1 77.0 -7.0 74.1 2.0 70.7 -60.8 25.7

Table 10. MC evaluation results on all tests. Along with the video, we provide the model with both captions A and B and ask it to pick the
better-aligned one. Bias is the accuracy difference between B and A options and should be close to 0. A∧B involves evaluating the model
twice, once with the correct caption as A and again as B. A sample is deemed correct when it picks the correct choice in both cases. While
a model’s decision should be unaffected by the order in which choices are presented, a considerable bias is observed.

participants. Next, we randomize and present non-overlapping video-caption pairs. An example of the annotation dashboard
is shown in Fig. 6.

A.7. Qualitative Analysis
We present examples from the OV-72B model on our benchmark for three following cases: (i) Samples satisfying the
StrictVLE criteria (e(V,C+) > 0.5 ∧ e(V,C−) < 0.5) are shown in Fig. 7; (ii) Samples only satisfying the ClassicVLE
condition (e(V,C+) > e(V,C−)), but failing on the StrictVLE condition are in Fig. 8. (iii) Finally, samples classified incor-
rectly according to ClassicVLE (e(V,C+) < e(V,C−)), are presented in Fig. 9. Note these are also incorrect for StrictVLE.
In each case, we show 10 frames from the video, the positive and negative captions, and the corresponding entailment scores.
The test name is indicated in the bottom left.
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Instructions
These instructions can be opened anytime by clicking ‘i’ on the bottom left of the panel.
You are given a video and a caption for each task.
Please watch the 10s video and select ‘Yes’ if the given video entails the caption, otherwise select ‘No’

§ The caption should provide and accurate description of the events in the video.
§ The caption should correctly identify the entities (humans, animals, objects, etc.) and the relationships (actions) between them.

Note
• Ignore any spelling/grammatical errors, if any.
• You may watch the video multiple times, if needed.

Binary-Choice, Single Select Option

Revisit Annotation Instructions

Figure 6. Human Evaluation Dashboard. Instructions and interface for human evaluation for the entailment task.
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At a police station, a policeman is hoisting a man in a 
green jacket up

Outside a home, a dog with light fur is running straight 
between two houses

e(V, C+) = 0.944Control e(V, C-) = 0.000

Posi tiv e Caption Neg ativ e Cap tio n

At the entrance, the man in a white suit is pushing the 
revolving door ahead

At the entrance, the woman with dark hair is pushing the 
revolving door ahead

e(V, C+) = 0.841Agent Random e(V, C-) = 0.468

Posi tiv e Caption Neg ativ e Cap tio n

A man with short hair is driving his car down the 
highway while talking on the phone

Inside the car, the woman is driving down the highway 
while talking on the phone

e(V, C+) = 0.603Agent Binding e(V, C-) = 0.055

Posi tiv e Caption Neg ativ e Cap tio n

The person who is slowly covering her ears is also the 
one who is listening interestingly to something

The person who is slowly covering her ears is also the 
one who is slowly walking away

e(V, C+) = 0.640Agent Coreference e(V, C-) = 0.268

Posi tiv e Caption Neg ativ e Cap tio n

Inside an office, the man in sheriff uniform is thinking to 
himself, fondling the envelope as he does so

Inside an office, a man in a sheriff uniform is shouting 
while fondling the envelope

e(V, C+) = 0.885Action Adversarial e(V, C-) = 0.075

Posi tiv e Caption Neg ativ e Cap tio n

Outside, a mom and kid are walking away from a car 
together

Outside, the mom and kid walk away from the car, one 
after the other, separately

e(V, C+) = 0.743Action Manner e(V, C-) = 0.124

Positive Caption Negative Caption

At a table, the lady in blue is writing something By a table, the lady in blue is slowly walking away

e(V, C+) = 0.987Action Binding e(V, C-) = 0.060

Posi tiv e Caption Neg ativ e Cap tio n

First, In a restaurant, the girl in sunglasses is startled by 
a dog. Then, In a restaurant, black shirt guy releases the 

girl in sunglasses

First, In a restaurant, black shirt guy releases the girl in 
sunglasses. Then, In a restaurant, the girl in sunglasses 

is startled by a dog
e(V, C+) = 0.798Event Chronology e(V, C-) = 0.480

Posi tiv e Caption Neg ativ e Cap tio n

Figure 7. VELOCITI samples where OV-72B classifies the sample correctly based on the StrictVLE criteria. In the Agent Binding example,
the scene visualizes a man and a woman talking on the phone while the man drives, C− changes the entity of the driver. The model is
confidently able to identify that it is the man who is driving and not the woman, as the positive caption scores (0.603) much above the
negative caption (0.055) while satisfying the StrictVLE criteria. Similarly, in Agent Coreference, the scene describes two women - a
woman in blue who’s sitting and puts on her headphones as she begins to write, while the woman in white looks at her and eventually
walks away. The C− interchanges the roles of these two women, and the model correctly scores the positive caption (0.640) higher than
the negative caption (0.268).
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In an apartment, a woman bends down to speak to a 
duck

At the side of the house, a woman knocks down items on 
the counter with her hand

e(V, C+) = 0.734Control e(V, C-) = 0.527

Posi tiv e Caption Neg ativ e Cap tio n

A blonde woman is holding a painting out on a wall to 
inspect it

On a wall, the man in a jumpsuit is holding a painting 
out to inspect it

e(V, C+) = 0.637Agent Random e(V, C-) = 0.519

Posi tiv e Caption Neg ativ e Cap tio n

Inside a car, a man in a red flannel shirt is coughing
Inside the car, the man in the green flannel shirt is 

coughing
e(V, C+) = 0.911Agent Binding e(V, C-) = 0.5

Posi tiv e Caption Neg ativ e Cap tio n

The person who is screaming in a scared manner is also 
the one who is backing away

The person who is screaming in a scared manner is also 
the one who is wielding a knife

e(V, C+) = 0.861Agent Coreference e(V, C-) = 0.661

Posi tiv e Caption Neg ativ e Cap tio n

In the kitchen, the man is straightening out the 
silverware with his hand

In a kitchen, a man is dropping the silverware

e(V, C+) = 0.679Action Adversarial e(V, C-) = 0.569

Posi tiv e Caption Neg ativ e Cap tio n

In the kitchen, a man in a blue shirt is pushing a man in 
a black jacket back angrily.

In the kitchen, the man in a blue shirt gently pushes the 
man in a black jacket back

e(V, C+) = 0.969Action Manner e(V, C-) = 0.721

Positive Caption Negative Caption

In a restaurant, the man in a black plaid jacket is 
cowering.

In a restaurant, a man in a black plaid jacket is talking 
aggressively to the people.

e(V, C+) = 0.870Action Binding e(V, C-) = 0.531

Posi tiv e Caption Neg ativ e Cap tio n

First, In a bar, a ghost wearing glasses is chugging 
alcohol from a glass. Then, In a bar, the ghost in glasses 

is removing his hat from his head

First, In a bar, the ghost in glasses is removing his hat 
from his head. Then, In a bar, a ghost wearing glasses is 

chugging alcohol from a glass

e(V, C+) = 0.845Event Chronology e(V, C-) = 0.644

Posi tiv e Caption Neg ativ e Cap tio n

Figure 8. VELOCITI samples where OV-72B classifies the sample correctly based on the ClassicVLE criteria, but not on StrictVLE. In
the Action Binding example, a man in a black plaid jacket is cowering. The negative caption (C−) changes the action from “cowering” to
“talking aggressively.” Although the model assigns a high entailment score of 0.870 to the positive caption (C+), it also assigns a relatively
high score of 0.531 to the negative caption (C−). While this satisfies the ClassicVLE criterion, it fails to meet the StrictVLE criterion.
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Outside a building, a woman is reaching down with her 
hand to grab a bag

In a warehouse, the boy is approaching the man laying 
on the bed with caution

e(V, C+) = 0.144Control e(V, C-) = 0.162

Posi tiv e Caption Neg ativ e Cap tio n

Outside a mansion, a woman opens the door to see 
who's there

Outside the mansion, the bald man is opening the door 
to see who's there

e(V, C+) = 0.091Agent Random e(V, C-) = 0.668

Posi tiv e Caption Neg ativ e Cap tio n

Inside a restaurant, the woman in a black shirt exits the 
kitchen

Inside the restaurant, the man in a brown jacket is 
exiting the kitchen

e(V, C+) = 0.746Agent Binding e(V, C-) = 0.779

Posi tiv e Caption Neg ativ e Cap tio n

The person who is aiding the man in a yellow shirt is also 
the one who is removing his stethoscope from his ears

The person who is aiding the man in a yellow shirt is also 
the one who is covering his mouth, looking distraught

e(V, C+) = 0.503Agent Coreference e(V, C-) = 0.554

Posi tiv e Caption Neg ativ e Cap tio n

In a bedroom, the dog is walking forward to get out from 
under the covers

In a bedroom, the dog is settling into the covers

e(V, C+) = 0.787Action Adversarial e(V, C-) = 0.933

Posi tiv e Caption Neg ativ e Cap tio n

At the back seat of a car, the blonde woman is picking up 
a bag with her left hand

The blonde woman picks up the bag from the back seat 
of the car with both hands

e(V, C+) = 0.647Action Manner e(V, C-) = 0.888

Positive Caption Negative Caption

In a backyard, the man wearing white pants is watching 
the man wearing a grey tank top as he holds food in his 

hand

In a backyard, the man wearing white pants is chopping 
wood

e(V, C+) = 0.074Action Binding e(V, C-) = 0.166

Posi tiv e Caption Neg ativ e Cap tio n

First, A man in a green jacket is throwing an upper cut 
punch to a policeman's face. Then, At a police station, a 

policeman is scowling at a man in a green jacket

First, At a police station, a policeman is scowling at a 
man in a green jacket. Then, A man in a green jacket is 

throwing an upper cut punch to a policeman's face

e(V, C+) = 0.081Event Chronology e(V, C-) = 0.134

Posi tiv e Caption Neg ativ e Cap tio n

Figure 9. VELOCITI samples classified incorrectly even for ClassicVLE. In Agent Random, the scene describes a woman opening the
door for a man and hugging him. C− replaces the person opening the door with a random person (a bald man), and the model makes
a mistake - scoring the negative caption (0.668) considerably more than the positive caption (0.091). Action Manner has a video of two
women driving into the scene where a blonde woman picks up a bag from the backseat using her left arm. The C− modifies how the bag is
picked up - with both hands, which is clearly incorrect. However, the model makes a mistake and prefers the negative caption (0.888) over
the positive caption (0.647).
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B. Benchmark Creation and Details
In this section, we provide details about our benchmark. In particular, we share all prompts used for creating positive
captions and various tests (Appendix B.1, Appendix B.2), share our process on creating a benchmark subset for evaluating
closed models (Appendix B.3), provide benchmark statistics (Appendix B.4), discuss the strategy used to manually verify
and clean all the tests (Appendix B.5), and finally provide some compute and runtime details that are required to evaluate on
our benchmark (Appendix B.6).

B.1. Prompt for Converting SRL Dictionary to a Positive Caption
The prompt for generating the positive caption given an SRL dictionary is shown in Fig. 10. This refers to the discussion
from Sec. 3.1 in the main paper. We use a two-stage strategy that first inserts all elements of the SRL dictionary in a sentence
and then refines it for proper grammatical structure.

B.2. Prompts for Creating Test Samples
The prompt above (Fig. 10) helps create the positive caption for multiple tests. Specifically, Agent Random Test, Agent
Binding Test, Action Adversarial Test, Action Manner Test, and Action Binding Test, all use the above strategy, while Agent
Coreference Test and Event Chronology Test adopt templates that are filled in with the complete (or partial) positive captions.

The negative prompts for Agent Random Test, Agent Binding Test, and Action Binding Test are also created in the same

System Prompt
Using the provided dictionary containing verb and argument-role pairs in the style of PropBank, follow these steps to generate
two captions

Naive Caption: Generate a caption that faithfully reflects all details from the dictionary without adding or omitting any
information. Ensure that every argument detail is accurately included in the Naive Caption.

Fluent Caption: If the Naive Caption is already fluent and naturally phrased, directly copy it to the Fluent Caption. If necessary,
refine the Naive Caption for improved language fluency while strictly maintaining all original details and arguments from the
dictionary.

Please proceed with generating the Naive Caption first, ensuring it remains comprehensive and accurate based on the provided
dictionary entries. Then, if adjustments are needed to enhance fluency, refine the Naive Caption into the Fluent Caption while
ensuring that no details are overlooked or omitted.

Few Shot Example 1

{'Verb':'walk (walk)',
'Arg0 (walker)':'man in suit',
'ArgM (direction)':'into room',
'ArgM (manner)':'slowly',
'Scene of the Event':'Warehouse'}

Naive Caption: In a warehouse, a man in suit is walking slowly into the room.
Fluent Caption: In a warehouse, a man in suit is walking slowly into the room.

Few Shot example 2

{'Verb':'burn (cause to be on fire)',
'Arg0 (thing burning)':'Wreckage',
'ArgM (location)':'Wreckage'}

Naive Caption: The wreckage is burning on the wreckage.
Fluent Caption: The wreckage is burning.

Figure 10. Prompt to generate the positive caption given an SRL dictionary.
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System Prompt
Your objective is to generate a contradiction caption using the provided PropBank style “input dictionary” and the ‘Verb’ labelled
as ‘source’ based on a specific “misalignment scenario” called “verb misalignment”. In this scenario, you should suggest an
alternative contradictory value for the “source” and label it as “target”.

Key Requirements
1. “naive caption + verb misalignment”: should be plausible and could theoretically occur in real life.
2. The “fluent caption + verb misalignment”: If the “naive caption + verb misalignment” is already fluent and naturally phrased,

directly copy it to the “fluent caption + verb misalignment”. If necessary, refine the “naive caption + verb misalignment” for
improved language fluency while strictly maintaining all original details and arguments from the dictionary

Guidelines
1. The “target” should introduce a contradiction when compared to “source”, without being a mere negation.
2. The “naive caption + verb misalignment” should be clearly distinguishable from the scene described by the “input dictionary”

and should be visually distinguishable.
3. Your replacements should be creative yet reasonable.
4. If adjustments are needed to enhance fluency, refine the “naive caption + verb misalignment” into the “fluent caption + verb

misalignment” while ensuring that no details are overlooked or omitted.

Few Shot Example 1

{'Verb': 'speak (speak)'},
'Arg0 (talker)': 'a man with dark hair',
'Arg2 (hearer)': 'old man'
'ArgM (manner)': 'greeting him',
'Scene of the Event': 'warehouse'}

Target: Ignore
Naive Caption: On the front porch, a man with dark hair is ignoring an old man, greeting him.
Fluent Caption: On the front porch, a man with dark hair is ignoring an old man.

Few Shot Example 2

{'Verb': 'open (open)',
'Arg0 (opener)': 'woman with long hair',
'Arg1 (thing opening)': 'the front door',
'ArgM (manner)': 'slowly',
'Scene of the Event': 'inside a house'}

Target: Close
Naive Caption: Inside a house, a woman with long hair is closing the front door slowly.
Fluent Caption: Inside a house, a woman with long hair is closing the front door slowly.

Figure 11. Prompt to generate the negative caption for Action Adversarial Test.

manner as above by first replacing the specific Verb or Arg0 in the dictionary followed by strategy above.

Finally, the prompt for generating the Action Adversarial Test negative caption is shown in Fig. 11 and for Action Manner
Test negative captions in Fig. 12. Both involve generating a target replacement that seems reasonable followed by converting
the SRL dictionary into a caption.

B.3. Subset Creation

We created a subset of VELOCITI with 150 samples in each test. The subset was curated through random tries such that the
StrictVLE performance of the OV-72B model was comparable to the full set, allowing for fair comparisons.
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System Prompt
Your objective is to generate a contradiction caption using the provided PropBank style “input dictionary” and the ‘ArgM
(manner)’ labeled as ‘source’ based on a specific “misalignment scenario” called “manner misalignment”. In this scenario, you
should suggest an alternative contradictory value for the “source” and label it as “target”

Key Requirements
1. “naive caption + manner misalignment”: should be plausible and could theoretically occur in real life.
2. The “fluent caption + manner misalignment”: If the “naive caption + manner misalignment” is already fluent and naturally

phrased, directly copy it to the “fluent caption + manner misalignment”. If necessary, refine the “naive caption + manner
misalignment” for improved language fluency while strictly maintaining all original details and arguments from the dictionary.

Guidelines
1. The “target” should introduce a contradiction when compared to “source”, without being a mere negation.
2. The “naive caption + manner misalignment” should be clearly distinguishable from the scene described by the “input dictio-

nary.”
3. Your replacements should be creative yet reasonable.
4. If adjustments are needed to enhance fluency, refine the “naive caption + manner misalignment” into the “fluent caption +

manner misalignment” while ensuring that no details are overlooked or omitted

Few Shot Example 1

{'Verb': 'look (vision)',
'Arg0 (looker)': 'a man wearing all black',
'Arg1 (thing looked at or for or on)': 'a building'
'ArgM (direction)': 'infront of him',
'ArgM (manner)': 'breathing heavily',
'Scene of the Event': 'warehouse'}

Target: Whistling
Naive Caption: Outside, a man wearing all black is looking in front of him at a building while whistling.
Fluent Caption: Outside, a man wearing all black is looking at a building in front of him while whistling.

Few Shot Example 2

{'Verb': 'burn (cause to be on fire)',
'Arg0 (agent, entity causing something to be suspended)': 'climbing ropes',
'Arg1 (thing suspended)': 'woman in pink shirt',
'Arg2 (suspended from)': 'climbing ropes',
'ArgM (location)': 'on the face of the rocks',
'ArgM (manner)': 'precariously'}

Target: Securely
Naive Caption: climbing ropes are hanging the woman in a pink shirt securely on the face of the rocks.
Fluent Caption: The woman in a pink shirt is hanging on the face of the rocks from the climbing ropes securely.

Figure 12. Prompt to generate the negative caption for Action Manner Test.

B.4. Benchmark Statistics

We present some statistics highlighting the diversity and nuance in the VELOCITI benchmark. Since this benchmark is a
subset of VidSitu [39], we observe similar trends as presented in their work.

Videos in our benchmark are complex as there are multiple agents performing various actions. Actions in VELOCITI
are fine-grained. We analyze the set using Gemini-1.5-Pro which broadly categorizes actions into 6 groups: physical ac-
tion and movement, communication and expression, manipulation and physical interaction, perception and mental activity,
physiological actions, and general activities and states. In general, models struggle slightly more with physiological actions
(performance ∼10% lower) as compared to the average. Some verbs from these categories are shown in Fig. 13, note that the
size of the word here does not correspond to its frequency in the dataset.
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Figure 13. Word-cloud of some actions in VELOCITI in different action categories as suggested by Gemini-1.5 Pro. Word size does not
correspond to frequency and is assigned randomly for visualization.

Fig. 14a shows that around 87% of the videos contain 4 or more unique verbs, and Fig. 14b shows that about 85%
of videos contain 2 or more unique agents (people performing actions). We evaluate binding by leveraging the fact that one
agent can perform multiple actions in the video, and the richness of the SRL annotations ensure that these events are described
adequately. In Fig. 14c, we observe that over 70% of the events contain 4 or more SRLs (e.g. agent, patient, manner, etc.),
indicating the detail-oriented nature of the annotations. Finally, Fig. 14d shows that over 72% of agents occur twice or more
in their corresponding video annotation. These agents would likely be performing two different actions, and we utilize this
to create two references to the same agent in tests such as Agent Coreference Test.

B.5. Quality Control
Test Videos # Samples Subset

Ctrl 850 2635 150

AgRand 588 873 150
AgBind 615 1459 150
AgCref 183 339 150
ActAdv 355 438 150
ActMan 378 458 150
ActBind 540 1356 150
EvChr 521 1234 150

Table 11. Number of videos and samples
across different tests in VELOCITI.

To ensure that the data generated from the automated pipelines discussed earlier
are correct, we filtered the data samples manually, following specific guidelines
discussed in this section. The final count of the data samples is reported in Tab. 11.
SRL dictionary to caption. The instructions and the interface for evaluating cap-
tion quality is described in Fig. 17. For each sample, three choices were provided:
positive if the caption is correct, negative if the caption is wrong, and neutral if
the caption cannot be negative but contains some ambiguity due to which it could
not be considered positive. Out of the 380 samples that were manually verified,
356 were marked as positive, 21 were neutral, and 3 were negative. The number
of positive and neutral samples was high (99.2%).
All tests. For each sample of all tests, we perform a meticulous cleanup. The
instructions and the interface are presented in Fig. 18. For each video, the green
bar contains a positive caption, and the red bar contains a negative caption. Un-
like human evaluations, the positive and the negative captions are known while
filtering. Only the samples for which both positive and negative captions are deemed appropriate are retained.

B.6. Runtime and Compute Details
While benchmarks on long videos are interesting [13, 15], VELOCITI proposes important challenges that every Video-LLM
needs to solve. The short 10 s videos enable fast evaluation and make the benchmark accessible: running OV-7B on all tests
(except the Control Test) takes about 2.6 hours on a single RTX 4090 GPU (24 GB).

C. Model Evaluation Prompts
We present the prompts used for all open Video-LLMs, Gemini-1.5-Flash, and GPT-4o. The entailment and MC evaluation
prompts for open models, such as Qwen2-VL, LLaVA-OneVision, and Gemini-1.5-Flash are provided in Fig. 15. Prompts
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Figure 14. Statistics of various features of the VELOCITI benchmark. (a) and (b) show the distribution of verbs and agents per video,
respectively. (c) shows the density of SRL annotations per event; and (d) shows the distribution of agent coreference lengths. Even with
short videos, the complexity of the VidSitu annotations make the task challenging.

for GPT-4o are shown in Fig. 16. Note that GPT-4o is provided the explicit instruction of being provided frames of a video,
while others are directly given a video.

Although some closed models have started optionally sharing logits, they are restricted to a limited top-K set, e.g. top-20
for GPT-4o. Hence, the logits for the ‘Yes’ and ‘No’ tokens may not always be included in these top-k values. To ensure
the evaluation of closed models covers maximum data samples, the prompts were slightly modified to explicitly include the
instruction: “Just answer with either Yes or No.”.

Entailment Prompt
Carefully watch the video and pay attention to the sequence of events, the details and actions of persons.
Here is a caption that describes the video: Caption
Based on your observation, does the given video entail the caption?

MC Prompt
Carefully watch the video and pay attention to the sequence of events, the details and actions of persons.
Here are two captions that describe the video.
A) Caption1

B) Caption2

Based on your observation, select the caption that best describes the video.
Just print either A or B.

Figure 15. Prompts for Open Video-LLMs and Gemini-1.5-Flash and Gemini-1.5-Pro. Top: Entailment evaluation prompt. Bottom:
Multiple-choice evaluation prompt.
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Entailment Prompt
You are given frames sampled sequentially from a video. Carefully watch the video frames and pay attention to the sequence of
events, the details and actions of persons.
Here is a caption that describes the video: Caption
Based on your observation, does the given video entail the caption?
Just answer with either Yes or No.

MC Prompt
You are given frames sampled sequentially from a video. Carefully watch the video frames and pay attention to the sequence of
events, the details and actions of persons.
Here are two captions that describe the video.
A) Caption1

B) Caption2

Based on your observation, select the caption that best describes the video.
Just print either A or B.

Figure 16. Prompts for GPT-4o. Top: Entailment evaluation prompt. Bottom: Multiple-choice evaluation prompt.

D. Limitations
We discuss some limitations of our work.
1. One of the shortcomings is the limited ability to scale the benchmark. VELOCITI relies on SRLs, which are obtained

from careful (and costly) human annotations [39]. Further, we use LLMs to generate captions from the SRL dictionary
and to create several tests (Appendix B.1, Appendix B.2). However, LLMs are prone to hallucinations, and hence, we do
a round of human verification to confirm that the captions are appropriate. Thus, costly human intervention is required
from SRL curation to verification of individual test samples.

2. VELOCITI is not intended as a one-stop benchmark to evaluate all abilities of Video-LLMs. Instead, it evaluates Video-
LLMs for facets of compositionality, a fundamental aspect of visio-linguistic reasoning. Also, as VELOCITI is derived
from VidSitu, a person-centric dataset, our benchmark focuses on people and their actions/interactions.

3. Lastly, our proposed StrictVLE metric cannot be used to evaluate contrastive models, as these models do not provide a
direct ‘Yes’ probability. When the alignment score is used as a proxy to the entailment score (similar to [25]), we show that
contrastive CLIP-based models do not perform well even with ClassicVLE and are therefore unlikely to be competitive at
a stricter entailment.
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Instructions
These instruction can be opened anytime by clicking 'i' on the bottom left of the panel
Your objective is to mark whether the provided positive caption is an “accurate” description 
of the dictionary contents.

What does an “accurate”, positive-caption mean?

• The generated caption must include all ideas inferred from the dictionary, even though it 
may miss some exact phrases.

• Ideally, the caption should include everything from the dictionary, but if the caption 
misses some value of an argument (for example, direction), then the caption is correct 
only if the missing value is implied from the caption.

• It needs to be grammatically correct, even though it may sound uncommon in 
conversational English.

Positive, Neutral, Negative
• Select positive, when the caption clearly meets the above requirements.
• Select neutral, when the caption partially meets the above requirement (not fully correct).
• Select negative, when the caption does NOT meet the above requirements.

Other Rules
• You are only required to look at the provided dictionary, and not the video for this task.
• Captions should NOT be marked incorrect because of noisy annotations in the dictionary.
• Captions should NOT be marked incorrect because of abrupt capitalization inside the 

sentence.

Figure 17. Instructions and interface to verify the quality of captions generated from LLaMA-3-70B.
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Instructions
These instructions can be opened anytime by clicking ‘i’ on the bottom left of the panel
You are given 1 video and 2 captions for each task, one correct caption and a negative 
caption.
Please watch the video and verify if the positive and the negative captions are “logically 
correct”.

What is a “logically-correct”, positive caption?

• Caption that provides a correct description of the event in the video.
• It should correctly identify the entities (humans, animals, objects, etc.) and the 

relationships (action) between them.
• Spelling/grammatical errors, if any, shall be ignored.

What is “logically-correct”, negative caption?

• Caption that provides an incorrect description of events in the video.

Note
• You may watch the video multiple times, if required.
• Careful and precise judgement is requirement, as point-of-difference between the positive 

and the negative caption, may be subtle.

Figure 18. Data cleaning instruction for all the tests.
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