
CHART-Info 2024: A dataset for Chart Analysis
and Recognition

Kenny Davila1[0000−0001−6308−7113], Rupak Lazarus2[0009−0008−9482−3230], Fei
Xu3[0000−0002−9353−9528], Nicole Rodŕıguez Alcántara4[0000−0002−4405−7063],

Srirangaraj Setlur3[0000−0002−7118−9280], Venu
Govindaraju3[0000−0002−5318−7409], Ajoy Mondal2[0000−0002−4808−8860], and C.

V. Jawahar2[0000−0001−6767−7057]

1 School of Computing, DePaul University, Chicago IL 60604, USA
kdavila@depaul.edu

2 International Institute of Information Technology, Hyderabad, India
rupak.lazarus@research.iiit.ac.in, {ajoy.mondal,jawahar}@iiit.ac.in

3 CSE, University at Buffalo, Buffalo NY 14260, USA
{fxu3,setlur,govind}@buffalo.edu

4 Facultad de Ingenieria, Universidad Tecnológica Centroamericana, Honduras
nicole.rodriguez@unitec.edu

Abstract. Charts are tools for data communication used in a wide range
of documents. Recently, the pattern recognition community has shown
interest in developing methods for automatically processing charts found
in the wild. Following previous efforts on ICPR’s CHART-Infographics
competitions, here we propose a newer, larger dataset and benchmark for
analyzing and recognizing charts. Inspired by the steps required to make
sense of a chart image, the benchmark is divided into 7 different tasks:
chart image classification, chart text detection and recognition, text role
classification, axis analysis, legend analysis, data extraction, and end-to-
end data extraction. We also show the performance of different baselines
for the first five tasks. We expect that the increased scale of the proposed
dataset will enable the development of better chart recognition systems.

Keywords: Charts · Dataset · Graphic Recognition.

1 Introduction

Charts are tools for data communication used in a wide range of documents. The
pattern recognition community has displayed a significant interest in methods
for analyzing and recognizing charts in the wild [8]. There are rules and regular
patterns that define how data can be converted into charts of different types.
Yet, current models still struggle with complex graphics, especially when these
do not adhere strictly to these rules and conventions. In contrast, humans can
still successfully interpret the data encoded in these images.

Recent years have seen the development of very deep networks which can
solve a variety of tasks as long as they are trained with enough data. For chart

2 Davila et al.

recognition, most available large-scale datasets are synthetic, often created using
an artificial process to generate charts based on data from real sources [10,32].
However, users can employ many tools to create charts with diverse visual styles.
Often, they do not just convert data tables arbitrarily into charts, but instead
use domain knowledge to choose appropriate chart types and conventions and
carefully communicate their message [8]. Therefore, using a single tool to create
large synthetic datasets does little to capture the diversity of charts in the wild.

Large-scale datasets are also needed to evaluate chart recognition systems.
The CHART-Infographics competitions [10,9,11] were proposed with the goal
of becoming the go-to chart recognition benchmark. Earlier editions included
synthetic datasets, but systems trained only on synthetic charts performed very
poorly on real charts seen in documents in the wild. Therefore, recent editions
of CHART-Info have focused on providing large chart datasets based on real
charts. This work presents the next iteration of this effort, the CHART-Info
2024 dataset, which provides a major increase in the amount of training data
facilitating training of larger models. At the same time, we provide a brand new
test set with non-disjoint splits to evaluate each task using far more images.

CHART-Info defines six functional tasks critical to the chart recognition pro-
cess: Chart Image Classification (Task 1), Text Detection and Recognition (Task
2), Text Role Classification (Task 3), Axis Analysis (Task 4), Legend Analysis
(Task 5), and Data Extraction (Task 6). To facilitate the development of task-
specific models, each task receives as input the ideal outputs from some of the
previous tasks. An additional task is formulated for end-to-end data extraction
(Task 7), where only the chart image is provided. Tasks 6 and 7 must produce
an approximation of the data table used to create the chart. In this work, we
provide baselines for all tasks except 6 and 7. These baselines are based on
open-source models, but multiple domain adaptations and heuristic rules have
been used to make them work well on chart-specific tasks. We plan to release
all chart images, annotations, evaluation tools and the custom baseline code. To
get a sense of the complexity and diversity of charts in the dataset, reviewers
can access a preliminary copy of it.5.

2 Related Works

Multiple datasets have been created for different chart-related tasks. Earlier
datasets were created by collecting chart images using web engines and manual
filtering [34,5]. In this category we find the Revision dataset [34] (2,500 images
of 10 chart types) and the dataset by Chagas et al. [5] (4,837 images of 10 chart
types). However, web images are often available under restrictive licenses.

Other works have collected charts directly from data-oriented web sources.
ExcelChart400k [30] was created by collecting Excel spreadsheets from the web.
The dataset contains a total of 386,966 charts extracted from these spreadsheets

5 https://www.dropbox.com/scl/fo/lk9csn1z2hnws8f1nbpjs/

ANNPdRx5ChvoxITRHMO1b_o?rlkey=hlr7lxqhrrvy1njbnv0hsv4b5&dl=0

CHART-Info 2024: A dataset for Chart Analysis and Recognition 3

along with the tabular data used to create them (no manual annotation re-
quired). Nevertheless, all charts are created using a single tool, thus they lack
visual diversity. The chart text was also replaced with random characters, af-
fecting the ability to incorporate multi-modal methods that use text. Another
example is the ChartQA [31] dataset which has 21,945 charts (mostly in vector
format) of 3 types (bar, line and pie), extracted from 4 websites. Annotations
for visual question answering (VQA) tasks were collected via crowdsourcing.

Some synthetic chart datasets have been proposed for tasks such as data
extraction [3,10] and VQA [22,32]. Some important advantages of generating
synthetic data include: better scalability, cleaner and more detailed annotations,
and relatively low cost. The AdobeSynth dataset [10] has 202,550 chart images
(10 classes) generated with Matplotlib using data from multiple web sources.
Bajić and Job [3] used Plotly to create a dataset with over 120K images from
20 chart classes. The DVQA [22] dataset contains 300K images of synthetic
bar charts generated with the matplotlib library. The PlotQA [32] dataset has
224,377 images (bar, scatter, and line plots) generated using an unspecified tool.
DVQA and PlotQA provide millions of question-answer pairs.

Some recent efforts, including this work, have extracted and manually anno-
tated images from scientific literature to create large-scale datasets. These have
the advantage of being more reliably available than random images from the
web, and many of them are available under licenses that allow their redistribu-
tion and even commercial usage. Two examples are the FigureSeer [36] dataset
(60K images from 20K papers) and the DocFigure [20] dataset (33K images), but
these are mostly designed for figure type classification (including many charts).
The CHART-Infographics competitions have led to the creation of datasets with
increasing scales. The dataset presented here is an major extension of our pre-
vious dataset from ICPR CHART-Info 2022 [11], which is based on real charts
extracted from PubMed Central (PMC).

3 The CHART-Info 2024 Dataset

This work extends previous efforts from the CHART-Infographics competitions
[10,9,11]. Every edition has provided a novel test dataset based on real charts.
While the first edition provided AdobeSynth for training, the second edition [9]
expanded the previous test dataset to create the first training dataset based on
real charts. The third [11] merged previous datasets to form the new training
dataset. The training dataset of CHART-Info 2024 merges previous [11] training
and testing datasets, and provides the largest test dataset so far (See Table 1).

The novel test dataset was created using a similar methodology to the pre-
vious edition [11]. We selected papers added to the Open Access Section of the
PMC between Dec. 2017 and Oct. 2021. We only considered papers released un-
der CC BY or CC-0 licenses containing the keywords “chart” or “plot” in their
main text. Out of 241,396 papers matching these filters, we randomly selected
20K papers that were not already included in earlier versions of our dataset. A
binary image classifier was used to identify chart candidates from all the figures

4 Davila et al.

Table 1. Distribution of chart types on the training and testing datasets. Values are
compared against earlier versions of the dataset.

ICPR 2020 [9] ICPR 2022 [11] ICPR 2024

Chart Type Train Test Train Test Train Test

Area 120 52 172 136 308 229
Line 7,401 3,155 10,556 3,400 13,955 5,142

Manhattan 123 53 176 80 256 68
Scatter 875 475 1,350 1,247 2,597 1,311
Scatter-Line 1,260 558 1,818 1,628 3,446 1,684

Pie 170 72 242 191 433 213

Vertical Box 316 447 763 775 1,538 802

Horizontal Bar 429 358 787 634 1,421 636
Vertical Bar 3,818 1,636 5,454 3,745 9,199 3,692

Horizontal Interval 109 47 156 430 586 326
Vertical Interval 342 147 489 182 671 202

Map 373 160 533 373 906 363

Heatmap 138 59 197 180 377 177
Surface 110 45 155 128 283 127

Venn 52 23 75 131 206 121

Total 15,636 7,287 22,923 13,260 36,182 15,093

Table 2. Statistics (min., median, max.) for different image attributes in our dataset.

Image Width Image Height Image DPI File Size

Dataset Min Med Max Min Med Max Min Med Max Min Med Max

Training 76 709 10,800 24 486 6,000 28 600 2,400 2,577 49,999 7,986,057

Testing 118 714 6,299 66 490 7016 72 300 2400 3,036 54,506 2,859,605

in these papers. Then, these candidates were manually classified by chart type.
Note that all images in our dataset are in JPEG format, just as provided by the
PubMed Central. As a result, our dataset has the limitation of not including any
images in vector formats. However, we note that all images in vector format can
be easily rasterized to be recognized using models trained with raster images.

The original creators of the images in our dataset used a variety of tools to
make them leading to diverse quality and sizes as shown in Table 2. Training set
images go from 76×75 to 10, 800×6, 000 pixels, while testing set images go from
120× 66 to 6, 299× 6, 299 pixels. This is a challenge for vision models expecting
fixed resolutions. For task such as image classification, it might be better to
downsize large images, but details that help to differentiate between challenging
pairs (e.g. line vs. scatter-line) might be lost when the images are shrunk (see
Figure 2.b.). For other task such as text recognition, higher resolution images are
better because the text is more readable. However, the variability in the relative
scales of text and other chart objects can make detection tasks harder.

Data annotation was a collaborative effort between teams at 3 universities:
University at Buffalo (USA), IIIT-Hyderabad (India), and UNITEC (Honduras).

CHART-Info 2024: A dataset for Chart Analysis and Recognition 5

Table 3. Available charts for training and testing per task.

Dataset Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7

Training 36,182 8,343 8,343 6,965 7,065 5,427 5,427

Testing 15,093 3,280 3,280 3,128 3,128 2,676 2,676

At each location, the annotators collected the ground truth (GT) in 3 sequen-
tial stages: Image class annotation, Text annotation, and legend, axes and data
annotation. At every stage, annotators were assigned images in batches, and
used our publicly available tools 6 to annotate them. The first two stages were
semi-automatic, because recognition systems were used to generate initial labels.
Then, the annotators had to verify and correct these labels, effectively cutting
down the annotation time in half compared to previous years. For quality con-
trol, every annotation at every stage had to be approved by one validator who
enforced different rules to achieve consistent annotations.

Table 3 shows the number of charts available for training/testing per task.
Because of the competition context, previous CHART-Info testing datasets used
5 disjoint splits to evaluate different tasks [9,11]. However, CHART-Info 2024
is an offline evaluation benchmark, eliminating the need for disjoint splits, pro-
viding far more data to evaluate each task. Based on the availability of GT per
chart, we propose 4 non-disjoint splits for training and testing specific tasks:
DS1, DS2, DS3 and DS4. Split DS1 is basically the entire dataset (column Task
1 in Table 3), which can only be used for Task 1. Split DS2 represents all charts
that have GT for task 2 (column Task 2 in Table 3), used for task 2 only. Tasks
3, 4 and 5 share the same inputs, and Split DS3 only considers the charts that
have GT for the three tasks: 6,957 for training and 3,128 for testing. Finally,
Split DS4 includes all fully annotated charts that can be used to evaluate Tasks
6 and 7 (column Task 6 in Table 3). All results presented in Section 4 are based
on the following protocol: The training portion of each data split is further di-
vided into 80% for training and 20% for validation. Then, the test portion of the
same data split is used for evaluation.

4 Tasks and Baselines

In this section, we will describe the inputs, outputs, evaluation metrics and
baselines for each task supported by CHART-Info 2024. Based on existing chart
recognition systems [8], these tasks are defined in a sequence: chart image clas-
sification (Section 4.1), detection and recognition of text (Section 4.2), text role
classification (Section 4.3), axes analysis (Section 4.4), legend analysis (Section
4.5), and chart data extraction (Section 4.6). Alternatively, one can design sys-
tems that handle the whole process in a end-to-end manner (Section 4.7).

6 https://github.com/kdavila/ChartInfo_annotation_tools

6 Davila et al.

4.1 Task 1. Chart Image Classification

Task description. The type of the chart in an image determines the rules used
to interpret the data encoded in its graphical elements. Therefore, the first task
is chart image classification, where every image in the dataset belongs to one of
the classes listed in Table 1. We focus on chart types that are well represented
in our data source, and some of these might be known under different names.

Inputs, Outputs and Metrics. The input is an image, and the output is
a chart class. Evaluation is based on standard classification metrics such as the
per-class recall, precision and F1 score. Table 1 shows that this is an unbalanced
dataset, therefore we use the macro-average of the F1 scores for all classes as
the final score to emphasizes the importance of correctly identifying all classes.

Baselines. We used image classification methods which have achieved good
results on chart images in the past. We obtained the following results: ResNet-
18 [16] (91.20%), ResNet-32 [16] (91.17%), ResNet-50 [16] (92.37%), Inception
V3 [37] (92.07%), Xception [7] (92.98%), MobileNet-V3-Small [18] (89.30%),
MobileNet-V3-Large [18] (91.40%), EfficientNet-B0 [38] (91.59%), EfficientNet-
B1 [38] (92.14%), Swin-Tiny [29] (91.02%), and Swin-Base [29] (93.60%). The
highest score is achieved by the more recent model based on transformers [29].
Nevertheless, earlier models such as ResNet-50 [16] still achieve competitive re-
sults, with F1 scores only 1.23% lower than the best model. This task can be
hard for many reasons [39], and these numbers show that better models are still
needed. Some images are hard to classify even for human annotators, like the
scatter-line shown in Figure 2.b which can be easily confused with a line chart.

4.2 Task 2. Chart Text Detection and Recognition

Task description. Text is an important component of the semantics of a chart
image. The goal of this task is to detect and recognize individual text blocks in
the image. Unlike many scene text detection benchmarks, we are not interested
in detecting isolated words, but rather we need to identify text blocks meant to
be interpreted as a single unit (e.g. an axis title, a legend entry, etc.).

Inputs, Outputs and Metrics. The inputs are the chart image and
its classification. The output is a list of text regions (detection), represented
by quadrilaterals, and their corresponding transcriptions (recognition), repre-
sented by strings which might include LATEX notation to handle special symbols
and formulas found in charts. For each image, the predicted texts are matched
against the GT texts if their IoU ≥ 0.5, but a 1-to-1 matching constraint is
enforced. The IoU values of matching texts are summed and the total is divided
by max(|predicted texts|, |GT texts|) to produce the per-image IoU score. For ev-
ery GT text, we compute the normalized character error rate (NCER) between
its transcriptions and the text of its corresponding prediction. Unmatched GT
texts receive a NCER score of 0. All NCER values are summed and divided by
|GT texts| to produce the per-image NCER score. Detection and Recognition re-
sults are evaluated using the average of the per-image IoU and per-image NCER

CHART-Info 2024: A dataset for Chart Analysis and Recognition 7

scores, respectively. The final metric for Task 2 is the harmonic mean (f-score)
of the detection and recognition scores.

Baselines for Detection. On average, charts have simpler backgrounds
than natural scenes, but text regions can be really small, and they can overlap
other graphical elements. One missing text region can have a huge impact in
the overall accuracy of the whole chart recognition process. While scene text
detectors often target isolated words, text in charts is better analyzed using
coherent text regions (e.g. a complete data series name). This is hard considering
that text regions in charts can go from one symbol to multiple lines of text.

We first considered two out-of-the-box baselines, Tesseract OCR engine v5.3.1
[1] and PaddleOCR engine v3 (PPv3) [24], which achieved average IoU scores
of 0.3035 and 0.6022, respectively. These results show that, out of the box, they
do not work well on charts probably because our target is text blocks which is
not what these methods produce by default. These results already include some
post-processing rules that helped but by only so much.

We then considered multiple baselines retrained with our data (DS2). Some
of these models are based on the PPv3 framework [24], and these are pretrained
on the ICDAR 2015 Scene Text Detection dataset [23]. We also considered mod-
els from the MMRotate framework [45], which were designed for rotated object
detection in aerial images, and are pretrained on ImageNet-1k. We acknowledge
that the accuracy of third-party re-implementations might be slightly different
to the original models. Table 4 shows results for text detection baselines re-
trained on our dataset. In the case of PPv3 [24], configurations using the larger
ResNet-50 [16] backbone achieved better results than their counterparts using
MobileNet-V3 [18], although by a small margin in many cases. Surprisingly,
while DB++[27] has produced better results than EAST [44] on natural scenes,
EAST achieved better results here. Nevertheless, the best results were obtained
using RoI Transformer [12] with Swin-Tiny [29] backbone, from the MMrotate
framework [45]. This model might be the best in handling rotated text.

Baselines for Recognition. To make a fair comparison between text recog-
nition baselines, we apply each recognition algorithm over text detection GT.
During training and evaluation, the unicodeit Python library is used to convert
the special LATEX annotations into Unicode symbols. This library cannot han-
dle all special symbols and formulas, but is appropriate for the vast majority of
alphanumeric strings. We created a custom dictionary based on the 250 most
common Unicode symbols in the training set to retrain some of our baselines.

Text recognition models often expect the inputs to contain a single horizontal
line of text with at most so many characters. They do not work well with images
of texts that are very long, rotated and/or multi-line. Multi-line text blocks
are rare in our dataset, but long texts are very common. We use simple rules to
identify long and/or multi-line text candidates, and then apply greedy algorithms
to cut the image horizontally and/or vertically as required. The recognizer is used
over each partition, and the results are concatenated.

Rotated text is common in charts, specially on axis titles and tick labels, and
can be long and/or multi-line as well. All text regions (any rotation) are always

8 Davila et al.

Table 4. Baselines for Chart Text
Detection. Backbones include Mo-
bileNetv3 [18] (MN3), ResNet-50 [16]
(RN50), ReResNet-50 [15] (RRN50)
and Swin Tiny [29] (ST)

Method IoU

DB [26] - MN3 0.7809
DB [26] - RN50 0.7866
PSENet [40] - MN3 0.8242
PSENet [40] - RN50 0.8263
DB++ [27] - RN50 0.7996
EAST [44] - MN3 0.8036
EAST [44] - RN50 0.8396

ReDet [15] - RRN50 0.8875
RoI Trans. [12] - RN50 0.8828
RoI Trans. [12] - ST 0.8890

Table 5. Baselines for Chart Text Recogni-
tion. These baselines are based on the PPv3
framework, were pretrained on ICDAR 2015
[23] and retrained on our dataset. Results
are provided using Line Splitting (w LS) and
Without Line Splitting (w/o LS).

w/o LS
NCER

w LS
NCERMethod

SAR [25] 0.9064 0.9202
SRN [42] 0.9098 0.9267
RobustScanner [43] 0.9133 0.9312
VisionLAN [41] 0.9132 0.9316
CRNN [35] 0.9480 0.9477
StarNet [28] 0.9293 0.9480
RFL [19] 0.9329 0.9506
ABINet [14] 0.9360 0.9528
SVTR [13] 0.9323 0.9549

Table 6. Baselines for Chart Text Detection and Recognition. We consider some Out-
of-the-box (OOB) configurations, and the best configurations reported earlier.

Detection Method Recognition Method OOB IoU NCER H-Mean

Tesseract [1] Tesseract [1] Yes 0.3035 0.3663 0.3320
PPv2 [24] DB [26] PPv2 [24] CRNN [35] Yes 0.5688 0.7074 0.6305
PPv3 [24] DB [26] PPv3 [24] SVTR [13] Yes 0.6022 0.7866 0.6821

RoI Trans. [12] Swin Tiny [29] PPv3 SVTR [13] No 0.8890 0.9264 0.9073

projected into axis-aligned rectangular regions, which can only have 0, +90, +180
or −90 degree rotations. The PPv3 framework includes an angle classifier but it
did not perform well on chart text. Because of this, we used simple rules based
on recognition confidence scores to simultaneously handle rotated text and long
and/or multi-line text. When needed, this method tests multiple combinations
of rotations with image splitting, and keeps the most confident transcription.

We considered three out-of-the-box baselines, Tesseract OCR [1], PPv2 [24]
with CRNN [35], and PPv3 [24] with SVTR [13], which achieved NCER scores
of 0.8483, 0.8226 and 0.8921, respectively. These baselines do not use any of
our rules to handle special cases. We then experimented using our dataset to
retrain multiple models from the PPv3 framework, and applying our rules to
handle multi-line and rotated text. Table 5 shows the results for these models,
considering whether the horizontal line splitting algorithm (LS) was used to deal
with long text candidates or not. We found CRNN [35] to be the most robust in
terms of handling long texts on its own. However, by using our horizontal line
splitting algorithm, other methods achieved higher recognition results. The best
recognition method was SVTR [13].

Complete Baselines. Table 6 shows the results for end-to-end chart text
detection and recognition. Here, recognition results are affected by errors made

CHART-Info 2024: A dataset for Chart Analysis and Recognition 9

Fig. 1. Targets for multiple tasks. Different text colors are used to illustrate our text
roles in two charts (Task 3). We also show the expected ticks using stars (Task 4), and
red rectangles define the legend symbols (Task 5). Best seen in digital format.

by the detection model. We only consider out-of-the-box baselines, and the com-
bination of the best models for detection (ROI Trans [12] with Swin-Tiny [29])
and recognition (PPv3 with SVTR [13]). This combined model is also using all
of the intermediate rules used for handling rotated, multi-line and/or long texts.

4.3 Task 3. Chart Text Role Classification

Task description. This task aims to determine the role or function that each
text region has on the chart. Our dataset considers 9 roles: chart title, axis title,
tick label, tick grouping, legend title, legend label, value label, marker label, and
other. This covers the categories needed to make sense of a chart image. The
other category is used to group additional less common roles. These roles are
illustrated in Figure 1.

Inputs, Outputs and Metrics. The inputs include the chart image and
the GT outputs for Tasks 1 and 2. The expected output is a list of the roles for
each GT text region. Like Task 1, evaluation is based on classification metrics.

Baselines. This task is similar to general object classification on images.
However, two identical objects (text regions) can have different classes (roles)
based on their position within the chart layout. Class imbalance also makes this
task challenging, where tick labels make about 70.11% of all text regions in the
training dataset, while legend title, chart title, and tick grouping are so rare that
even combined represent just 1.15% of all text regions. However, all classes have
the same impact on the final metrics.

We created our baselines for task 3 by training different object detector
models using the role of each text region as their target class. We create variations
of these models to simultaneously deal with multiple tasks. The first, V35, deals
with tasks 3 and 5, and uses the original 9 text roles. The second, V345, deals
with tasks 3, 4 and 5, and needs 12 roles for text. This is because it replaces the
tick label class with 4 per-axis classes (more details in Section 4.4).

Task 3 requires assigning classes to text regions in the GT, but the predictions
made by the object detectors might not align with the GT. Overlapping pairs
of GT text regions and predictions are scored using the harmonic mean of their
IoU and prediction confidence. We then greedily pick the highest scoring matches

10 Davila et al.

Table 7. Baselines for Text Role Classification. Columns are F1 scores (%) for tick
label (TL), axis title (AT), legend label (LL), value label (VL), legend title (LT), mark
label (ML), tick grouping (TG), other (O), Chart Title (CT) and their macro average.
For each baseline, we consider the V35 (†) and V345 (‡) variations.

Method TL AT LL VL LT ML TG O CT AVG

†ReDet [15] (R50 [16]) 98.8 97.1 97.9 81.2 79.1 54.4 55.7 71.1 83.2 79.85
†RoI Trans [12] (R50 [16]) 98.6 97.3 97.8 81.3 78.0 60.5 54.4 71.0 82.6 80.18
†RoI Trans [12] (Swin Tiny [29]) 98.9 98.0 98.1 84.2 79.6 62.1 60.7 74.9 87.9 82.72
†YOLO-V8x [21] 98.8 98.1 97.3 84.7 85.3 63.0 70.7 74.5 89.9 84.71
†Deformable DETR [46] 99.4 98.6 98.6 83.8 87.1 63.8 70.6 75.9 91.3 85.45
†C. Mask R-CNN (Swin Base) [29] 99.2 98.7 98.6 85.4 89.6 68.7 70.9 77.3 92.6 86.78

‡ReDet [15] (R50 [16]) 98.9 96.7 98.0 81.3 79.6 56.2 57.5 72.2 83.1 80.40
‡RoI Trans [12] (R50 [16]) 98.7 97.4 98.1 81.3 75.7 60.2 56.3 71.8 82.6 80.22
‡RoI Trans [12] (Swin Tiny [29]) 99.0 98.0 98.1 83.7 81.5 63.4 61.2 74.5 88.5 83.10
‡YOLO-V8x [21] 98.5 96.8 96.8 79.3 76.0 51.9 59.9 67.7 72.7 77.76
‡Deformable DETR [46] 99.4 98.6 98.8 84.2 87.4 66.3 74.9 75.9 92.1 86.40
‡C. Mask R-CNN (Swin Base) [29] 99.2 98.7 99.0 85.2 89.6 69.4 69.8 77.5 90.8 86.57

while enforcing a 1-to-1 matching constraint. The class of the prediction is finally
assigned to each of the matched GT text regions. Unmatched predictions are
simply ignored, and unmatched GT text regions are omitted.

Table 7 shows the results for Task 3. The tick label, legend label and axis title
classes, which represent 87.16% of the training dataset, have very high F1 scores.
Meanwhile, the mark label and tick grouping classes, which represent only 1.98%
of the training dataset, have the lowest F1 scores. Except for YOLO-V8 [21],
most models have very similar results for both variations. The Cascade Mask
R-CNN model with Swin-Base transformer [29] and Deformable DETR [46] are
consistently the strongest model from this set.

4.4 Task 4. Chart Axis Analysis

Task description. Axes in charts define the space of the chart data. The goal
of this task is to locate the main chart axes (horizontal and vertical), and then
link specific points in the axes (ticks) with text (tick labels). This location should
be independent of the existence of visual tick marks.

Inputs, Outputs and Metrics. Inputs are the same as Task 3. The output
is a dictionary organizing the tick positions by axis. Then, per axis, a set of pairs
(text id, point) is expected. Each pair represents a tick label by their unique id
in the GT, and the point represents the tick position.

Evaluation considers precision and recall of predicted ticks on the main axes
(x-axis at the bottom and y-axis at the left). Secondary axes (top or right)
are ignored. Predicted and GT ticks are matched by text id, and each match
is weighted based on the distance between the GT location and the predicted
location. First, the distances are normalized by the length of the image diagonal,
and matches with distance ≥ 0.02 receive a weight of 0, and distance ≤ 0.01

CHART-Info 2024: A dataset for Chart Analysis and Recognition 11

Table 8. Baselines for Axes Analysis. All of them are based on Variation 345

Method Rec. (%) Prec. (%) F1 (%)

ReDet [15] (R50 [16]) 83.89 85.72 84.79
RoI Trans [12] (R50 [16]) 84.09 85.27 84.67
RoI Trans [12] (Swin Tiny [29]) 84.56 86.08 85.31
YOLO-V8x [21] 54.35 56.64 55.47
Deformable DETR [46] 85.38 85.18 85.28
Cascade Mask R-CNN (Swin Base) [29] 77.32 86.46 81.63

receive a weight of 1. For 0.01 < distance < 0.02, an interpolated weight between
1 and 0 is used. Missing ticks and ticks associated with the wrong axis have
weights of 0. The total weight of all matches is divided by the number of GT ticks
to compute recall and by the number of predicted ticks to compute precision.
Then, the overall recall and precision metrics are the macro averages of the per-
axis values. Finally, we compute F1 score as the final per-chart score, and the
average of the per-chart scores are computed for the entire evaluation set.

Baselines. While the GT text regions are known for this task, their corre-
sponding roles are unknown. Because of this, our baselines work in combination
with role predictions from Task 3, to identify all tick labels. The next challenge
is to associate these to their corresponding axes. We use Variation V345 (see
Task 4.3) which refines the tick label class by directly predicting if the region is
a tick label of: x-axis (bottom), y-axis (left), x2-axis (top) or y2-axis (right).

The next step is to associate the tick labels to specific image locations. A
common idea is to detect tick marks and use rules to match these to tick labels,
but in many cases the tick marks are not visible or do not correspond to positions
that should be associated with tick labels. To solve this problem, we add an axes
corner object, which is a box of 10-by-10 pixels, centered at the origin of both
x and y axes (bottom-left corner). The center of this box, (cx, cy), provides the
coordinates shared by all ticks in a given axis (cx for y axis, cy for x axis). We use
rules to determine the other coordinate using the rotated bounding box of the
corresponding tick label. In most cases we simply use the center of the tick label
bounding box: vertical center for y axis, horizontal center for x axis. Rotated
tick labels, commonly found in the x axis, are the exception to this, and we use
the x coordinate of the top-most point in their rotated bounding box.

Table 8 shows the results for this task. The performance for most object
detectors is reasonably good considering that they do not detect visual tick
marks. The baselines will fail when the axes corner box is incorrectly detected,
or not detected at all. If multiple boxes are detected, the most confident is
picked, but that can also produce incorrect outputs. Errors made in Task 3
(e.g., false positives/negatives for tick labels) are also propagated here. Also,
tick labels associated with the wrong axis reduce precision for one axis, and
recall for the other. Here, the ROI Trans model [12] achieved the highest score,
with more consistent recall and precision levels than other models. The second
best is Deformable DETR [46].

12 Davila et al.

4.5 Task 5. Chart Legend Analysis

Task description. A legend is made by a set of legend entries, which are
(legend label, legend symbol) pairs. Each legend label usually corresponds to one
specific data series in the chart. The legend symbol exemplifies the appearance
of the corresponding data marks. An example is shown in the left side of Figure
1. The goal of this task is to identify the legend entry pairs in the image.

Inputs, Outputs and Metrics. Inputs are the same as task 3. The output
is a list of legend entry pairs (text id, bounding box), where the text id represents
a legend label, and bounding box represents the associated symbol.

The evaluation of this tasks requires correct pairings between legend labels
and legend symbols. For a given chart, predicted legend entries are initially
matched to GT by the id of the legend labels. For each matching pair, the area of
intersection between the GT legend symbol and the predicted one is computed
and used to get two metrics: an IoU-based score (divide by the area of the union)
and a recall-based score (divide by the area of the GT bounding box). The sum
over all legend entries is computed for both scores, and then they are divided by
the maximum between the number of GT legend entries and predicted legend
entries. Finally, the average over the evaluation set is computed for both metrics.

Many charts have rather small and thin legend symbols (e.g, height of 2 pix-
els). IoU-score can be over-punishing on bounding boxes that correctly capture
the legend symbol, but are slightly thicker. The recall-based score is also consid-
ered here because of this.

Baselines. Similar to Task 4, this task has access to the GT text regions,
but the roles are unknown. All legend labels and legend symbols candidates need
to be identified, and these need to be combined into legend entry pairs. As
described before, we consider object detection baselines that combine multiple
tasks on the same network. For task 5, we simply add the legend symbol objects.
The same network will produce all legend label and legend symbol candidates.

The next challenge is to pair the candidates while considering false positives
and negatives for both classes. Algorithms typically used for 1-to-1 matching in
bipartite graphs will fail due to the noisy predictions. A simple approach is to pair
each legend symbol with its closest legend label, but the way in which the distances
are measured determines the quality of results. Based on the observation that
for most charts, all legend entries have their symbols on the same side, we first
estimate if all legend symbols in the image are left, right, above or below their
labels. This direction is used to pick the corresponding edges of the bounding
boxes of the legend labels, and their middle points are used as reference points
for the labels. We then measure the distances between the reference points and
the centers of the bounding boxes of the symbols. Matches are then sorted by
increasing distance, and they are greedily picked in that order. Only matches
between previously unmatched elements are accepted, and the process stops as
soon as the first match involving a symbol or label previously matched appears.
We do this to prevent spurious matches involving false positives/negatives based
on the observation that valid legend entries in the same chart usually have similar
edge distances between their symbols and labels.

CHART-Info 2024: A dataset for Chart Analysis and Recognition 13

Table 9. Baselines for Legend Analysis. We consider variations V35 (†) and V345 (‡).

Average BBox

Method IoU (%) Recall (%)

†ReDet [15] (R50 [16]) 83.09 95.33
†RoI Trans [12] (R50 [16]) 83.41 95.62
†RoI Trans [12] (Swin Tiny [29]) 84.31 95.56
†YOLO-V8x [21] 43.86 49.53
†Deformable DETR [46] 80.52 88.53
†Cascade Mask R-CNN (Swin Base) [29] 84.23 93.56

‡ReDet [15] (R50 [16]) 83.66 95.57
‡RoI Trans [12] (R50 [16]) 83.26 95.69
‡RoI Trans [12] (Swin Tiny [29]) 83.84 95.42
‡YOLO-V8x [21] 43.42 49.31
‡Deformable DETR [46] 82.86 91.81
‡Cascade Mask R-CNN (Swin Base) [29] 84.12 93.62

Table 9 shows the results for this task. The recall-based scores show that
most legend symbols are being detected and matched correctly, and that pre-
dicted boxes greatly overlap the symbol regions. It is possible that many of these
predictions have the wrong thickness, leading to a much lower IoU-based scores
in comparison. Errors can come from false positives/negatives of legend symbols
and legend label. The method with the highest average F1 score for role classifi-
cation achieves 98.6 F1 score for the legend label class (see Table 7). Therefore,
it is likely that most errors come from failures to correctly detect the legend
symbols. The baselines based on RoI Trans [12] consistently achieve some of the
best scores for this task.

4.6 Task 6. Chart Data Extraction

Task description. This task approximates the data table used to create a
chart image. It is divided into two sub-tasks: Plot element detection and extrac-
tion (Task 6.a), and raw data extraction (Task 6.b). The first sub-task aims at
correctly locating the data marks in the chart (e.g., lines in line charts, bars
in bar charts, etc.). The second sub-task puts everything together (text, axes,
legends, and data marks) to reconstruct the data encoded in the chart image.
The chart type might be used to determine the right approach for this task.

Inputs, Outputs and Metrics. The inputs for this task are the outputs
from all previous tasks (1-5). The outputs for Task 6.a depend on the chart
type. Bar charts require a list of bounding boxes per bar. Line and Scatter plots
require a list of points for each data series. Box plots require a tuple with the
position of the components of each box (box top, box bottom, box median, top
whisker, bottom whisker). For task 6.b, the output is a set of data series with
name, and the list of data points (x, y) that make that data series, where x is
the independent variable, and y is the dependent variable. Multiple metrics are
considered depending on the type of chart (See [9,11] for details).

14 Davila et al.

(a) Scatter (b) Scatter-Line Chart (c) Line Chart

(d) Vertical Box Plot (e) Stacked Bar Chart

Fig. 2. Examples of challenging charts in our dataset. (a) Scatter chart, extracted from
[33]. (b) Scatter-line, extracted from [6]. (c) Line chart, extracted from [2]. (d) Vertical
Box plot, extracted from [4]. (e) Stacked bar chart, extracted from [17].

Baselines. The baselines for this task are complex, requiring combination of
results from previous tasks. Existing works on chart recognition typically focus
on a single chart type [8]. Meanwhile, our dataset provides data annotations for:
horizontal/vertical bar charts, vertical box plots, scatter plots and line charts.
Providing baselines for each of these chart types is out of the scope of this work.
However, we briefly discuss the implications and complexities of creating data
extraction models for these chart types.

Horizontal/Vertical Bar Charts. This is arguably the simplest chart
type for data extraction. Standard object detectors often work with anchors of
predefined aspect ratios, and bars in some charts can be extremely narrow or
long. Most charts use bars of solid colors, but some charts use complex texture
patterns instead. After detecting the bars, the next challenge is to infer the
values represented by them. Every bar must be correctly map to a category (x
value), a data series (e.g., “legend entry”), and an absolute value (y value). The
orientation of the chart defines which axis is the x value (independent variable)
and which one is the y value (dependent variable). Many charts use stacked
and/or grouped bars, which require associating multiple bars to a single category
(e.g., by proximity). Bars are usually associated to particular data series using
legend analysis and their appearance. Finally, the y values of the bars are inferred
through axes analysis and their spatial location. This process gets slightly more
complicated for stacked bars where two extreme points are required to infer the
value of each bar. Also, data points with y=0 often lead to invisible bars, but

CHART-Info 2024: A dataset for Chart Analysis and Recognition 15

their existence might be inferred by analyzing the chart layout. Figure 2.e shows
an example of a complex stacked vertical bar chart included in our dataset.

Vertical Box Plots. The first step is to detect the boxes and their cor-
responding whiskers and median lines. Object detectors can be used to locate
the boxes, but extreme aspect ratios can be a challenge. Whiskers and median
lines might not be visible when their values are too close to the values repre-
sented by the top and/or bottom of the boxes. Similar to bar charts, we can find
grouped box plots, where multiple boxes share a single category and each box
needs to be linked to a particular legend entry. There are five points of interest
in each box that need to be correctly mapped to their corresponding values in
the y-axis. Figure 2.d shows a complex grouped vertical box plot included in our
dataset. Note that horizontal box plots can be processed in a similar way, but
we excluded them from our dataset because they are quite rare in practice. Also,
many box plots include outliers represented by scatter marks, but we decided
to currently exclude these from our benchmark because even human annotators
often struggle to distinguish and recognize all individual points.

Scatter Plots. First, each data mark representing a data point must be
detected. This might be easy when there are only a few large data marks, and
extremely difficult when the plot region is cluttered with many small data marks.
In the worst case scenario, we might only approximate the distribution of the
original data used to create the plot. While our dataset includes all kinds of
scatter plots, we only annotated data in cases where human annotators could
accurately identify all individual data points. Data marks can be generated us-
ing all sorts of shapes, colors and sizes, making their automatic detection very
challenging. After detection, each data mark needs to be mapped to a 2D point
using their location and axis analysis. Legend analysis and the appearance of
the data marks must be used to correctly map them to their corresponding data
series. If no legend is present, then the appearance alone must be used to infer
the existence of multiple data series. Figure 2.a shows an example of a complex
scatter in our dataset where the colors on the legend do not match the colors
in the plot region, and matching needs to be done using shapes, but this is also
hard due to overlaps between data marks.

Line Plots. This is arguably the most challenging type here. Identifying
the pixels of a given line is a segmentation problem which cannot be approached
with basic object detectors. Some charts have solid colored lines which can be
easily traced by basic segmentation algorithms. However, we find many charts
with dashed lines and repeated line colors, where the thickness and/or dash
patterns must be considered to differentiate them. Lines can also intersect and
significantly occlude each other. Same as other chart types, lines must be as-
sociated with data series using legend analysis, but this can be difficult when
the associated legend entries are very thin. Figure 2.c shows a line chart in our
dataset which displays many of these issues. Some charts do not use legends,
and instead directly provide names for each line using colored text within the
plot region (e.g. data mark label) as illustrated on the right side of Figure 1.

16 Davila et al.

4.7 Task 7. End-to-End Data Extraction

The end-to-end data extraction task has the same goals, outputs and metrics as
sub-task 6.b (Section 4.6). However, the only input is the image of a chart. This
task was designed for systems that can handle the chart recognition process as
a whole, removing the need to produce and evaluate intermediate outputs. It is
also possible to create a modular system which handles the recognition process
using the individual tasks suggested in this benchmark. Not having any ground
truth means that the real outputs from each module in the pipeline must be
used. Any errors made in the earlier tasks will propagate to later tasks, affecting
the overall recognition results. Similar to Task 6, baselines for this complex task
are out of the scope of this work.

5 Conclusion

In this paper, we have introduced the CHART-Info 2024 dataset, a natural
extension to the existing ICPR 2022 CHART-Info datasets [11]. Apart from a
brand new test dataset, we have also provided a considerable number of baselines
for the first 5 tasks defined in our dataset. These baselines provide a starting
point for researchers interested in chart recognition. We believe that our dataset
will enable the development of better chart recognition systems which will be
capable of dealing with complexities found on charts in the wild.

References

1. Tesseract OCR – opensource.google.com, https://opensource.google.com/

projects/tesseract

2. Adamczyk, K., Grzesiak, W., Zaborski, D.: The use of artificial neural networks
and a general discriminant analysis for predicting culling reasons in holstein-friesian
cows based on first-lactation performance records. Animals 11(3), 721 (2021)

3. Bajić, F., Job, J.: Data extraction of circular-shaped and grid-like chart images.
Journal of Imaging 8(5), 136 (2022)

4. Bryce, R., Carreño, I.L., Kumler, A., Hodge, B.M., Roberts, B., Martinez-Anido,
C.B.: Annually and monthly resolved solar irradiance and atmospheric temperature
data across the hawaiian archipelago from 1998 to 2015 with interannual summary
statistics. Data in Brief 19, 896–920 (2018)

5. Chagas, P., Freitas, A., Daisuke, R., Miranda, B., De Araújo, T.D.O., Santos, C.,
Meiguins, B., De Morais, J.M.: Architecture proposal for data extraction of chart
images using convolutional neural network. In: 21st IV. pp. 318–323. IEEE (2017)

6. Chen, J., Cai, Y., Clark, M., Yu, Y.: Equilibrium and kinetic studies of phosphate
removal from solution onto a hydrothermally modified oyster shell material. PLoS
One 8(4), e60243 (2013)

7. Chollet, F.: Xception: Deep learning with depthwise separable convolutions. In:
Proceedings of CVPR. pp. 1251–1258 (2017)

8. Davila, K., Setlur, S., Doermann, D., Bhargava, U.K., Govindaraju, V.: Chart
mining: a survey of methods for automated chart analysis. IEEE Transactions on
Pattern Analysis and Machine Intelligence 43(11), 3799–3819 (2020)

CHART-Info 2024: A dataset for Chart Analysis and Recognition 17

9. Davila, K., Tensmeyer, C., Shekhar, S., Singh, H., Setlur, S., Govindaraju, V.:
ICPR 2020-Competition on HArvesting Raw Tables from Infographics. In: Inter-
national Conference on Pattern Recognition. pp. 361–380. Springer (2021)

10. Davila, K., Urala Kota, B., Setlur, S., Govindaraju, V., Tensmeyer, C., Shekhar,
S., Chaudhry, R.: ICDAR 2019 Competition on HArvesting Raw Tables from In-
fographics (CHART-Infographics). In: ICDAR. IEEE (2019)

11. Davila, K., Xu, F., Ahmed, S., Mendoza, D.A., Setlur, S., Govindaraju, V.: ICPR
2022-Challenge on HArvesting Raw Tables from Infographics. In: International
Conference on Pattern Recognition. IEEE (2022)

12. Ding, J., Xue, N., Long, Y., Xia, G.S., Lu, Q.: Learning roi transformer for oriented
object detection in aerial images. In: CVPR. pp. 2849–2858 (2019)

13. Du, Y., Chen, Z., Jia, C., Yin, X., Zheng, T., Li, C., Du, Y., Jiang, Y.G.: Svtr: Scene
text recognition with a single visual model. In: Raedt, L.D. (ed.) International Joint
Conference on Artificial Intelligence. pp. 884–890. International Joint Conferences
on Artificial Intelligence Organization (7 2022)

14. Fang, S., Xie, H., Wang, Y., Mao, Z., Zhang, Y.: Abinet: Read like humans: Au-
tonomous, bidirectional and iterative language modeling for scene text recognition
pp. 7098–7107 (2021), https://arxiv.org/abs/2103.06495

15. Han, J., Ding, J., Xue, N., Xia, G.S.: Redet: A rotation-equivariant detector for
aerial object detection. In: CVPR. pp. 2786–2795 (2021)

16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR. pp. 770–778 (2016)

17. Hindenes, L.B., H̊aberg, A.K., Johnsen, L.H., Mathiesen, E.B., Robben, D., Vang-
berg, T.R.: Variations in the circle of willis in a large population sample using 3d
tof angiography: The tromsø study. PLoS One 15(11), e0241373 (2020)

18. Howard, A., Sandler, M., Chu, G., Chen, L.C., Chen, B., Tan, M., Wang, W.,
Zhu, Y., Pang, R., Vasudevan, V., et al.: Searching for mobilenetv3. In: ICCV. pp.
1314–1324 (2019)

19. Jiang, H., Xu, Y., Cheng, Z., Pu, S., Niu, Y., Ren, W., Wu, F., Tan, W.: Reciprocal
feature learning via explicit and implicit tasks in scene text recognition (2021),
https://arxiv.org/abs/2105.06229

20. Jobin, K., Mondal, A., Jawahar, C.: Docfigure: A dataset for scientific document
figure classification. In: ICDARW. vol. 1, pp. 74–79. IEEE (2019)

21. Jocher, G., Chaurasia, A., Qiu, J.: Ultralytics YOLO (Jan 2023), https://github.
com/ultralytics/ultralytics

22. Kafle, K., Price, B., Cohen, S., Kanan, C.: Dvqa: Understanding data visualizations
via question answering. In: CVPR. pp. 5648–5656 (2018)

23. Karatzas, D., Gomez-Bigorda, L., Nicolaou, A., Ghosh, S., Bagdanov, A., Iwa-
mura, M., Matas, J., Neumann, L., Chandrasekhar, V.R., Lu, S., et al.: Icdar 2015
competition on robust reading. In: ICDAR. pp. 1156–1160. IEEE (2015)

24. Li, C., Liu, W., Guo, R., Yin, X., Jiang, K., Du, Y., Du, Y., Zhu, L., Lai, B., Hu,
X., et al.: Pp-ocrv3: More attempts for the improvement of ultra lightweight ocr
system. arXiv preprint arXiv:2206.03001 (2022)

25. Li, H., Wang, P., Shen, C., Zhang, G.: Show, attend and read: A simple and strong
baseline for irregular text recognition. ArXiv abs/1811.00751 (2019)

26. Liao, M., Wan, Z., Yao, C., Chen, K., Bai, X.: Real-time scene text detection with
differentiable binarization. In: Proceedings of the AAAI Conference on Artificial
Intelligence. vol. 34, pp. 11474–11481 (2020)

27. Liao, M., Zou, Z., Wan, Z., Yao, C., Bai, X.: Real-time scene text detection with
differentiable binarization and adaptive scale fusion. IEEE Transactions on Pattern
Analysis and Machine Intelligence (2022)

18 Davila et al.

28. Liu, W., Chen, C., Wong, K.Y.K., Su, Z., Han, J.: Star-net: a spatial attention
residue network for scene text recognition. In: BMVC. vol. 2, p. 7 (2016)

29. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin trans-
former: Hierarchical vision transformer using shifted windows. In: ICCV (2021)

30. Luo, J., Li, Z., Wang, J., Lin, C.Y.: Chartocr: Data extraction from charts images
via a deep hybrid framework. In: WACV. pp. 1917–1925 (2021)

31. Masry, A., Do, X.L., Tan, J.Q., Joty, S., Hoque, E.: ChartQA: A benchmark for
question answering about charts with visual and logical reasoning. In: Findings of
the ACL. pp. 2263–2279. Dublin, Ireland (May 2022)

32. Methani, N., Ganguly, P., Khapra, M.M., Kumar, P.: Plotqa: Reasoning over sci-
entific plots. In: WACV. pp. 1527–1536 (2020)

33. Park, J.K., Kim, K.Y., Sim, Y.W., Kim, Y.I., Kim, J.K., Lee, C., Han, J., Kim,
C.U., Lee, J.E., Park, S.: Structures of three ependymin-related proteins suggest
their function as a hydrophobic molecule binder. IUCrJ 6(4), 729–739 (2019)

34. Savva, M., Kong, N., Chhajta, A., Fei-Fei, L., Agrawala, M., Heer, J.: Revision: Au-
tomated classification, analysis and redesign of chart images. In: ACM symposium
on User interface software and technology. pp. 393–402 (2011)

35. Shi, B., Bai, X., Yao, C.: An end-to-end trainable neural network for image-based
sequence recognition and its application to scene text recognition. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 39(11), 2298–2304 (2017)

36. Siegel, N., Horvitz, Z., Levin, R., Divvala, S., Farhadi, A.: Figureseer: Parsing
result-figures in research papers. In: ECCV. pp. 664–680. Springer (2016)

37. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the incep-
tion architecture for computer vision. In: CVPR. pp. 2818–2826 (2016)

38. Tan, M., Le, Q.: EfficientNet: Rethinking model scaling for convolutional neural
networks. In: ICML. PMLR, vol. 97, pp. 6105–6114. PMLR (09–15 Jun 2019)

39. Thiyam, J., Singh, S.R., Bora, P.K.: Chart classification: a survey and benchmark-
ing of different state-of-the-art methods. IJDAR pp. 1–26 (2023)

40. Wang, W., Xie, E., Li, X., Hou, W., Lu, T., Yu, G., Shao, S.: Shape robust text de-
tection with progressive scale expansion network. In: CVPR. pp. 9336–9345 (2019)

41. Wang, Y., Xie, H., Fang, S., Wang, J., Zhu, S., Zhang, Y.: From two to one: A
new scene text recognizer with visual language modeling network. In: ICCV. pp.
14194–14203 (2021)

42. Yu, D., Li, X., Zhang, C., Han, J., Liu, J., Ding, E.: Towards accurate scene text
recognition with semantic reasoning networks. CVPR pp. 12110–12119 (2020)

43. Yue, X., Kuang, Z., Lin, C., Sun, H., Zhang, W.: Robustscanner: Dynamically
enhancing positional clues for robust text recognition. ECCV (2020)

44. Zhou, X., Yao, C., Wen, H., Wang, Y., Zhou, S., He, W., Liang, J.: East: an efficient
and accurate scene text detector. In: CVPR. pp. 5551–5560 (2017)

45. Zhou, Y., Yang, X., Zhang, G., Wang, J., Liu, Y., Hou, L., Jiang, X., Liu, X., Yan,
J., Lyu, C., Zhang, W., Chen, K.: Mmrotate: A rotated object detection benchmark
using pytorch. In: ACM International Conference on Multimedia (2022)

46. Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable DETR: Deformable
transformers for end-to-end object detection. In: ICLR (2020)

CHART-Info 2024: A dataset for Chart Analysis
and Recognition

Kenny Davila1[0000−0001−6308−7113], Rupak Lazarus2[0009−0008−9482−3230], Fei
Xu3[0000−0002−9353−9528], Nicole Rodŕıguez Alcántara4[0000−0002−4405−7063],

Srirangaraj Setlur3[0000−0002−7118−9280], Venu
Govindaraju3[0000−0002−5318−7409], Ajoy Mondal2[0000−0002−4808−8860], and C.

V. Jawahar2[0000−0001−6767−7057]

1 School of Computing, DePaul University, Chicago IL 60604, USA
kdavila@depaul.edu

2 International Institute of Information Technology, Hyderabad, India
rupak.lazarus@research.iiit.ac.in, {ajoy.mondal,jawahar}@iiit.ac.in

3 CSE, University at Buffalo, Buffalo NY 14260, USA
{fxu3,setlur,govind}@buffalo.edu

4 Facultad de Ingenieria, Universidad Tecnológica Centroamericana, Honduras
nicole.rodriguez@unitec.edu

Abstract. Charts are tools for data communication used in a wide range
of documents. Recently, the pattern recognition community has shown
interest in developing methods for automatically processing charts found
in the wild. Following previous efforts on ICPR’s CHART-Infographics
competitions, here we propose a newer, larger dataset and benchmark for
analyzing and recognizing charts. Inspired by the steps required to make
sense of a chart image, the benchmark is divided into 7 different tasks:
chart image classification, chart text detection and recognition, text role
classification, axis analysis, legend analysis, data extraction, and end-to-
end data extraction. We also show the performance of different baselines
for the first five tasks. We expect that the increased scale of the proposed
dataset will enable the development of better chart recognition systems.

Keywords: Charts · Dataset · Graphic Recognition.

1 Introduction

Charts are tools for data communication used in a wide range of documents. The
pattern recognition community has displayed a significant interest in methods
for analyzing and recognizing charts in the wild [8]. There are rules and regular
patterns that define how data can be converted into charts of different types.
Yet, current models still struggle with complex graphics, especially when these
do not adhere strictly to these rules and conventions. In contrast, humans can
still successfully interpret the data encoded in these images.

Recent years have seen the development of very deep networks which can
solve a variety of tasks as long as they are trained with enough data. For chart

2 Davila et al.

recognition, most available large-scale datasets are synthetic, often created using
an artificial process to generate charts based on data from real sources [10,32].
However, users can employ many tools to create charts with diverse visual styles.
Often, they do not just convert data tables arbitrarily into charts, but instead
use domain knowledge to choose appropriate chart types and conventions and
carefully communicate their message [8]. Therefore, using a single tool to create
large synthetic datasets does little to capture the diversity of charts in the wild.

Large-scale datasets are also needed to evaluate chart recognition systems.
The CHART-Infographics competitions [10,9,11] were proposed with the goal
of becoming the go-to chart recognition benchmark. Earlier editions included
synthetic datasets, but systems trained only on synthetic charts performed very
poorly on real charts seen in documents in the wild. Therefore, recent editions
of CHART-Info have focused on providing large chart datasets based on real
charts. This work presents the next iteration of this effort, the CHART-Info
2024 dataset, which provides a major increase in the amount of training data
facilitating training of larger models. At the same time, we provide a brand new
test set with non-disjoint splits to evaluate each task using far more images.

CHART-Info defines six functional tasks critical to the chart recognition pro-
cess: Chart Image Classification (Task 1), Text Detection and Recognition (Task
2), Text Role Classification (Task 3), Axis Analysis (Task 4), Legend Analysis
(Task 5), and Data Extraction (Task 6). To facilitate the development of task-
specific models, each task receives as input the ideal outputs from some of the
previous tasks. An additional task is formulated for end-to-end data extraction
(Task 7), where only the chart image is provided. Tasks 6 and 7 must produce
an approximation of the data table used to create the chart. In this work, we
provide baselines for all tasks except 6 and 7. These baselines are based on
open-source models, but multiple domain adaptations and heuristic rules have
been used to make them work well on chart-specific tasks. We plan to release
all chart images, annotations, evaluation tools and the custom baseline code. To
get a sense of the complexity and diversity of charts in the dataset, reviewers
can access a preliminary copy of it.5.

2 Related Works

Multiple datasets have been created for different chart-related tasks. Earlier
datasets were created by collecting chart images using web engines and manual
filtering [34,5]. In this category we find the Revision dataset [34] (2,500 images
of 10 chart types) and the dataset by Chagas et al. [5] (4,837 images of 10 chart
types). However, web images are often available under restrictive licenses.

Other works have collected charts directly from data-oriented web sources.
ExcelChart400k [30] was created by collecting Excel spreadsheets from the web.
The dataset contains a total of 386,966 charts extracted from these spreadsheets

5 https://www.dropbox.com/scl/fo/lk9csn1z2hnws8f1nbpjs/

ANNPdRx5ChvoxITRHMO1b_o?rlkey=hlr7lxqhrrvy1njbnv0hsv4b5&dl=0

CHART-Info 2024: A dataset for Chart Analysis and Recognition 3

along with the tabular data used to create them (no manual annotation re-
quired). Nevertheless, all charts are created using a single tool, thus they lack
visual diversity. The chart text was also replaced with random characters, af-
fecting the ability to incorporate multi-modal methods that use text. Another
example is the ChartQA [31] dataset which has 21,945 charts (mostly in vector
format) of 3 types (bar, line and pie), extracted from 4 websites. Annotations
for visual question answering (VQA) tasks were collected via crowdsourcing.

Some synthetic chart datasets have been proposed for tasks such as data
extraction [3,10] and VQA [22,32]. Some important advantages of generating
synthetic data include: better scalability, cleaner and more detailed annotations,
and relatively low cost. The AdobeSynth dataset [10] has 202,550 chart images
(10 classes) generated with Matplotlib using data from multiple web sources.
Bajić and Job [3] used Plotly to create a dataset with over 120K images from
20 chart classes. The DVQA [22] dataset contains 300K images of synthetic
bar charts generated with the matplotlib library. The PlotQA [32] dataset has
224,377 images (bar, scatter, and line plots) generated using an unspecified tool.
DVQA and PlotQA provide millions of question-answer pairs.

Some recent efforts, including this work, have extracted and manually anno-
tated images from scientific literature to create large-scale datasets. These have
the advantage of being more reliably available than random images from the
web, and many of them are available under licenses that allow their redistribu-
tion and even commercial usage. Two examples are the FigureSeer [36] dataset
(60K images from 20K papers) and the DocFigure [20] dataset (33K images), but
these are mostly designed for figure type classification (including many charts).
The CHART-Infographics competitions have led to the creation of datasets with
increasing scales. The dataset presented here is an major extension of our pre-
vious dataset from ICPR CHART-Info 2022 [11], which is based on real charts
extracted from PubMed Central (PMC).

3 The CHART-Info 2024 Dataset

This work extends previous efforts from the CHART-Infographics competitions
[10,9,11]. Every edition has provided a novel test dataset based on real charts.
While the first edition provided AdobeSynth for training, the second edition [9]
expanded the previous test dataset to create the first training dataset based on
real charts. The third [11] merged previous datasets to form the new training
dataset. The training dataset of CHART-Info 2024 merges previous [11] training
and testing datasets, and provides the largest test dataset so far (See Table 1).

The novel test dataset was created using a similar methodology to the pre-
vious edition [11]. We selected papers added to the Open Access Section of the
PMC between Dec. 2017 and Oct. 2021. We only considered papers released un-
der CC BY or CC-0 licenses containing the keywords “chart” or “plot” in their
main text. Out of 241,396 papers matching these filters, we randomly selected
20K papers that were not already included in earlier versions of our dataset. A
binary image classifier was used to identify chart candidates from all the figures

4 Davila et al.

Table 1. Distribution of chart types on the training and testing datasets. Values are
compared against earlier versions of the dataset.

ICPR 2020 [9] ICPR 2022 [11] ICPR 2024

Chart Type Train Test Train Test Train Test

Area 120 52 172 136 308 229
Line 7,401 3,155 10,556 3,400 13,955 5,142

Manhattan 123 53 176 80 256 68
Scatter 875 475 1,350 1,247 2,597 1,311
Scatter-Line 1,260 558 1,818 1,628 3,446 1,684

Pie 170 72 242 191 433 213

Vertical Box 316 447 763 775 1,538 802

Horizontal Bar 429 358 787 634 1,421 636
Vertical Bar 3,818 1,636 5,454 3,745 9,199 3,692

Horizontal Interval 109 47 156 430 586 326
Vertical Interval 342 147 489 182 671 202

Map 373 160 533 373 906 363

Heatmap 138 59 197 180 377 177
Surface 110 45 155 128 283 127

Venn 52 23 75 131 206 121

Total 15,636 7,287 22,923 13,260 36,182 15,093

Table 2. Statistics (min., median, max.) for different image attributes in our dataset.

Image Width Image Height Image DPI File Size

Dataset Min Med Max Min Med Max Min Med Max Min Med Max

Training 76 709 10,800 24 486 6,000 28 600 2,400 2,577 49,999 7,986,057

Testing 118 714 6,299 66 490 7016 72 300 2400 3,036 54,506 2,859,605

in these papers. Then, these candidates were manually classified by chart type.
Note that all images in our dataset are in JPEG format, just as provided by the
PubMed Central. As a result, our dataset has the limitation of not including any
images in vector formats. However, we note that all images in vector format can
be easily rasterized to be recognized using models trained with raster images.

The original creators of the images in our dataset used a variety of tools to
make them leading to diverse quality and sizes as shown in Table 2. Training set
images go from 76×75 to 10, 800×6, 000 pixels, while testing set images go from
120× 66 to 6, 299× 6, 299 pixels. This is a challenge for vision models expecting
fixed resolutions. For task such as image classification, it might be better to
downsize large images, but details that help to differentiate between challenging
pairs (e.g. line vs. scatter-line) might be lost when the images are shrunk (see
Figure 2.b.). For other task such as text recognition, higher resolution images are
better because the text is more readable. However, the variability in the relative
scales of text and other chart objects can make detection tasks harder.

Data annotation was a collaborative effort between teams at 3 universities:
University at Buffalo (USA), IIIT-Hyderabad (India), and UNITEC (Honduras).

CHART-Info 2024: A dataset for Chart Analysis and Recognition 5

Table 3. Available charts for training and testing per task.

Dataset Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7

Training 36,182 8,343 8,343 6,965 7,065 5,427 5,427

Testing 15,093 3,280 3,280 3,128 3,128 2,676 2,676

At each location, the annotators collected the ground truth (GT) in 3 sequen-
tial stages: Image class annotation, Text annotation, and legend, axes and data
annotation. At every stage, annotators were assigned images in batches, and
used our publicly available tools 6 to annotate them. The first two stages were
semi-automatic, because recognition systems were used to generate initial labels.
Then, the annotators had to verify and correct these labels, effectively cutting
down the annotation time in half compared to previous years. For quality con-
trol, every annotation at every stage had to be approved by one validator who
enforced different rules to achieve consistent annotations.

Table 3 shows the number of charts available for training/testing per task.
Because of the competition context, previous CHART-Info testing datasets used
5 disjoint splits to evaluate different tasks [9,11]. However, CHART-Info 2024
is an offline evaluation benchmark, eliminating the need for disjoint splits, pro-
viding far more data to evaluate each task. Based on the availability of GT per
chart, we propose 4 non-disjoint splits for training and testing specific tasks:
DS1, DS2, DS3 and DS4. Split DS1 is basically the entire dataset (column Task
1 in Table 3), which can only be used for Task 1. Split DS2 represents all charts
that have GT for task 2 (column Task 2 in Table 3), used for task 2 only. Tasks
3, 4 and 5 share the same inputs, and Split DS3 only considers the charts that
have GT for the three tasks: 6,957 for training and 3,128 for testing. Finally,
Split DS4 includes all fully annotated charts that can be used to evaluate Tasks
6 and 7 (column Task 6 in Table 3). All results presented in Section 4 are based
on the following protocol: The training portion of each data split is further di-
vided into 80% for training and 20% for validation. Then, the test portion of the
same data split is used for evaluation.

4 Tasks and Baselines

In this section, we will describe the inputs, outputs, evaluation metrics and
baselines for each task supported by CHART-Info 2024. Based on existing chart
recognition systems [8], these tasks are defined in a sequence: chart image clas-
sification (Section 4.1), detection and recognition of text (Section 4.2), text role
classification (Section 4.3), axes analysis (Section 4.4), legend analysis (Section
4.5), and chart data extraction (Section 4.6). Alternatively, one can design sys-
tems that handle the whole process in a end-to-end manner (Section 4.7).

6 https://github.com/kdavila/ChartInfo_annotation_tools

6 Davila et al.

4.1 Task 1. Chart Image Classification

Task description. The type of the chart in an image determines the rules used
to interpret the data encoded in its graphical elements. Therefore, the first task
is chart image classification, where every image in the dataset belongs to one of
the classes listed in Table 1. We focus on chart types that are well represented
in our data source, and some of these might be known under different names.

Inputs, Outputs and Metrics. The input is an image, and the output is
a chart class. Evaluation is based on standard classification metrics such as the
per-class recall, precision and F1 score. Table 1 shows that this is an unbalanced
dataset, therefore we use the macro-average of the F1 scores for all classes as
the final score to emphasizes the importance of correctly identifying all classes.

Baselines. We used image classification methods which have achieved good
results on chart images in the past. We obtained the following results: ResNet-
18 [16] (91.20%), ResNet-32 [16] (91.17%), ResNet-50 [16] (92.37%), Inception
V3 [37] (92.07%), Xception [7] (92.98%), MobileNet-V3-Small [18] (89.30%),
MobileNet-V3-Large [18] (91.40%), EfficientNet-B0 [38] (91.59%), EfficientNet-
B1 [38] (92.14%), Swin-Tiny [29] (91.02%), and Swin-Base [29] (93.60%). The
highest score is achieved by the more recent model based on transformers [29].
Nevertheless, earlier models such as ResNet-50 [16] still achieve competitive re-
sults, with F1 scores only 1.23% lower than the best model. This task can be
hard for many reasons [39], and these numbers show that better models are still
needed. Some images are hard to classify even for human annotators, like the
scatter-line shown in Figure 2.b which can be easily confused with a line chart.

4.2 Task 2. Chart Text Detection and Recognition

Task description. Text is an important component of the semantics of a chart
image. The goal of this task is to detect and recognize individual text blocks in
the image. Unlike many scene text detection benchmarks, we are not interested
in detecting isolated words, but rather we need to identify text blocks meant to
be interpreted as a single unit (e.g. an axis title, a legend entry, etc.).

Inputs, Outputs and Metrics. The inputs are the chart image and
its classification. The output is a list of text regions (detection), represented
by quadrilaterals, and their corresponding transcriptions (recognition), repre-
sented by strings which might include LATEX notation to handle special symbols
and formulas found in charts. For each image, the predicted texts are matched
against the GT texts if their IoU ≥ 0.5, but a 1-to-1 matching constraint is
enforced. The IoU values of matching texts are summed and the total is divided
by max(|predicted texts|, |GT texts|) to produce the per-image IoU score. For ev-
ery GT text, we compute the normalized character error rate (NCER) between
its transcriptions and the text of its corresponding prediction. Unmatched GT
texts receive a NCER score of 0. All NCER values are summed and divided by
|GT texts| to produce the per-image NCER score. Detection and Recognition re-
sults are evaluated using the average of the per-image IoU and per-image NCER

CHART-Info 2024: A dataset for Chart Analysis and Recognition 7

scores, respectively. The final metric for Task 2 is the harmonic mean (f-score)
of the detection and recognition scores.

Baselines for Detection. On average, charts have simpler backgrounds
than natural scenes, but text regions can be really small, and they can overlap
other graphical elements. One missing text region can have a huge impact in
the overall accuracy of the whole chart recognition process. While scene text
detectors often target isolated words, text in charts is better analyzed using
coherent text regions (e.g. a complete data series name). This is hard considering
that text regions in charts can go from one symbol to multiple lines of text.

We first considered two out-of-the-box baselines, Tesseract OCR engine v5.3.1
[1] and PaddleOCR engine v3 (PPv3) [24], which achieved average IoU scores
of 0.3035 and 0.6022, respectively. These results show that, out of the box, they
do not work well on charts probably because our target is text blocks which is
not what these methods produce by default. These results already include some
post-processing rules that helped but by only so much.

We then considered multiple baselines retrained with our data (DS2). Some
of these models are based on the PPv3 framework [24], and these are pretrained
on the ICDAR 2015 Scene Text Detection dataset [23]. We also considered mod-
els from the MMRotate framework [45], which were designed for rotated object
detection in aerial images, and are pretrained on ImageNet-1k. We acknowledge
that the accuracy of third-party re-implementations might be slightly different
to the original models. Table 4 shows results for text detection baselines re-
trained on our dataset. In the case of PPv3 [24], configurations using the larger
ResNet-50 [16] backbone achieved better results than their counterparts using
MobileNet-V3 [18], although by a small margin in many cases. Surprisingly,
while DB++[27] has produced better results than EAST [44] on natural scenes,
EAST achieved better results here. Nevertheless, the best results were obtained
using RoI Transformer [12] with Swin-Tiny [29] backbone, from the MMrotate
framework [45]. This model might be the best in handling rotated text.

Baselines for Recognition. To make a fair comparison between text recog-
nition baselines, we apply each recognition algorithm over text detection GT.
During training and evaluation, the unicodeit Python library is used to convert
the special LATEX annotations into Unicode symbols. This library cannot han-
dle all special symbols and formulas, but is appropriate for the vast majority of
alphanumeric strings. We created a custom dictionary based on the 250 most
common Unicode symbols in the training set to retrain some of our baselines.

Text recognition models often expect the inputs to contain a single horizontal
line of text with at most so many characters. They do not work well with images
of texts that are very long, rotated and/or multi-line. Multi-line text blocks
are rare in our dataset, but long texts are very common. We use simple rules to
identify long and/or multi-line text candidates, and then apply greedy algorithms
to cut the image horizontally and/or vertically as required. The recognizer is used
over each partition, and the results are concatenated.

Rotated text is common in charts, specially on axis titles and tick labels, and
can be long and/or multi-line as well. All text regions (any rotation) are always

8 Davila et al.

Table 4. Baselines for Chart Text
Detection. Backbones include Mo-
bileNetv3 [18] (MN3), ResNet-50 [16]
(RN50), ReResNet-50 [15] (RRN50)
and Swin Tiny [29] (ST)

Method IoU

DB [26] - MN3 0.7809
DB [26] - RN50 0.7866
PSENet [40] - MN3 0.8242
PSENet [40] - RN50 0.8263
DB++ [27] - RN50 0.7996
EAST [44] - MN3 0.8036
EAST [44] - RN50 0.8396

ReDet [15] - RRN50 0.8875
RoI Trans. [12] - RN50 0.8828
RoI Trans. [12] - ST 0.8890

Table 5. Baselines for Chart Text Recogni-
tion. These baselines are based on the PPv3
framework, were pretrained on ICDAR 2015
[23] and retrained on our dataset. Results
are provided using Line Splitting (w LS) and
Without Line Splitting (w/o LS).

w/o LS
NCER

w LS
NCERMethod

SAR [25] 0.9064 0.9202
SRN [42] 0.9098 0.9267
RobustScanner [43] 0.9133 0.9312
VisionLAN [41] 0.9132 0.9316
CRNN [35] 0.9480 0.9477
StarNet [28] 0.9293 0.9480
RFL [19] 0.9329 0.9506
ABINet [14] 0.9360 0.9528
SVTR [13] 0.9323 0.9549

Table 6. Baselines for Chart Text Detection and Recognition. We consider some Out-
of-the-box (OOB) configurations, and the best configurations reported earlier.

Detection Method Recognition Method OOB IoU NCER H-Mean

Tesseract [1] Tesseract [1] Yes 0.3035 0.3663 0.3320
PPv2 [24] DB [26] PPv2 [24] CRNN [35] Yes 0.5688 0.7074 0.6305
PPv3 [24] DB [26] PPv3 [24] SVTR [13] Yes 0.6022 0.7866 0.6821

RoI Trans. [12] Swin Tiny [29] PPv3 SVTR [13] No 0.8890 0.9264 0.9073

projected into axis-aligned rectangular regions, which can only have 0, +90, +180
or −90 degree rotations. The PPv3 framework includes an angle classifier but it
did not perform well on chart text. Because of this, we used simple rules based
on recognition confidence scores to simultaneously handle rotated text and long
and/or multi-line text. When needed, this method tests multiple combinations
of rotations with image splitting, and keeps the most confident transcription.

We considered three out-of-the-box baselines, Tesseract OCR [1], PPv2 [24]
with CRNN [35], and PPv3 [24] with SVTR [13], which achieved NCER scores
of 0.8483, 0.8226 and 0.8921, respectively. These baselines do not use any of
our rules to handle special cases. We then experimented using our dataset to
retrain multiple models from the PPv3 framework, and applying our rules to
handle multi-line and rotated text. Table 5 shows the results for these models,
considering whether the horizontal line splitting algorithm (LS) was used to deal
with long text candidates or not. We found CRNN [35] to be the most robust in
terms of handling long texts on its own. However, by using our horizontal line
splitting algorithm, other methods achieved higher recognition results. The best
recognition method was SVTR [13].

Complete Baselines. Table 6 shows the results for end-to-end chart text
detection and recognition. Here, recognition results are affected by errors made

CHART-Info 2024: A dataset for Chart Analysis and Recognition 9

Fig. 1. Targets for multiple tasks. Different text colors are used to illustrate our text
roles in two charts (Task 3). We also show the expected ticks using stars (Task 4), and
red rectangles define the legend symbols (Task 5). Best seen in digital format.

by the detection model. We only consider out-of-the-box baselines, and the com-
bination of the best models for detection (ROI Trans [12] with Swin-Tiny [29])
and recognition (PPv3 with SVTR [13]). This combined model is also using all
of the intermediate rules used for handling rotated, multi-line and/or long texts.

4.3 Task 3. Chart Text Role Classification

Task description. This task aims to determine the role or function that each
text region has on the chart. Our dataset considers 9 roles: chart title, axis title,
tick label, tick grouping, legend title, legend label, value label, marker label, and
other. This covers the categories needed to make sense of a chart image. The
other category is used to group additional less common roles. These roles are
illustrated in Figure 1.

Inputs, Outputs and Metrics. The inputs include the chart image and
the GT outputs for Tasks 1 and 2. The expected output is a list of the roles for
each GT text region. Like Task 1, evaluation is based on classification metrics.

Baselines. This task is similar to general object classification on images.
However, two identical objects (text regions) can have different classes (roles)
based on their position within the chart layout. Class imbalance also makes this
task challenging, where tick labels make about 70.11% of all text regions in the
training dataset, while legend title, chart title, and tick grouping are so rare that
even combined represent just 1.15% of all text regions. However, all classes have
the same impact on the final metrics.

We created our baselines for task 3 by training different object detector
models using the role of each text region as their target class. We create variations
of these models to simultaneously deal with multiple tasks. The first, V35, deals
with tasks 3 and 5, and uses the original 9 text roles. The second, V345, deals
with tasks 3, 4 and 5, and needs 12 roles for text. This is because it replaces the
tick label class with 4 per-axis classes (more details in Section 4.4).

Task 3 requires assigning classes to text regions in the GT, but the predictions
made by the object detectors might not align with the GT. Overlapping pairs
of GT text regions and predictions are scored using the harmonic mean of their
IoU and prediction confidence. We then greedily pick the highest scoring matches

10 Davila et al.

Table 7. Baselines for Text Role Classification. Columns are F1 scores (%) for tick
label (TL), axis title (AT), legend label (LL), value label (VL), legend title (LT), mark
label (ML), tick grouping (TG), other (O), Chart Title (CT) and their macro average.
For each baseline, we consider the V35 (†) and V345 (‡) variations.

Method TL AT LL VL LT ML TG O CT AVG

†ReDet [15] (R50 [16]) 98.8 97.1 97.9 81.2 79.1 54.4 55.7 71.1 83.2 79.85
†RoI Trans [12] (R50 [16]) 98.6 97.3 97.8 81.3 78.0 60.5 54.4 71.0 82.6 80.18
†RoI Trans [12] (Swin Tiny [29]) 98.9 98.0 98.1 84.2 79.6 62.1 60.7 74.9 87.9 82.72
†YOLO-V8x [21] 98.8 98.1 97.3 84.7 85.3 63.0 70.7 74.5 89.9 84.71
†Deformable DETR [46] 99.4 98.6 98.6 83.8 87.1 63.8 70.6 75.9 91.3 85.45
†C. Mask R-CNN (Swin Base) [29] 99.2 98.7 98.6 85.4 89.6 68.7 70.9 77.3 92.6 86.78

‡ReDet [15] (R50 [16]) 98.9 96.7 98.0 81.3 79.6 56.2 57.5 72.2 83.1 80.40
‡RoI Trans [12] (R50 [16]) 98.7 97.4 98.1 81.3 75.7 60.2 56.3 71.8 82.6 80.22
‡RoI Trans [12] (Swin Tiny [29]) 99.0 98.0 98.1 83.7 81.5 63.4 61.2 74.5 88.5 83.10
‡YOLO-V8x [21] 98.5 96.8 96.8 79.3 76.0 51.9 59.9 67.7 72.7 77.76
‡Deformable DETR [46] 99.4 98.6 98.8 84.2 87.4 66.3 74.9 75.9 92.1 86.40
‡C. Mask R-CNN (Swin Base) [29] 99.2 98.7 99.0 85.2 89.6 69.4 69.8 77.5 90.8 86.57

while enforcing a 1-to-1 matching constraint. The class of the prediction is finally
assigned to each of the matched GT text regions. Unmatched predictions are
simply ignored, and unmatched GT text regions are omitted.

Table 7 shows the results for Task 3. The tick label, legend label and axis title
classes, which represent 87.16% of the training dataset, have very high F1 scores.
Meanwhile, the mark label and tick grouping classes, which represent only 1.98%
of the training dataset, have the lowest F1 scores. Except for YOLO-V8 [21],
most models have very similar results for both variations. The Cascade Mask
R-CNN model with Swin-Base transformer [29] and Deformable DETR [46] are
consistently the strongest model from this set.

4.4 Task 4. Chart Axis Analysis

Task description. Axes in charts define the space of the chart data. The goal
of this task is to locate the main chart axes (horizontal and vertical), and then
link specific points in the axes (ticks) with text (tick labels). This location should
be independent of the existence of visual tick marks.

Inputs, Outputs and Metrics. Inputs are the same as Task 3. The output
is a dictionary organizing the tick positions by axis. Then, per axis, a set of pairs
(text id, point) is expected. Each pair represents a tick label by their unique id
in the GT, and the point represents the tick position.

Evaluation considers precision and recall of predicted ticks on the main axes
(x-axis at the bottom and y-axis at the left). Secondary axes (top or right)
are ignored. Predicted and GT ticks are matched by text id, and each match
is weighted based on the distance between the GT location and the predicted
location. First, the distances are normalized by the length of the image diagonal,
and matches with distance ≥ 0.02 receive a weight of 0, and distance ≤ 0.01

CHART-Info 2024: A dataset for Chart Analysis and Recognition 11

Table 8. Baselines for Axes Analysis. All of them are based on Variation 345

Method Rec. (%) Prec. (%) F1 (%)

ReDet [15] (R50 [16]) 83.89 85.72 84.79
RoI Trans [12] (R50 [16]) 84.09 85.27 84.67
RoI Trans [12] (Swin Tiny [29]) 84.56 86.08 85.31
YOLO-V8x [21] 54.35 56.64 55.47
Deformable DETR [46] 85.38 85.18 85.28
Cascade Mask R-CNN (Swin Base) [29] 77.32 86.46 81.63

receive a weight of 1. For 0.01 < distance < 0.02, an interpolated weight between
1 and 0 is used. Missing ticks and ticks associated with the wrong axis have
weights of 0. The total weight of all matches is divided by the number of GT ticks
to compute recall and by the number of predicted ticks to compute precision.
Then, the overall recall and precision metrics are the macro averages of the per-
axis values. Finally, we compute F1 score as the final per-chart score, and the
average of the per-chart scores are computed for the entire evaluation set.

Baselines. While the GT text regions are known for this task, their corre-
sponding roles are unknown. Because of this, our baselines work in combination
with role predictions from Task 3, to identify all tick labels. The next challenge
is to associate these to their corresponding axes. We use Variation V345 (see
Task 4.3) which refines the tick label class by directly predicting if the region is
a tick label of: x-axis (bottom), y-axis (left), x2-axis (top) or y2-axis (right).

The next step is to associate the tick labels to specific image locations. A
common idea is to detect tick marks and use rules to match these to tick labels,
but in many cases the tick marks are not visible or do not correspond to positions
that should be associated with tick labels. To solve this problem, we add an axes
corner object, which is a box of 10-by-10 pixels, centered at the origin of both
x and y axes (bottom-left corner). The center of this box, (cx, cy), provides the
coordinates shared by all ticks in a given axis (cx for y axis, cy for x axis). We use
rules to determine the other coordinate using the rotated bounding box of the
corresponding tick label. In most cases we simply use the center of the tick label
bounding box: vertical center for y axis, horizontal center for x axis. Rotated
tick labels, commonly found in the x axis, are the exception to this, and we use
the x coordinate of the top-most point in their rotated bounding box.

Table 8 shows the results for this task. The performance for most object
detectors is reasonably good considering that they do not detect visual tick
marks. The baselines will fail when the axes corner box is incorrectly detected,
or not detected at all. If multiple boxes are detected, the most confident is
picked, but that can also produce incorrect outputs. Errors made in Task 3
(e.g., false positives/negatives for tick labels) are also propagated here. Also,
tick labels associated with the wrong axis reduce precision for one axis, and
recall for the other. Here, the ROI Trans model [12] achieved the highest score,
with more consistent recall and precision levels than other models. The second
best is Deformable DETR [46].

12 Davila et al.

4.5 Task 5. Chart Legend Analysis

Task description. A legend is made by a set of legend entries, which are
(legend label, legend symbol) pairs. Each legend label usually corresponds to one
specific data series in the chart. The legend symbol exemplifies the appearance
of the corresponding data marks. An example is shown in the left side of Figure
1. The goal of this task is to identify the legend entry pairs in the image.

Inputs, Outputs and Metrics. Inputs are the same as task 3. The output
is a list of legend entry pairs (text id, bounding box), where the text id represents
a legend label, and bounding box represents the associated symbol.

The evaluation of this tasks requires correct pairings between legend labels
and legend symbols. For a given chart, predicted legend entries are initially
matched to GT by the id of the legend labels. For each matching pair, the area of
intersection between the GT legend symbol and the predicted one is computed
and used to get two metrics: an IoU-based score (divide by the area of the union)
and a recall-based score (divide by the area of the GT bounding box). The sum
over all legend entries is computed for both scores, and then they are divided by
the maximum between the number of GT legend entries and predicted legend
entries. Finally, the average over the evaluation set is computed for both metrics.

Many charts have rather small and thin legend symbols (e.g, height of 2 pix-
els). IoU-score can be over-punishing on bounding boxes that correctly capture
the legend symbol, but are slightly thicker. The recall-based score is also consid-
ered here because of this.

Baselines. Similar to Task 4, this task has access to the GT text regions,
but the roles are unknown. All legend labels and legend symbols candidates need
to be identified, and these need to be combined into legend entry pairs. As
described before, we consider object detection baselines that combine multiple
tasks on the same network. For task 5, we simply add the legend symbol objects.
The same network will produce all legend label and legend symbol candidates.

The next challenge is to pair the candidates while considering false positives
and negatives for both classes. Algorithms typically used for 1-to-1 matching in
bipartite graphs will fail due to the noisy predictions. A simple approach is to pair
each legend symbol with its closest legend label, but the way in which the distances
are measured determines the quality of results. Based on the observation that
for most charts, all legend entries have their symbols on the same side, we first
estimate if all legend symbols in the image are left, right, above or below their
labels. This direction is used to pick the corresponding edges of the bounding
boxes of the legend labels, and their middle points are used as reference points
for the labels. We then measure the distances between the reference points and
the centers of the bounding boxes of the symbols. Matches are then sorted by
increasing distance, and they are greedily picked in that order. Only matches
between previously unmatched elements are accepted, and the process stops as
soon as the first match involving a symbol or label previously matched appears.
We do this to prevent spurious matches involving false positives/negatives based
on the observation that valid legend entries in the same chart usually have similar
edge distances between their symbols and labels.

CHART-Info 2024: A dataset for Chart Analysis and Recognition 13

Table 9. Baselines for Legend Analysis. We consider variations V35 (†) and V345 (‡).

Average BBox

Method IoU (%) Recall (%)

†ReDet [15] (R50 [16]) 83.09 95.33
†RoI Trans [12] (R50 [16]) 83.41 95.62
†RoI Trans [12] (Swin Tiny [29]) 84.31 95.56
†YOLO-V8x [21] 43.86 49.53
†Deformable DETR [46] 80.52 88.53
†Cascade Mask R-CNN (Swin Base) [29] 84.23 93.56

‡ReDet [15] (R50 [16]) 83.66 95.57
‡RoI Trans [12] (R50 [16]) 83.26 95.69
‡RoI Trans [12] (Swin Tiny [29]) 83.84 95.42
‡YOLO-V8x [21] 43.42 49.31
‡Deformable DETR [46] 82.86 91.81
‡Cascade Mask R-CNN (Swin Base) [29] 84.12 93.62

Table 9 shows the results for this task. The recall-based scores show that
most legend symbols are being detected and matched correctly, and that pre-
dicted boxes greatly overlap the symbol regions. It is possible that many of these
predictions have the wrong thickness, leading to a much lower IoU-based scores
in comparison. Errors can come from false positives/negatives of legend symbols
and legend label. The method with the highest average F1 score for role classifi-
cation achieves 98.6 F1 score for the legend label class (see Table 7). Therefore,
it is likely that most errors come from failures to correctly detect the legend
symbols. The baselines based on RoI Trans [12] consistently achieve some of the
best scores for this task.

4.6 Task 6. Chart Data Extraction

Task description. This task approximates the data table used to create a
chart image. It is divided into two sub-tasks: Plot element detection and extrac-
tion (Task 6.a), and raw data extraction (Task 6.b). The first sub-task aims at
correctly locating the data marks in the chart (e.g., lines in line charts, bars
in bar charts, etc.). The second sub-task puts everything together (text, axes,
legends, and data marks) to reconstruct the data encoded in the chart image.
The chart type might be used to determine the right approach for this task.

Inputs, Outputs and Metrics. The inputs for this task are the outputs
from all previous tasks (1-5). The outputs for Task 6.a depend on the chart
type. Bar charts require a list of bounding boxes per bar. Line and Scatter plots
require a list of points for each data series. Box plots require a tuple with the
position of the components of each box (box top, box bottom, box median, top
whisker, bottom whisker). For task 6.b, the output is a set of data series with
name, and the list of data points (x, y) that make that data series, where x is
the independent variable, and y is the dependent variable. Multiple metrics are
considered depending on the type of chart (See [9,11] for details).

14 Davila et al.

(a) Scatter (b) Scatter-Line Chart (c) Line Chart

(d) Vertical Box Plot (e) Stacked Bar Chart

Fig. 2. Examples of challenging charts in our dataset. (a) Scatter chart, extracted from
[33]. (b) Scatter-line, extracted from [6]. (c) Line chart, extracted from [2]. (d) Vertical
Box plot, extracted from [4]. (e) Stacked bar chart, extracted from [17].

Baselines. The baselines for this task are complex, requiring combination of
results from previous tasks. Existing works on chart recognition typically focus
on a single chart type [8]. Meanwhile, our dataset provides data annotations for:
horizontal/vertical bar charts, vertical box plots, scatter plots and line charts.
Providing baselines for each of these chart types is out of the scope of this work.
However, we briefly discuss the implications and complexities of creating data
extraction models for these chart types.

Horizontal/Vertical Bar Charts. This is arguably the simplest chart
type for data extraction. Standard object detectors often work with anchors of
predefined aspect ratios, and bars in some charts can be extremely narrow or
long. Most charts use bars of solid colors, but some charts use complex texture
patterns instead. After detecting the bars, the next challenge is to infer the
values represented by them. Every bar must be correctly map to a category (x
value), a data series (e.g., “legend entry”), and an absolute value (y value). The
orientation of the chart defines which axis is the x value (independent variable)
and which one is the y value (dependent variable). Many charts use stacked
and/or grouped bars, which require associating multiple bars to a single category
(e.g., by proximity). Bars are usually associated to particular data series using
legend analysis and their appearance. Finally, the y values of the bars are inferred
through axes analysis and their spatial location. This process gets slightly more
complicated for stacked bars where two extreme points are required to infer the
value of each bar. Also, data points with y=0 often lead to invisible bars, but

CHART-Info 2024: A dataset for Chart Analysis and Recognition 15

their existence might be inferred by analyzing the chart layout. Figure 2.e shows
an example of a complex stacked vertical bar chart included in our dataset.

Vertical Box Plots. The first step is to detect the boxes and their cor-
responding whiskers and median lines. Object detectors can be used to locate
the boxes, but extreme aspect ratios can be a challenge. Whiskers and median
lines might not be visible when their values are too close to the values repre-
sented by the top and/or bottom of the boxes. Similar to bar charts, we can find
grouped box plots, where multiple boxes share a single category and each box
needs to be linked to a particular legend entry. There are five points of interest
in each box that need to be correctly mapped to their corresponding values in
the y-axis. Figure 2.d shows a complex grouped vertical box plot included in our
dataset. Note that horizontal box plots can be processed in a similar way, but
we excluded them from our dataset because they are quite rare in practice. Also,
many box plots include outliers represented by scatter marks, but we decided
to currently exclude these from our benchmark because even human annotators
often struggle to distinguish and recognize all individual points.

Scatter Plots. First, each data mark representing a data point must be
detected. This might be easy when there are only a few large data marks, and
extremely difficult when the plot region is cluttered with many small data marks.
In the worst case scenario, we might only approximate the distribution of the
original data used to create the plot. While our dataset includes all kinds of
scatter plots, we only annotated data in cases where human annotators could
accurately identify all individual data points. Data marks can be generated us-
ing all sorts of shapes, colors and sizes, making their automatic detection very
challenging. After detection, each data mark needs to be mapped to a 2D point
using their location and axis analysis. Legend analysis and the appearance of
the data marks must be used to correctly map them to their corresponding data
series. If no legend is present, then the appearance alone must be used to infer
the existence of multiple data series. Figure 2.a shows an example of a complex
scatter in our dataset where the colors on the legend do not match the colors
in the plot region, and matching needs to be done using shapes, but this is also
hard due to overlaps between data marks.

Line Plots. This is arguably the most challenging type here. Identifying
the pixels of a given line is a segmentation problem which cannot be approached
with basic object detectors. Some charts have solid colored lines which can be
easily traced by basic segmentation algorithms. However, we find many charts
with dashed lines and repeated line colors, where the thickness and/or dash
patterns must be considered to differentiate them. Lines can also intersect and
significantly occlude each other. Same as other chart types, lines must be as-
sociated with data series using legend analysis, but this can be difficult when
the associated legend entries are very thin. Figure 2.c shows a line chart in our
dataset which displays many of these issues. Some charts do not use legends,
and instead directly provide names for each line using colored text within the
plot region (e.g. data mark label) as illustrated on the right side of Figure 1.

16 Davila et al.

4.7 Task 7. End-to-End Data Extraction

The end-to-end data extraction task has the same goals, outputs and metrics as
sub-task 6.b (Section 4.6). However, the only input is the image of a chart. This
task was designed for systems that can handle the chart recognition process as
a whole, removing the need to produce and evaluate intermediate outputs. It is
also possible to create a modular system which handles the recognition process
using the individual tasks suggested in this benchmark. Not having any ground
truth means that the real outputs from each module in the pipeline must be
used. Any errors made in the earlier tasks will propagate to later tasks, affecting
the overall recognition results. Similar to Task 6, baselines for this complex task
are out of the scope of this work.

5 Conclusion

In this paper, we have introduced the CHART-Info 2024 dataset, a natural
extension to the existing ICPR 2022 CHART-Info datasets [11]. Apart from a
brand new test dataset, we have also provided a considerable number of baselines
for the first 5 tasks defined in our dataset. These baselines provide a starting
point for researchers interested in chart recognition. We believe that our dataset
will enable the development of better chart recognition systems which will be
capable of dealing with complexities found on charts in the wild.

References

1. Tesseract OCR – opensource.google.com, https://opensource.google.com/

projects/tesseract

2. Adamczyk, K., Grzesiak, W., Zaborski, D.: The use of artificial neural networks
and a general discriminant analysis for predicting culling reasons in holstein-friesian
cows based on first-lactation performance records. Animals 11(3), 721 (2021)

3. Bajić, F., Job, J.: Data extraction of circular-shaped and grid-like chart images.
Journal of Imaging 8(5), 136 (2022)

4. Bryce, R., Carreño, I.L., Kumler, A., Hodge, B.M., Roberts, B., Martinez-Anido,
C.B.: Annually and monthly resolved solar irradiance and atmospheric temperature
data across the hawaiian archipelago from 1998 to 2015 with interannual summary
statistics. Data in Brief 19, 896–920 (2018)

5. Chagas, P., Freitas, A., Daisuke, R., Miranda, B., De Araújo, T.D.O., Santos, C.,
Meiguins, B., De Morais, J.M.: Architecture proposal for data extraction of chart
images using convolutional neural network. In: 21st IV. pp. 318–323. IEEE (2017)

6. Chen, J., Cai, Y., Clark, M., Yu, Y.: Equilibrium and kinetic studies of phosphate
removal from solution onto a hydrothermally modified oyster shell material. PLoS
One 8(4), e60243 (2013)

7. Chollet, F.: Xception: Deep learning with depthwise separable convolutions. In:
Proceedings of CVPR. pp. 1251–1258 (2017)

8. Davila, K., Setlur, S., Doermann, D., Bhargava, U.K., Govindaraju, V.: Chart
mining: a survey of methods for automated chart analysis. IEEE Transactions on
Pattern Analysis and Machine Intelligence 43(11), 3799–3819 (2020)

CHART-Info 2024: A dataset for Chart Analysis and Recognition 17

9. Davila, K., Tensmeyer, C., Shekhar, S., Singh, H., Setlur, S., Govindaraju, V.:
ICPR 2020-Competition on HArvesting Raw Tables from Infographics. In: Inter-
national Conference on Pattern Recognition. pp. 361–380. Springer (2021)

10. Davila, K., Urala Kota, B., Setlur, S., Govindaraju, V., Tensmeyer, C., Shekhar,
S., Chaudhry, R.: ICDAR 2019 Competition on HArvesting Raw Tables from In-
fographics (CHART-Infographics). In: ICDAR. IEEE (2019)

11. Davila, K., Xu, F., Ahmed, S., Mendoza, D.A., Setlur, S., Govindaraju, V.: ICPR
2022-Challenge on HArvesting Raw Tables from Infographics. In: International
Conference on Pattern Recognition. IEEE (2022)

12. Ding, J., Xue, N., Long, Y., Xia, G.S., Lu, Q.: Learning roi transformer for oriented
object detection in aerial images. In: CVPR. pp. 2849–2858 (2019)

13. Du, Y., Chen, Z., Jia, C., Yin, X., Zheng, T., Li, C., Du, Y., Jiang, Y.G.: Svtr: Scene
text recognition with a single visual model. In: Raedt, L.D. (ed.) International Joint
Conference on Artificial Intelligence. pp. 884–890. International Joint Conferences
on Artificial Intelligence Organization (7 2022)

14. Fang, S., Xie, H., Wang, Y., Mao, Z., Zhang, Y.: Abinet: Read like humans: Au-
tonomous, bidirectional and iterative language modeling for scene text recognition
pp. 7098–7107 (2021), https://arxiv.org/abs/2103.06495

15. Han, J., Ding, J., Xue, N., Xia, G.S.: Redet: A rotation-equivariant detector for
aerial object detection. In: CVPR. pp. 2786–2795 (2021)

16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR. pp. 770–778 (2016)

17. Hindenes, L.B., H̊aberg, A.K., Johnsen, L.H., Mathiesen, E.B., Robben, D., Vang-
berg, T.R.: Variations in the circle of willis in a large population sample using 3d
tof angiography: The tromsø study. PLoS One 15(11), e0241373 (2020)

18. Howard, A., Sandler, M., Chu, G., Chen, L.C., Chen, B., Tan, M., Wang, W.,
Zhu, Y., Pang, R., Vasudevan, V., et al.: Searching for mobilenetv3. In: ICCV. pp.
1314–1324 (2019)

19. Jiang, H., Xu, Y., Cheng, Z., Pu, S., Niu, Y., Ren, W., Wu, F., Tan, W.: Reciprocal
feature learning via explicit and implicit tasks in scene text recognition (2021),
https://arxiv.org/abs/2105.06229

20. Jobin, K., Mondal, A., Jawahar, C.: Docfigure: A dataset for scientific document
figure classification. In: ICDARW. vol. 1, pp. 74–79. IEEE (2019)

21. Jocher, G., Chaurasia, A., Qiu, J.: Ultralytics YOLO (Jan 2023), https://github.
com/ultralytics/ultralytics

22. Kafle, K., Price, B., Cohen, S., Kanan, C.: Dvqa: Understanding data visualizations
via question answering. In: CVPR. pp. 5648–5656 (2018)

23. Karatzas, D., Gomez-Bigorda, L., Nicolaou, A., Ghosh, S., Bagdanov, A., Iwa-
mura, M., Matas, J., Neumann, L., Chandrasekhar, V.R., Lu, S., et al.: Icdar 2015
competition on robust reading. In: ICDAR. pp. 1156–1160. IEEE (2015)

24. Li, C., Liu, W., Guo, R., Yin, X., Jiang, K., Du, Y., Du, Y., Zhu, L., Lai, B., Hu,
X., et al.: Pp-ocrv3: More attempts for the improvement of ultra lightweight ocr
system. arXiv preprint arXiv:2206.03001 (2022)

25. Li, H., Wang, P., Shen, C., Zhang, G.: Show, attend and read: A simple and strong
baseline for irregular text recognition. ArXiv abs/1811.00751 (2019)

26. Liao, M., Wan, Z., Yao, C., Chen, K., Bai, X.: Real-time scene text detection with
differentiable binarization. In: Proceedings of the AAAI Conference on Artificial
Intelligence. vol. 34, pp. 11474–11481 (2020)

27. Liao, M., Zou, Z., Wan, Z., Yao, C., Bai, X.: Real-time scene text detection with
differentiable binarization and adaptive scale fusion. IEEE Transactions on Pattern
Analysis and Machine Intelligence (2022)

18 Davila et al.

28. Liu, W., Chen, C., Wong, K.Y.K., Su, Z., Han, J.: Star-net: a spatial attention
residue network for scene text recognition. In: BMVC. vol. 2, p. 7 (2016)

29. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin trans-
former: Hierarchical vision transformer using shifted windows. In: ICCV (2021)

30. Luo, J., Li, Z., Wang, J., Lin, C.Y.: Chartocr: Data extraction from charts images
via a deep hybrid framework. In: WACV. pp. 1917–1925 (2021)

31. Masry, A., Do, X.L., Tan, J.Q., Joty, S., Hoque, E.: ChartQA: A benchmark for
question answering about charts with visual and logical reasoning. In: Findings of
the ACL. pp. 2263–2279. Dublin, Ireland (May 2022)

32. Methani, N., Ganguly, P., Khapra, M.M., Kumar, P.: Plotqa: Reasoning over sci-
entific plots. In: WACV. pp. 1527–1536 (2020)

33. Park, J.K., Kim, K.Y., Sim, Y.W., Kim, Y.I., Kim, J.K., Lee, C., Han, J., Kim,
C.U., Lee, J.E., Park, S.: Structures of three ependymin-related proteins suggest
their function as a hydrophobic molecule binder. IUCrJ 6(4), 729–739 (2019)

34. Savva, M., Kong, N., Chhajta, A., Fei-Fei, L., Agrawala, M., Heer, J.: Revision: Au-
tomated classification, analysis and redesign of chart images. In: ACM symposium
on User interface software and technology. pp. 393–402 (2011)

35. Shi, B., Bai, X., Yao, C.: An end-to-end trainable neural network for image-based
sequence recognition and its application to scene text recognition. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 39(11), 2298–2304 (2017)

36. Siegel, N., Horvitz, Z., Levin, R., Divvala, S., Farhadi, A.: Figureseer: Parsing
result-figures in research papers. In: ECCV. pp. 664–680. Springer (2016)

37. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the incep-
tion architecture for computer vision. In: CVPR. pp. 2818–2826 (2016)

38. Tan, M., Le, Q.: EfficientNet: Rethinking model scaling for convolutional neural
networks. In: ICML. PMLR, vol. 97, pp. 6105–6114. PMLR (09–15 Jun 2019)

39. Thiyam, J., Singh, S.R., Bora, P.K.: Chart classification: a survey and benchmark-
ing of different state-of-the-art methods. IJDAR pp. 1–26 (2023)

40. Wang, W., Xie, E., Li, X., Hou, W., Lu, T., Yu, G., Shao, S.: Shape robust text de-
tection with progressive scale expansion network. In: CVPR. pp. 9336–9345 (2019)

41. Wang, Y., Xie, H., Fang, S., Wang, J., Zhu, S., Zhang, Y.: From two to one: A
new scene text recognizer with visual language modeling network. In: ICCV. pp.
14194–14203 (2021)

42. Yu, D., Li, X., Zhang, C., Han, J., Liu, J., Ding, E.: Towards accurate scene text
recognition with semantic reasoning networks. CVPR pp. 12110–12119 (2020)

43. Yue, X., Kuang, Z., Lin, C., Sun, H., Zhang, W.: Robustscanner: Dynamically
enhancing positional clues for robust text recognition. ECCV (2020)

44. Zhou, X., Yao, C., Wen, H., Wang, Y., Zhou, S., He, W., Liang, J.: East: an efficient
and accurate scene text detector. In: CVPR. pp. 5551–5560 (2017)

45. Zhou, Y., Yang, X., Zhang, G., Wang, J., Liu, Y., Hou, L., Jiang, X., Liu, X., Yan,
J., Lyu, C., Zhang, W., Chen, K.: Mmrotate: A rotated object detection benchmark
using pytorch. In: ACM International Conference on Multimedia (2022)

46. Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable DETR: Deformable
transformers for end-to-end object detection. In: ICLR (2020)

