
Printed OCR for Extremely Low-resource Indic
Languages

Alik Sarkar, Ajoy Mondal, Gurpreet Singh Lehal, and C. V. Jawahar

CVIT, International Institute of Information Technology, Hyderabad, India
sarkaralikphy@gmail.com, gs.lehal@research.iiit.ac.in,

{ajoy.mondal,jawahar}@iiit.ac.in

Abstract. Indic languages represent a significant aspect of India’s cul-
tural heritage, embodying collective knowledge, traditions, and customs.
Preserving this heritage is crucial. Optical Character Recognition (OCR)
technology aids in simplifying text recognition tasks by extracting text
from images. This study uses an established OCR model to digitize docu-
ment images of extremely low-resource Indian languages, which previous
OCR efforts did not focus on. Preparing corpora for such languages is
challenging due to the scarcity of expert linguists and the required time
and resources. We introduce a synthetic dataset, Mozhi-LR(S) and a
real dataset, Mozhi-LR(R), comprising word level images with textual
transcriptions for these nine languages. The model is trained using syn-
thetic datasets and fine-tuned with real ones, achieving high accuracy
on synthetic and real datasets. We also offer APIs for our OCR models
and web-based applications that incorporate these APIs. This integra-
tion facilitates the digitization of Indic printed documents in extremely
low-resource languages. The trained models, code, and datasets are pub-
licly available at https://github.com/ALIKSARKAR/Printed-OCR-for-
Extremely-Low-resource-Indic-Languages.

Keywords: OCR · Indic language · Indic script · low-resource language
· printed text.

1 Introduction

India is rich in culture, most reflected in its languages. Languages are crucial
for maintaining Indian culture, as they communicate knowledge and identity.
With over sixteen hundred languages spoken, India has one of the highest lin-
guistic diversities globally. Preserving cultural heritage is vital to representing
collective knowledge, traditions, and customs. Preserving ancient languages like
Sanskrit provides insights into India’s rich cultural history and appreciation of
diverse traditions and customs. Optical Character Recognition (OCR) is crucial
for preserving these languages by digitizing documents.

OCR is a technology that extracts text from images and serves various practi-
cal purposes. The OCR process typically involves two main steps: text detection
and text recognition, which can be executed separately or concurrently [26]. Text

2 Sarkar et al.

Bodo

Maithili

Santali

Sindhi

Kashmiri

Konkani

Dogri

Nepali

Sanskrit

Fig. 1. Displays the regions on the map of India highlighted with colors where low-
resource languages are spoken. Best view in Zoom.

Language Scripts

Ol Chiki

Bengali

Odia

Devanagari

Perso-Arabic

Devanagari

Appearance Language Scripts Appearance

Devanagari

Devanagari

Devanagari

Devanagari

Devanagari

ᱵᱷᱟᱨᱚᱛ

ଭାରତ

भारत

ভারত

भारत

بھارَت

भारत

भारत

भारत

भारत

भारत

 تُ ڀَارَ

भारत

भारतुDevanagari

Perso-Arabic

Devanagari

Fig. 2. We study printed text recognition of nine Indian low-resource languages (four
different scripts). Languages such as Bodo, Dogri, Konkani, Maithili, Nepali, and San-
skrit use the common script Devanagari. We show how the name ”Bharat” is written
in all nine languages.

detection identifies text regions within an image, followed by text recognition,
where the identified text is transcribed. The recognition task may vary based
on the image type, such as handwritten recognition (HWR), document OCR,
and scene text recognition (STR). The challenges encountered in text recognition
depend on factors such as the language or script used, the text’s rendering (hand-
written, printed, or typewritten), and how the document is captured (scanned,
photographed with a mobile device, or born-digital).

The 2011 official census of India [1] lists thirty Indian languages with more
than a million native speakers. Twenty-two of them are granted scheduled (con-
stitutionally recognized) language status, written in (at least) 13 different ex-

Printed OCR for Extremely Low-resource Indic Languages 3

Dogri (Devanagari) Sindhi (Devanagari)

Kashmiri (Devanagari)

Maithili (Devanagari)

Nepali (Devanagari)

Sanskrit (Devanagari)Konkani (Devanagari)

Santali (Ol Chiki)

Bodo (Devanagari)

Fig. 3. Showcases a selection of cropped images from real document pages featuring
the nine low-resource languages, each represented in its respective script. Best view in
Zoom.

Extended Devanagari Characters list from Hindi

Sindhi : ॻ, ॼ, ॾ, ॿ ;

Kashmiri and Maithili : , ऻ, , , , ऎ, ॳ, ऒ, ॴ, ॵ;

Sanskrit : , , ॠ, ॡ ; Only Kashmiri : , , ॶ, ॷ, ऄ;

(a) (b)

Fig. 4. (a) Shows characters which are used in Sindhi, Maithili, Sanskrit, and Kashmiri.
(b) The Hindi model is unable to recognize words with extended characters that are
not present in Hindi words.

tant scripts and several other variations of them. These twenty-two languages
belong to three different language families: Indo-European, Dravidian, and Sino-
Tibetan. Among those languages, thirteen are high-resource (the languages for
which documents or other resources are readily available): Assamese, Bengali,
Gujarati, Hindi, Kannada, Malayalam, Manipuri, Marathi, Odia, Punjabi, Tamil,
Telugu, and Urdu. Many of them share common linguistic and grammatical
structures. However, the script remains very different, except for a few lan-
guages. The remaining nine languages are low-resource: Bodo, Dogri, Kashmiri,
Konkani, Maithili, Nepali, Sanskrit, Santali, and Sindhi. Fig. 1 highlights the
regions of India where low-resource languages are spoken. While most of these
low-resource languages use Devanagari as their script, some use different scripts.
Santali uses Bengali, Odia, Devanagari, and Ol Chiki as their script. Kashmiri
uses Devanagari and Perso-Arabic scripts. Fig. 4(a) shows characters that are
used in Sindhi, Maithili, and Kashmiri. Fig. 4(b) illustrates that the Hindi OCR
model struggles to recognize words in Sindhi and Kashmiri due to the presence

4 Sarkar et al.

of extended characters not found in Hindi words. These experiments underscore
the necessity of developing separate OCR models tailored to these low-resource
languages. Fig. 2 shows how the word ”Bharat” is written in these languages.
Fig. 3 depicts a sample of cropped images from nine languages from our newly
created Mozhi-LR(R) dataset.

Despite extensive endeavors spanning from the 1970s to date [40,8,4], achiev-
ing satisfactory results across multiple languages and document types remained
challenging. The complexity of scripts and languages and the scarcity of large-
scale annotated data presented formidable barriers to progress in Indian lan-
guage OCR. While significant attention has been devoted to high-resource Indic
languages [38,23,21,24,27,28,36], only some studies [6,35,11] have addressed low-
resource languages due to their limited resources. To fill the gap in research for
low-resource languages, we leverage an established OCR model to digitize docu-
ments in nine such languages. We create a synthetic data set of word level images
with their textual transcription of nine languages. We also create a real dataset
of manually annotated word level images with their textual transcription. The
model is trained with synthetic data sets and fine-tuned with real datasets. Fi-
nally, it is evaluated on a real and synthetic dataset and achieves high accuracy.
The APIs corresponding to our developed models are integrated into Bhasini1

for public use.
The contribution of this work is as follows:

– Generate a synthetic dataset named Mozhi-LR(S), comprising word level
images and their corresponding textual transcriptions for the nine languages
— Bodo, Dogri, Kashmiri, Konkani, Maithili, Nepali, Sanskrit, Santali, and
Sindhi (refer Table 1 and Fig. 6).

– Generate a real dataset named Mozhi-LR(R), consisting of manually anno-
tated word level images and their corresponding textual transcriptions from
real documents (refer Table 1 and Fig. 8).

– We develop OCR models for low-resource Indic languages and evaluate their
performance on both synthetic and real datasets, demonstrating significant
accuracy improvements across all languages. These findings highlight the
effectiveness of our approach in overcoming the challenges posed by low-
resource languages (see Table 2 for details).

– Provide APIs for our OCR models and web-based applications that seam-
lessly integrate these APIs, facilitating the digitization of Indic printed doc-
uments in low-resource languages.

2 Related Work

2.1 OCR on High-resource Indic Languages

Initially, OCR systems [8,40] for Indian languages typically follow a template-
matching approach to match characters, relying on intuitive features like shape

1 https://bhashini.gov.in/

Printed OCR for Extremely Low-resource Indic Languages 5

and water reservoir. Pal and Chaudhuri [34] provides a comprehensive overview
of the methods developed during this era. In the initial stage of OCR, various
methods such as [40,2,8,32,33,25] follow the pipeline — segmentation of words
into characters, which are then classified using various classifiers.

In the subsequent phase of OCR development, statistical and data-driven
methods gained prominence, incorporating techniques like Discrete Cosine Trans-
form (DCT) and Principal Component Analysis (PCA). Support Vector Ma-
chines (SVM) and Artificial Neural Networks (ANN) emerged as classifiers. Sev-
eral works [3,5,42,29,37,37,22,31] have been done in this directions. Arya et al. [4]
provide a comparative analysis of leading OCR systems developed during this
period.

Recent advancements in OCR for Indian scripts have focused on segmentation-
free methods, which directly generate label sequences from word or line images.
Sankaran et al. [38] introduced the use of Connectionist Temporal Classification
(CTC)-based sequence modeling for recognizing Indian printed text. They em-
ployed an RNN encoder and CTC transcription to map feature sequences from
Devanagari word images to class label sequences. This approach was further re-
fined in [30], where the feature sequence from the word image is directly mapped
to the Unicode sequence, eliminating the need for rule-based Akshara to Unicode
mapping. Adopting CTC-based transcription provided a solution for sub-word
segmentation challenges in Indic scripts, enabling direct transcription of word
images into machine-readable Unicode sequences. Krishnan et al. [23] employed
profile-based features and CTC-based models similar to [30] for recognizing seven
Indian languages. Their evaluation of extensive document image datasets per
language demonstrated the effectiveness of a unified CTC transcription frame-
work for multi-language recognition, eliminating the need for language-specific
components.

Hasan et al. [41] introduced an RNN+CTC model for recognizing printed
Urdu text, which directly generates a Unicode sequence from a text line image,
with lines as the recognition unit. Chavan et al.[9] conducted a comparative study
evaluating the performance of an RNN encoder and a multidimensional RNN
(MDRNN) [14] encoder in conjunction with CTC transcription. They utilized
HOG (Histogram of Gradients) features with the RNN encoder and raw pixels
with the MDRNN. Their findings indicate that the MDRNN encoder outper-
forms the RNN encoder. Paul et al. [36] proposed an RNN+CTC transcription
model for recognizing Bengali script. Additionally, Kundaikar and Pawar [24]
investigated the robustness of CTC-based Devanagari OCR to font and font size
variations. Significant efforts have been directed towards building OCR mod-
els for high-resource languages in India, whereas relatively few works focus on
low-resource languages.

2.2 OCR on Extremely Low-resource Indic Languages

While research in resource-scarce Indian languages remains limited, some ef-
forts have been made in languages derived from the Devanagari script. Dwivedi
et al. [11] proposed an encoder-decoder model for recognizing Sanskrit texts.

6 Sarkar et al.

Hasan et al. [16] explored transformer models for recognizing Nepali text writ-
ten in the Devanagari script. Additionally, a few studies have been conducted in
languages such as Sindhi [15], Kashmiri [7], and Sanskrit [39], albeit the num-
ber of works in these languages remains limited. The scarcity of research in this
domain motivates us to explore and investigate further.

Copy the content
of the text file to
word document

Edit different parameters
like font size, spacing,

font color etc. and
convert the word files to

PDFs

Convert each page
of a pdf to

individual images

Extract word-images by
segmenting page images

using OpenCV

Associate word
images with their
ground-truth text

PDF

PDF
Pages

Word

Corresponding
Document File

Text

Raw Text Files for
Each Script

Extracted Word-
level Images

Word Images

PDF
Pages

Page Images Dataset

Images and
Ground Truths

Fig. 5. Shows a pipeline for generation of synthetic word level images and their corre-
sponding textual transcriptions.

3 Dataset

Synthetic Dataset: Real-world data collection is time-consuming and challeng-
ing, requiring millions of images for specific tasks. Additionally, the annotation
process is prone to human errors despite efforts to minimize them. Synthetic
data has emerged as an alternative source to address these limitations. Gen-
erated by computers with minimal effort, synthetic data is cost-effective and
scalable [18,19]. For this study, we create a dataset Mozhi-LR(S), by generating
a large number of synthetic word level images and their corresponding textual
transcriptions for each of the nine languages. We follow the pipeline for creating
the synthetic dataset illustrated in Fig. 5.

(i) Text File: We start with the collection of raw text files for each of the ten
languages, each representing a distinct linguistic dataset. (ii)Word File: copy the
content of each text file to a corresponding Microsoft Word document to create a
Word file. In these Word files, we edit the text by changing font sizes, font colors,
and background colors. It introduces variation in the text’s appearance, enhanc-
ing the dataset’s diversity. (iii) PDF: we transform the edited Word documents
into PDF files. (iv) Page Image: we convert the PDF files into a combination
of page images. (v) Word Level Image: using OpenCV, we extract word-level
images from these page images. (vi) Mapping: We establish a mapping between
each word-level image and its corresponding text to ensure alignment between
the visual representation and the original text content. (vii) Synthetic Dataset:
gather the word images and corresponding textual transcriptions, assembling a
comprehensive synthetic dataset suitable for creating and evaluating OCR mod-
els. Table 1 shows the statistics of the created synthetic dataset. Fig. 6 shows a
few sample word level images and corresponding textual transcriptions from the
generated synthetic dataset.

Printed OCR for Extremely Low-resource Indic Languages 7

Script Language Mozhi-LR(R) Mozhi-LR(S)
Train Val Test Train Val Test

Devanagari

Maithili 2358 336 675 91849 13121 26243
Sindhi 3567 509 1021 183212 26174 52346
Dogri 3260 465 933 20225 2891 5780
Konkani 5282 754 1511 74028 10578 21152
Sanskrit 4767 681 1363 - - -
Nepali 5028 718 1437 41152 5931 11861
Bodo 35037 5004 1014 22415 3203 6405
Kashmiri 3899 557 1115 - - -

Ol Chiki Santali - - - 19811 2830 5661

Table 1. Presents the statistics of the created real Mozhi-LR(R) and synthetic Mozhi-
LR(S) datasets.

Santali (Ol Chiki)

Sindhi (Devanagari)

Maithili (Devanagari)

Fig. 6. Shows synthetic word samples for three languages, Santali, Sindhi, and Maithili.

Real Dataset: Our real dataset, Mozhi-LR(R), consists of 20-25 document
images per language sourced from various books and scanned using a flatbed
scanner at 300 DPI. These pages typically feature single-column text arranged in
paragraphs with simple layouts. For languages Bodo, Dogri, Kashmiri, Konkani,
Maithili, Nepali, Sanskrit, and Sindhi, pages are in Devanagari script. Each
page is manually annotated with word bounding boxes and corresponding text
transcriptions for the word level images. Fig. 8 showcases samples from Mozhi-
LR(R), highlighting the dataset’s diversity in terms of fonts, text sizes, colors,
orientations, lighting conditions, noises, styles, and backgrounds.

4 Baseline for Text Recognition

We utilize the network architecture proposed by Gongidi et al. [12] depicted in
Fig. 9, as the baseline for our experiment. This network consists of four main
modules: the Transformation Network Module (TM), Feature Extractor Module
(FEM), Sequence Modeling Module (SMM), and Predictive Modeling Module
(PMM).

Transformation Network Module (TM): This module transforms the in-
put imageX into the normalized image X̃. Printed text images often exhibit font

8 Sarkar et al.

(a)

कक्राझार जिल्लानि सिङाव थानाय झाहारबारि गामियाव दिनै आरोबाव नि सा 30 सोद्रोमाफोरा बि

टि आर फारसे आगान होफै फिनबाय।

मख’नो गोनांदि दिनै आ झाहारबारि गामियाव फै फिननाय सा 30 एन एल एफ बिहाग्रानिफ्राय

सोद्रोमाफोरखौ बरायहैयो।

बेजों लोगोसे साननैसोनि गेजेरावनो आरोबाव गोबां सोद्रोमाफोरा फै बावगोन होननानै बिथाङा

फोरमायदों ।
(b)

Fig. 7. Shows how we annotated real word level images and corresponding textual tran-
scriptions. (a) Cropped page image with bounding boxes, and (b) Cropped word images
extracted by bounding boxes and their corresponding manually annotated ground truth
highlighted in blue.

Maithili (Devanagari)Bodo(Devanagari) Sindhi (Devanagari)

Fig. 8. Shows real word samples for two scripts. Devanagari script for Bodo, Maithili
and Sindhi languages.

styles, sizes, and orientations variations, posing challenges for accurate recogni-
tion. If these input images are used without alteration, the subsequent feature
extraction stage must learn to account for these variations. A transformation
block is employed to apply input-specific geometric transformations to simplify
the text recognition task. Thin-plate spline (TPS) [20] and affine transforma-
tions (ATN) are commonly utilized methods to rectify input images. The Affine
module adjusts the scale, translation, and shear, while TPS applies a non-rigid
transformation by identifying fiducial points along the upper and bottom edges
of the word region.

Printed OCR for Extremely Low-resource Indic Languages 9

FEM SMM PMM

Feature Extraction
Module

Sequence
Modelling Module

Predictive
Modeling Module

H Y
Normalized

Image
Contextual

Feature
Prediction

V
Visual

Feature

ᱚ
,ᱞ,ᱤ,.....ᱟ

TM

Transformation
Module

X

Input Image

ᱚ
ᱞᱤ
ᱱ
ᱤ
ᱟ

Fig. 9. Shows a standard pipeline for text recognition is depicted below, illustrating
the process from input image X to text prediction Y. The example showcased here is
written in the Ol Chiki script.

Feature Extraction Module (FEM): A convolutional neural network, such
as ResNet [17], processes an input image (i.e., X or X̃) to produce a visual
feature map V = vi, where i ranges from 1 to I (the number of columns in
the feature map). Each column in the feature map corresponds to a distinct
receptive field along the horizontal axis of the input image. These features are
then utilized to predict the character associated with each receptive field.

Sequence Modelling Module (SMM): The features extracted from the fea-
ture extraction module (FEM) are restructured into a sequence V , where each
column vi represents a frame of the sequence. However, this sequence may lack
contextual information. To address this issue, similar to previous works [10,41,38,23],
we adopt a 2-layer BiLSTM architecture with 256 hidden neurons in each layer as
the sequence modeling (SM) module in our experiments to make better sequence
H = Seq(V).

Predictive Modeling Module (PMM): This module decodes a character se-
quence from the contextual feature H. Using the input H, the module predicts a
sequence of characters Y = y1, y2, . . . , yn. Connectionist Temporal Classification
(CTC) [13] is a commonly used method for achieving this task. CTC predicts a
character in each column hi ∈ H and transforms the entire character sequence
into a variable length stream by removing repeated characters and blanks.

5 Experiments and Results

5.1 Implementation Details

In our experiments, we standardized the cropped words to 32 pixels, converted
them to grayscale, and adjusted the aspect ratio to 96 × 256. Data sets are ran-
domly split into a 4:1 ratio for train and test sets, respectively, for both synthetic
and real data across all languages. Additionally, we allocated 12.50% of the train
split for validation, ensuring its representation of the training data while keeping
the test set distinct. The character set comprised language-specific characters,
symbols, and digits, with varying character counts for training depending on the

10 Sarkar et al.

language. Our model employed a bi-directional LSTM with 256 hidden units per
direction over two layers, yielding an output size of 2 × 256 at each time step.
Implementation was done using PyTorch, based on an existing CRNN architec-
ture [12], with training conducted on a single Nvidia GeForce 1080 Ti GPU. For
fine-tuning Devanagari script-based languages (Sindhi, Maithi, Dogri, Kashmiri,
Konkani, Nepali, Sanskrit, and Bodo), we used the AdaDelta with a 0.95 decay
rate. The training was performed for 50 epochs using the pre-trained Hindi model
on real and synthetic datasets. The batch size and learning rate were set to 32
and 1.0, respectively, with gradient clipping applied at a magnitude of 5.

Script Language Mozhi-LR(R) Mozhi-LR(S)
WRR CRR WRR CRR

D
ev
a
n
a
g
a
ri

Maithili 92.74 97.85 96.23 98.12
Sindhi 80.22 94.05 94.58 98.83
Dogri 91.85 97.30 96.76 98.94
Konkani 89.28 97.29 95.27 97.75
Sanskrit 86.57 94.96 - -
Nepali 82.60 95.13 93.07 96.73
Bodo 93.84 97.22 94.95 97.14
Kashmiri 87.71 93.80 - -

Ol Chiki Santali - - 90.60 96.58

Table 2. Shows results on our created datasets using baseline.

5.2 Training and Testing Details

We use the baseline model to train and evaluate the performance on the Ol
Chiki script in the Mozhi-LR(S) dataset for Santali. For the remaining eight
Devanagari-based languages, we fine-tune the Hindi pre-trained model on both
the Mozhi-LR(S) and Mozhi-LR(R) datasets. For Santali (Ol Chiki script), we
only showcase the results for ourMozhi-LR(S) dataset due to the limited number
of real word images collected for Mozhi-LR(R) for evaluation. We evaluate our
model solely on the Mozhi-LR(R) dataset for Sanskrit and Kashmiri.

5.3 Evaluation Metrics

Two popular evaluation metrics — Character Recognition Rate (CRR) (alter-
natively Character Error Rate, CER) and Word Recognition Rate (WRR) (al-
ternatively Word Error Rate, WER) are used to evaluate the performance of
recognizers. Error Rate (ER) is defined as

ER =

(
S +D + I

N

)
, (1)

Printed OCR for Extremely Low-resource Indic Languages 11

Language Visual Results

Maithili

उधसि-पुधसिक हिमालयक शब्दकेँ उच्च-कुलक िंबंधधत
उधसि-पुधसिका हिमालयक शब्दकें ँ उच्व-कुलक िंबंधधत

Sindhi

जहंिखे अकाडमीअ ॿुधायो। बैत िॿॿकनि.
जहंिखे अकाडमीआ ॿुधायो। बैता िॿॿकनि.

Dogri

यथाथथवादी फजी डडज़ाइिरें, मुट्टा कापी-राइट
यथाथथवादी पजी डडज़ाइिरें, मुटटा कापी-राइट

Konkani

िरकाराि कालखंडां ऋशीकलमेरेि कालांत राजा-राणयेची,
िरकाराि काठखंड़ां ऋशीकलमेरेि काव ्ँ ाँंत राजा-राणयेची,

Sanskrit

चतुथथहदविे अथथप्रकृनतयो इव वशजो अनतधथ-ित्कार
चतुथथहदविे अर्थप्रकनतयो इव वशज अनतधथ-ित्कार

Fig. 10. Shows visual results on word level images for Maithili, Sindhi, Dogri, Konkani,
and Sanskrit. In each language, the first row displays the input word level image, the
second row (text in blue) represents the ground truth, and the third row shows the
predicted text. Correct predictions are highlighted in green, while incorrect predictions
are highlighted in red.

Language Visual Results

Nepali

सहायताले धतीमा औषधध उसैंले उपचारका
सहायताले धतीना औषधध उसैले उपचारका

Bodo

तेजपुरआव बे हायाखिसै ब्रैजौ जाबोिो
तेजपुरआव बै हायाखिसै बैजौ जाबोिो

Kashmiri

त्रॉव्य मतृयु ु्मााअमतृ साववत्री-सतयवानधच मज़मूनस अदायव
त्रॉव्य मतृयमीअमतृ साववत्री-सतयवानधच ममज़मूनस अदायव

Santali

ᱞᱚᱰᱜᱮᱰ ᱢᱚᱛᱷ ᱨᱮᱭᱟᱜ ᱵᱮᱵᱷᱟᱨ ᱱᱤᱥᱤᱵᱞᱮ

ᱞᱚᱰᱜᱮᱰ ᱢᱚᱛ ᱨᱮᱭᱟᱜ ᱵᱮᱵᱟᱨ ᱱᱤᱥᱤᱵᱞᱮ

Fig. 11. Shows visual results on word level images for Nepali, Bodo, Kashmiri, and
Santali. In each language, the first row displays the input word level image, the second
row (text in blue) represents the ground truth, and the third row shows the predicted
text. Correct predictions are highlighted in green, while incorrect predictions are high-
lighted in red.

where S indicates the number of substitutions, D indicates the number of dele-
tions, I indicates the number of insertions, and N is the number of instances
in reference text. In the case of CER, Eq. (1) operates on character level, and
in the case of WER, Eq. (1) operates on word level. Recognition Rate (RR) is
defined as

RR = (1− ER) . (2)

In the case of CRR, Eq. (2) operates on character level, and in the case of WRR,
Eq. (2) operates on word level.

12 Sarkar et al.

6 Result Analysis

6.1 Quantitative Results:

The quantitative results from synthetic and real datasets are summarized in Ta-
ble 2. Across the eight languages using the Devanagari script — Maithili, Dogri,
Bodo, Sindhi, Konkani, Sanskrit, Nepali, and Kashmiri — the Word Recogni-
tion Rate (WRR) varies. Maithili, Dogri, and Bodo exhibit WRRs exceeding
90%, with 92.74%, 91.85%, and 93.84%, respectively. Conversely, the remaining
languages — Sindhi, Konkani, Sanskrit, Nepali, and Kashmiri — show WRRs
ranging between 80-90%. Bodo stands out with the highest WRR, likely due
to its larger training data volume in the dataset. This discrepancy suggests a
correlation between dataset size and recognition accuracy, emphasizing the im-
portance of sufficient training data for achieving optimal performance.

6.2 Visual Results:

Languages
(Script)

Santali
(Ol Chiki)

Maithili
(Devanagari)

Sindhi
(Devanagari)

Dogri
(Devanagari)

Konkani
(Devanagari)

Sanskrit
(Devanagari)

Nepali
(Devanagari)

Bodo
(Devanagari)

Kashmiri
(Devanagari)

Original Image

ChatGPT 4o ᱯᱟᱝᱡᱩᱱ संबंधित हब्बिकनि. डिज़ाइनरें काळं त अर्थप्रकृ तियः औषधि तेजपुरआव सत्य

Proposed
Method ᱞᱚᱰᱜᱮᱰ संबंधित हॿकनि डिज़ाइनरें , काव्ठांत अर्थप्रकतियो औषधि तेजपुरआव सत्य

Fig. 12. Shows comparative examples for one sample for each language of how our
proposed method performs against LLM like ChatGPT 4o. The first row displays the
language and the corresponding script, the second row shows the input word level
images, the third row shows the output ChatGPT 4o, and the last row shows the
output of our proposed method. Correct predictions are highlighted in black, while
incorrect predictions are highlighted in red.

The visual outcomes depicted in Fig. 10 and Fig. 11 showcase the results
generated by our proposed method on Mozhi-LR(R) and Mozhi-LR(S) datasets.
Correctly predicted words are highlighted in green, while incorrect predictions
are highlighted in red. We can see that our proposed approach also gives the
correct output for conjugate characters in all languages. For Maithili, we can
see from Fig. 10 that our recognition module has difficulty recognizing text
images that are a little noisy and blurry. In Sanskrit, the model produces the
wrong text output for complex characters with noise. Particularly in Santali,
our approach encounters difficulty recognizing the character across various input
image qualities. In Kashmiri, our model is struggling to recognize some additional
special characters as we show in the last column of Fig. 12.

Printed OCR for Extremely Low-resource Indic Languages 13

ᱞᱟᱹᱜᱤᱫ ᱜᱚᱲᱚᱭ ᱮᱢᱚᱜ ᱟ. ᱵᱮᱵᱷᱟᱨ ᱠᱚᱣᱟᱜ ᱫᱟᱱᱟᱝ ᱠᱟᱛᱷᱟ ᱴᱷᱟᱹᱣᱠᱟᱹᱭ
ᱞᱟᱹᱜᱤᱫ, ᱛᱷᱸᱰᱟᱨᱣᱟᱨᱰ ᱤᱢᱮᱞ ᱠᱷᱚᱵᱚᱨ ᱠᱚ ᱨᱮ. ᱥᱟᱸᱜᱤᱧ ᱪᱤᱛᱟᱹᱨ ᱠᱚ ᱟᱪ ᱟᱪ ᱛᱮ
ᱟᱠᱚᱴᱟ ᱛᱷᱸᱰᱟᱨᱣᱟᱨᱰ ᱟᱢ ᱤ ᱢᱮᱞ ᱠᱩᱢᱵᱰᱩ ᱠᱷᱚᱱᱮ ᱟᱹᱰ ᱢᱮᱭᱟ ᱚᱠᱟᱫᱚ ᱛᱤᱱ ᱨᱮ
ᱢᱤᱫ ᱠᱷᱚᱵᱚᱨ
ᱦᱩᱭ ᱫᱟᱲᱮᱭᱟᱜ ᱯᱷᱤᱥᱤᱸᱜ ᱠᱩᱨᱩᱢᱩᱴᱩ ᱫᱩᱜ ᱫᱟᱨᱟᱭ ᱛᱮᱱᱤ ᱡᱮᱨᱟᱜ ᱟᱨ
ᱫᱟᱱᱟᱝᱟᱜ ᱞᱟᱹᱭ ᱥᱚᱫᱚᱨ ᱮᱢ ᱠᱚᱣᱟᱜ ᱠᱟᱭᱫᱟ ᱞᱟᱹᱜᱤᱫ ᱠᱜᱨᱩᱢᱩᱴᱩ ᱟ. ᱨᱚᱯᱷᱟᱭ
ᱨᱮᱭᱟᱜ ᱫᱚᱥᱟᱨ ᱛᱷᱨ ᱞᱮᱠᱟᱛᱮ, ᱛᱷᱸᱰᱟᱨᱣᱟᱨᱰ ᱟᱢ ᱦᱚᱸᱥᱤᱭᱟᱹᱨ ᱦᱚᱪᱚᱢᱮ ᱛᱤᱱ ᱨᱮ
ᱟᱢ ᱢᱤᱫ ᱠᱷᱚᱸᱡᱟ ᱨᱮᱢ ᱚᱛᱟᱭᱟ ᱚᱠᱟ ᱢᱤᱫ ᱵᱷᱮᱜᱟᱨ ᱣᱮᱵ ᱥᱟᱤᱴ ᱨᱮ ᱤᱫᱤ ᱞᱮᱠᱟ
ᱧᱮᱸᱞᱚᱜ ᱟ ᱟᱢ ᱠᱷᱚᱵᱚᱨ ᱨᱮ URL ᱫᱟᱨᱟᱭ ᱛᱮ ᱢᱤᱫ ᱠᱷᱚᱱ ᱢᱤᱫ ᱩᱫᱩᱜᱟᱹ
B.3 ᱯᱤᱰᱜᱤᱱ ᱨᱮᱭᱟᱜ ᱥᱟᱱᱛᱟᱞᱤ ᱵᱟᱨᱥᱟᱱ (ᱭᱩᱱᱤᱵᱟᱨᱥᱟᱞ ᱪᱟᱴ ᱜᱟᱸᱦᱠᱤ)
ᱯᱤᱰᱜᱤᱱ ᱜᱚᱴᱟ ᱫᱤᱥᱚᱢ ᱡᱟᱠᱟᱛ ᱨᱮ ᱦᱚᱲ ᱠᱚ ᱵᱮᱦᱟᱨ ᱟᱠᱟᱫ ᱟ ᱱᱚᱣᱟ ᱵᱮᱵᱷᱟ ᱨᱮ
ᱟᱞᱜᱟ ᱟᱨ
ᱯᱚᱞᱟ ᱛᱮᱭᱟᱜ ᱪᱟᱴ ᱜᱟᱸᱦᱠᱤ ᱠᱟᱱᱟ. ᱢᱤᱫ ᱦᱚᱲ ᱢᱤᱫ ᱚᱠᱛᱚ ᱨᱮ AIM, MSN, Yahoo, ᱟᱨ
ᱟᱭᱢᱟ
ᱪᱟᱴ ᱱᱮᱴᱣᱟᱨᱠ ᱡᱚᱲᱟᱣ ᱫᱟᱲᱮᱭᱟᱜ ᱟ. ᱜᱚᱲᱚᱣᱟᱜ ᱪᱟᱴ ᱱᱮᱴᱣᱟᱨᱠ ᱨᱮ ᱫᱚ AIM,
Bonjour, Gadu-
Gadu, ᱜᱩᱜᱟᱞ, ᱜᱟᱞᱚᱪ,ᱫᱚᱞ ᱯᱩᱨᱛᱤ ICQ,IRC, MSN, Mxit, MySpaceIM, SILC, SIMPLE,
ᱢᱤᱫ ᱚᱠᱛᱚ
XMPP, Yahoo! ᱟᱨ Zephyr.
ᱯᱤᱰᱜᱤᱱ ᱢᱤᱫ ᱪᱟᱴ ᱯᱨᱚᱜᱨᱢ ᱠᱟᱱᱟ ᱚᱠᱟ ᱟᱢ ᱢᱤᱫ ᱫᱷᱟᱣ ᱛᱮ ᱟᱭᱢᱟ ᱪᱟᱴ ᱱᱮᱴᱣᱟᱨᱠ
ᱨᱮ ᱵᱚᱞᱚ
ᱞᱟᱹᱜᱤᱫ ᱥᱩᱵᱤᱫᱷᱟ ᱮᱢᱚᱜ ᱟᱹ ᱱᱚᱣᱟ ᱢᱟᱱᱮ ᱟᱢ MSN ᱨᱮ ᱜᱟᱛᱮ ᱠᱚ ᱥᱟᱸᱣ ᱪᱮᱴᱤᱸᱜ ᱭᱮᱫ
ᱟᱢ,
ᱜᱩᱜᱟᱞ ᱜᱟᱞᱚᱪ ᱨᱮ ᱢᱤᱫ ᱜᱟᱛᱮ ᱥᱟᱸᱣ ᱪᱮᱴᱤᱸᱜᱭᱮᱛ ᱟᱢ , ᱟᱨ ᱢᱤᱫ ᱚᱠᱟᱛᱚ ᱨᱮ ᱡᱚᱛᱚ ᱢᱤᱫ
ᱭᱟᱦᱩ
ᱪᱟᱴ ᱨᱩᱢ ᱨᱮ ᱫᱩᱲᱩᱯ ᱫᱟᱲᱮᱭᱟᱜ ᱟ .
C.ᱵᱮᱵᱚᱦᱟᱨ ᱛᱮᱫ:
ᱱᱚᱣᱟ ᱯᱩᱱᱭᱟᱹ ᱥᱚᱯᱷᱴᱣᱮᱭᱟᱨ ᱨᱭᱟᱜ ᱢᱤᱫ ᱥᱟᱡᱟᱣ ᱠᱟᱱᱟ ᱡᱮᱢᱚᱱ ᱦᱤᱸᱥᱟᱹᱵ ᱥᱮᱥᱴᱮᱢ-
GNU
ᱠᱮᱥ ᱜᱨᱟᱯᱷᱤᱠᱥ ᱡᱚᱦ ᱥᱚᱯᱷᱴᱣᱮᱭᱟᱨ-ᱤᱸᱠᱥᱠᱮᱯ, ᱜᱤᱫᱨᱟᱹ ᱞᱟᱹᱜᱤᱫ ᱜᱟᱨ ᱪᱤᱛᱟᱹᱨ
ᱥᱚᱯᱷᱴᱣᱮᱭᱟᱨ-ᱴᱚᱠᱥᱯᱮᱸᱴ ᱟᱨ ᱵᱤᱥᱚᱭ ᱵᱮᱵᱚᱥᱛᱟ ᱥᱮᱥᱴᱮᱢᱼᱡᱩᱢᱞᱟ, ᱵᱮᱵᱷᱟᱨ ᱠᱚ
ᱯᱩᱱᱭᱟᱹ
ᱠᱷᱚᱱ ᱥᱚᱯᱷᱴᱣᱮᱭᱟᱨ ᱵᱟᱪᱷᱟᱣ ᱫᱟᱲᱮᱭᱟᱜ ᱟ ᱚᱠᱟ ᱢᱤᱥᱤᱱ ᱨᱮ ᱵᱚᱦᱟᱞ ᱞᱟᱹᱠᱛᱤ.

ᱞᱟᱜᱤᱫ ᱜᱚᱲᱚᱭ ᱮᱢᱚᱜ ᱟ ᱵᱮᱵᱟᱨ ᱠᱚᱣᱟᱜ ᱫᱟᱱᱟᱝ ᱠᱟᱛᱟ ᱴᱟᱣᱠᱟᱭ
ᱞᱟᱜᱤᱫ ᱛᱰᱟᱨᱣᱟᱨᱰ ᱤᱢᱮᱞ ᱠᱚᱵᱚᱨ ᱱᱚ ᱨᱮ ᱥᱟᱜᱤᱧ ᱪᱤᱛᱟᱨ ᱠᱚ ᱟᱪ ᱟᱪ ᱛᱮ
ᱟᱠᱚᱟ ᱛᱰᱟᱨᱣᱟᱨᱰ ᱟᱢ ᱤ ᱢᱮᱞ ᱠᱩᱢᱵᱰᱩ ᱠᱚᱱᱮ ᱮᱟᱰ ᱢᱮᱭᱟ ᱚᱠᱟᱫᱚ ᱛᱤᱱ ᱨᱮ
ᱢᱤᱫ ᱠᱚᱵᱚᱨ
ᱦᱩᱭ ᱫᱟᱲᱮᱭᱟᱜ ᱯᱤᱥᱤᱜ ᱠᱩᱨᱩᱢᱩᱴᱩ ᱩᱜ ᱜᱟᱨᱟᱭ ᱛᱮᱱᱤ ᱞᱮᱨᱟᱜ ᱟᱨ
ᱫᱟᱱᱟᱝᱟᱜ ᱞᱟᱭ ᱥᱚᱫᱚᱨ ᱮᱢ ᱠᱚᱣᱟᱜ ᱠᱟᱭᱫᱟ ᱞᱟᱜᱤᱫ ᱴᱩᱢᱩᱴᱩ ᱟ ᱪᱚᱯᱟᱭ
ᱨᱮᱭᱟᱜ ᱜᱚᱥᱟᱨ ᱛᱨ ᱞᱮᱠᱟᱛᱮ ᱛᱣ ᱝᱰᱟᱨᱣᱟᱨᱰ ᱟᱢ ᱦᱚᱥᱤᱭᱟᱨ ᱦᱚᱪᱚᱢᱮ ᱛᱤᱱ ᱨᱮ
ᱟᱢ ᱢᱤᱫ ᱠᱚᱞᱟ ᱨᱮᱢ ᱚᱛᱟᱭᱟ ᱚᱠᱟ ᱢᱤᱫ ᱰᱮᱜᱟᱨ ᱵᱣᱮᱵ ᱥᱟᱤᱴ ᱮ ᱤᱤ ᱞᱮᱠᱟ
ᱧᱮᱞᱚᱜ ᱟ ᱟᱢ ᱠᱚᱵᱚᱨ ᱦᱮ ᱢᱞ ᱫᱟᱨᱟᱭ ᱮ ᱢᱤᱫ ᱚᱱ ᱢᱤᱫᱩᱜᱩᱜᱟ
ᱢᱤᱠᱚᱵᱚᱨ
ᱴᱯᱤᱰᱜᱤᱱ ᱨᱮᱭᱟᱜ ᱥᱟᱱᱛᱟᱞᱤ ᱰᱟᱨᱥᱟᱱ ᱜᱩᱱᱤᱵᱟᱨᱥᱟᱞ ᱪᱟᱴ ᱜᱟᱦᱠᱤ
ᱯᱤᱰᱜᱤᱱ ᱜᱚᱴᱟ ᱫᱤᱥᱚᱢ ᱡᱟᱠᱟᱛ ᱮ ᱦᱚᱟ ᱴᱚ ᱵᱮᱦᱟᱨ ᱟᱠᱟᱫ ᱟ ᱱᱚᱣᱟ ᱵᱮᱵᱟ ᱮ ᱟᱞᱜᱟ ᱟᱨ
ᱯᱚᱞᱟ ᱛᱮᱭᱟᱜ ᱪᱟᱴ ᱜᱟᱦᱠᱤ ᱠᱟᱱᱟ ᱢᱤᱫ ᱦᱚ ᱢᱤᱫ ᱚᱣᱵᱚ ᱵᱮ ᱟᱪᱨ ᱝᱨ ᱨᱚᱴᱛᱯ ᱟᱨ ᱟᱭᱢᱟ
ᱪᱟᱴ ᱱᱮᱴᱣᱟᱨᱞ ᱞᱚᱲᱟᱣ ᱫᱟᱲᱮᱭᱟᱜ ᱟ ᱜᱚᱲᱚᱣᱟᱜ ᱪᱟᱴ ᱱᱮᱴᱣᱟᱨᱠ ᱨᱮ ᱫᱚ ᱪᱨ ᱯᱛᱢᱴ ᱜᱚᱵᱢ
ᱜᱚᱵᱢ ᱜᱩᱜᱟᱞ ᱜᱟᱞᱚᱪ ᱫᱚᱞ ᱯᱩᱨᱛᱤ ᱛ ᱣ ᱨᱚᱴ ᱦᱞᱚᱭᱭᱤᱴ ᱫᱭ ᱤᱞᱭ ᱢᱤᱫ ᱚᱠᱛᱚ
ᱢᱰ ᱦᱚᱳᱴᱛᱛ ᱟᱨ ᱮᱭᱞᱢᱴ
ᱯᱤᱰᱜᱤᱱ ᱢᱤᱫ ᱪᱟᱴ ᱯᱨᱚᱜᱨᱢ ᱠᱟᱱᱟ ᱚᱠᱟ ᱟᱢ ᱢᱤᱪ ᱟᱣ ᱛᱮ ᱟᱭᱢᱟ ᱪᱟᱴ ᱱᱮᱴᱣᱟᱨᱠ ᱨᱮ
ᱵᱚᱞᱚ
ᱞᱟᱜᱤᱫ ᱥᱩᱵᱤᱫᱟ ᱮᱢᱚᱜ ᱟ ᱱᱚᱣᱟ ᱢᱟᱱᱮ ᱟᱢ ᱵᱟᱢ ᱨᱮ ᱜᱟᱵᱮ ᱠᱚ ᱥᱟᱣ ᱪᱮᱴᱤᱜ ᱭᱮᱫ ᱟᱢ
ᱜᱩᱜᱟᱞ ᱜᱟᱞᱚᱪ ᱨᱮ ᱢᱤᱫ ᱜᱟᱛᱮ ᱥᱟᱣ ᱪᱮᱴᱤᱜᱜᱮᱛ ᱟᱢ ᱟᱨ ᱢᱤᱫ ᱚᱠᱟᱛᱚ ᱮ ᱡᱚᱛᱚ ᱢᱤᱫ ᱭᱟᱦᱩ
ᱪᱟᱴ ᱨᱩᱢ ᱨᱮ ᱫᱩᱤᱩᱯ ᱫᱟᱲᱮᱭᱟᱜ ᱟ
ᱚ ᱵᱮᱵᱚᱦᱟᱨ ᱛᱮᱫ
ᱱᱚᱣᱟ ᱯᱩᱱᱭᱟ ᱥᱚᱯᱴᱣᱮᱭᱟᱨ ᱨᱭᱟᱜ ᱢᱤᱫ ᱥᱟᱡᱟᱣ ᱠᱟᱱᱟ ᱡᱮᱢᱚᱱ ᱦᱤᱥᱟᱰ ᱥᱮᱥᱴᱮᱢ ᱯᱣᱢ
ᱠᱮᱥ ᱜᱨᱟᱯᱤᱠᱥ ᱡᱚᱦ ᱥᱚᱯᱴᱣᱮᱭᱟᱨ ᱤᱠᱥᱠᱮᱯ ᱜᱤᱫᱨᱟ ᱞᱟᱜᱤᱫ ᱜᱟᱨ ᱪᱤᱛᱟᱨ
ᱥᱚᱯᱴᱣᱮᱭᱟᱨ ᱴᱚᱠᱥᱯᱮᱴ ᱟᱨ ᱵᱤᱥᱚᱭ ᱰᱮᱵᱚᱥᱛᱟ ᱥᱮᱥᱴᱮᱢᱡᱩᱢᱞᱟ ᱵᱮᱵᱟᱨ ᱴᱚ ᱯᱩᱱᱭᱟ
ᱠᱟᱱ ᱥᱚᱯᱴᱣᱮᱭᱟᱨ ᱵᱟᱪᱟᱣ ᱫᱟᱲᱮᱭᱟᱜ ᱟ ᱚᱠᱟ ᱢᱤᱥᱤᱱ ᱨᱮ ᱵᱟᱦᱟᱞ ᱞᱟᱠᱛᱤ

(a) (b) (c)

Fig. 13. Shows the result of result of page level API performance of our model for Ol
Chiki script. fig (a) is the original page image, fig(b) is the ground truth of the page
image, and fig (c) shows the result of the API.

7 Web-based Tool for End-to-End OCR Evaluation

In page level OCR, the objective is to transcribe the text within a document im-
age by segmenting it into words and then recognizing the text at the word level.
We focus only on text recognition, excluding layout analysis and reading order
identification. To build an end-to-end page OCR pipeline, we combine existing
text detection methods with our baseline model for recognition. Transcriptions
from individual segments are arranged in the detected reading order. We de-
velop a web-based tool2 for this purpose. Users can upload document pages in
Indic low-resource languages in the tool and get recognized text outputs. Fig. 13
depicts visual results at the page level using only our approach. Since existing
OCR tools like current Tesseract and GoogleOCR do not support Ol Chiki script
for Santali. Panel (a) presents the original document page image, while panel
(b) displays the ground truth, and panel (c) shows the predicted text by our ap-
proach. Wrongly recognized texts are highlighted in red. This figure emphasizes
that our approach is sufficiently good to recognize text in the Ol Chiki script.

8 Conclusions

This study introduces the Mozhi-LR(R) and Mozhi-LR(S) datasets, incorporate
nine extremely low-resource Indian languages: Maithili, Sindhi, Dogri, Konkani,
Nepali, Sanskrit, Bodo, and Santali, alongside high-performing OCR models.
While the Devanagari script is employed for eight languages, Santali uses the
Ol Chiki script. Additionally, we provide APIs for our page level OCR models
and integrate them into the web-based tool for digitizing Indic low-resource
printed documents. Our study, datasets, and accessible APIs are expected to
foster research on OCR of Indian low-resource languages.

2 https://ilocr.iiit.ac.in/accurateocr/

14 Sarkar et al.

References

1. Census 2011. https://censusindia.gov.in/2011-Common/CensusData2011.

Html, accessed on 1 November 2021
2. Antani, S., Agnihotri, L.: Gujarati character recognition. In: ICDAR (1999)
3. Aparna, K., Ramakrishnan, A.: A complete tamil optical character recognition

system. In: DAS (2002)
4. Arya, D., Jawahar, C., Bhagvati, C., Patnaik, T., Chaudhuri, B., Lehal, G., Chaud-

hury, S., Ramakrishna, A.: Experiences of integration and performance testing of
multilingual ocr for printed indian scripts. In: joint workshop on multilingual OCR
and analytics for noisy unstructured text data (2011)

5. Ashwin, T., Sastry, P.: A font and size-independent ocr system for printed kannada
documents using support vector machines. Sadhana 27, 35–58 (2002)

6. Avadesh, M., Goyal, N.: Optical character recognition for sanskrit using convolu-
tion neural networks. In: DAS (2018)

7. Bashir, M., Goyal, V., Giri, K.J.: Challenges in recognition of kashmiri script. In:
Recent Innovations in Computing: Proceedings of ICRIC (2022)

8. Chaudhuri, B.B., Pal, U.: A complete printed bangla ocr system. Pattern recogni-
tion 31(5), 531–549 (1998)

9. Chavan, V., Malage, A., Mehrotra, K., Gupta, M.K.: Printed text recognition using
blstm and mdlstm for indian languages. In: ICIIP (2017)

10. Cheng, Z., Bai, F., Xu, Y., Zheng, G., Pu, S., Zhou, S.: Focusing attention: Towards
accurate text recognition in natural images. In: ICCV (2017)

11. Dwivedi, A., Saluja, R., Sarvadevabhatla, R.K.: An ocr for classical indic docu-
ments containing arbitrarily long words. In: CVPRW (2020)

12. Gongidi, S., Jawahar, C.: IIIT-INDIC-HW-Words: A dataset for indic handwritten
text recognition. In: ICDAR. pp. 444–459 (2021)

13. Graves, A., Fernández, S., Gomez, F., Schmidhuber, J.: Connectionist temporal
classification: labelling unsegmented sequence data with recurrent neural networks.
In: ICML (2006)

14. Graves, A., Fernández, S., Schmidhuber, J.: Multi-dimensional recurrent neural
networks. In: ICANN. pp. 549–558 (2007)

15. Hakro, D.N., Talib, A.Z.: Printed text image database for sindhi ocr. TALLIP
15(4), 1–18 (2016)

16. Hasan, S., Dhakal, A., Mehedi, M.H.K., Rasel, A.A.: Optical text recog-
nition in nepali and bengali: A transformer-based approach. arXiv preprint
arXiv:2404.02375 (2024)

17. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR (2016)

18. Jaderberg, M., Simonyan, K., Vedaldi, A., Zisserman, A.: Synthetic data and
artificial neural networks for natural scene text recognition. arXiv preprint
arXiv:1406.2227 (2014)

19. Jaderberg, M., Simonyan, K., Vedaldi, A., Zisserman, A.: Reading text in the wild
with convolutional neural networks. IJCV 116, 1–20 (2016)

20. Jaderberg, M., Simonyan, K., Zisserman, A., et al.: Spatial transformer networks.
NeurIPS (2015)

21. Jain, M., Mathew, M., Jawahar, C.: Unconstrained ocr for urdu using deep cnn-rnn
hybrid networks. In: ACPR (2017)

22. Jawahar, C., Kumar, M.P., Kiran, S.R.: A bilingual ocr for hindi-telugu documents
and its applications. In: ICDAR (2003)

Printed OCR for Extremely Low-resource Indic Languages 15

23. Krishnan, P., Sankaran, N., Singh, A.K., Jawahar, C.: Towards a robust ocr system
for indic scripts. In: DAS (2014)

24. Kundaikar, T., Pawar, J.D.: Multi-font devanagari text recognition using lstm neu-
ral networks. In: ICTSCI (2020)

25. Lehal, G.S., Singh, C.: A gurmukhi script recognition system. In: ICPR (2000)
26. Liu, X., Meng, G., Pan, C.: Scene text detection and recognition with advances in

deep learning: a survey. IJDAR 22, 143–162 (2019)
27. Mathew, M., Jain, M., Jawahar, C.: Benchmarking scene text recognition in de-

vanagari, telugu and malayalam. In: ICDAR (2017)
28. Mathew, M., Singh, A.K., Jawahar, C.: Multilingual ocr for indic scripts. In: DAS

(2016)
29. Natarajan, P.S., MacRostie, E., Decerbo, M.: The bbn byblos hindi ocr system.

In: Document Recognition and Retrieval XII. vol. 5676, pp. 10–16 (2005)
30. Naveen Sankaran, T., Neelappa, A., Jawahar, C.: Devanagari text recognition: A

transcription based formulation. In: ICDAR (2013)
31. Neeba, N., Jawahar, C.: Empirical evaluation of character classification schemes.

In: ICAPR (2009)
32. Negi, A., Bhagvati, C., Krishna, B.: An ocr system for telugu. In: ICDAR (2001)
33. Pal, U., Sarkar, A.: Recognition of printed urdu script. In: ICDAR (2003)
34. Pal, U., Chaudhuri, B.: Indian script character recognition: a survey. pattern

Recognition 37(9), 1887–1899 (2004)
35. Pant, N., Bal, B.K.: Improving nepali ocr performance by using hybrid recognition

approaches. In: IISA (2016)
36. Paul, D., Chaudhuri, B.B.: A blstm network for printed bengali ocr system with

high accuracy. arXiv preprint arXiv:1908.08674 (2019)
37. Sanjeev Kunte, R., Sudhaker Samuel, R.: A simple and efficient optical character

recognition system for basic symbols in printed kannada text. Sadhana 32(5), 521–
533 (2007)

38. Sankaran, N., Jawahar, C.: Recognition of printed devanagari text using blstm
neural network. In: ICPR (2012)

39. Shah, R., Gupta, M.K., Kumar, A.: Ancient sanskrit line-level ocr using opennmt
architecture. In: ICIIP (2021)

40. Sinha, R., Mahabala, H.: Machine recognition of devanagari script. IEEE Trans.
on SMC 9(8), 435–441 (1979)

41. Ul-Hasan, A., Ahmed, S.B., Rashid, F., Shafait, F., Breuel, T.M.: Offline printed
urdu nastaleeq script recognition with bidirectional lstm networks. In: ICDAR
(2013)

42. Vijay Kumar, B., Ramakrishnan, A.: Machine recognition of printed kannada text.
In: DAS (2002)

