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Fig. 1. Examples from our IIIT-HW-English-Word, an offline camera-captured English handwritten dataset.
Best viewed in color and zoomed-in.

Abstract. The practical applications of Handwritten Text Recognition (HTR) have flour-
ished with many successful commercial APIs, solutions, and diverse use cases. Despite the
availability of numerous industrial solutions, academic research in HTR, particularly for En-
glish, has been hindered by the scarcity of publicly accessible data. To bridge this gap, this
paper introduces IIIT-HW-English-Word, a large and diverse collection of offline handwritten
English documents. This dataset comprises unconstrained camera-captured images featuring
20,800 handwritten documents crafted by 1,215 writers. Within this dataset, covering 757,830
words, we identify 174,701 unique words encompassing a variety of content types, such as al-
phabetic, numeric, and stop-words. We also establish a baseline for the proposed dataset,
facilitating evaluation and benchmarking, explicitly focusing on word recognition tasks. Our
findings suggest that our dataset can effectively serve as a training source to enhance per-
formance on respective datasets. The code, dataset, and benchmark results are available
at https://cvit.iiit.ac.in/usodi/bgroehtr.php.

Keywords: Handwritten text recognition, English, offline, unconstrained, camera-captured,
word recognition, and benchmark.
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Dataset #Pages #Writers Imaging Type #Words #Unique Words

IAM [17,8] 1,539 657 Flatbed-scanned 115,320 10,480

GNHK [7] 687 - Camera-captured 39,026 12,341

IIIT-HW-English-Word (Our) 20,800 1,215 Camera-captured 757,830 174,701

Table 1. Illustrates comparison of our dataset with existing offline English handwritten text recognition
datasets.

Dataset Unique Word
#Alphabetic #Numeric #Stop-word #Other #Total

IAM 9,103 116 140 1,121 10,480

GNHK 6,649 250 141 4,194 12,341

IIIT-HW-English-Word (Our) 66,324 97,916 137 10,324 174,701

Table 2. Demonstrates a comparative analysis between our dataset and existing offline English handwritten
text recognition datasets, focusing on the diversity and uniqueness of words across different categories.

1 Introduction

The progress of Handwritten Text Recognition (HTR) models demands the availability of a large and
high-quality English handwritten text recognition dataset that is diverse and well-annotated. This
dataset should be representative enough to ensure effective generalization in real-world scenarios.
Presently, there are only a handful of widely used datasets, such as IAM [17,8], and GNHK [7],
dedicated to offline handwritten text recognition. Although these datasets provide crucial data
for handwritten text, they present a constraint regarding training recognition models, particularly
deep architectures like transformer-based models, which may find the data insufficient for effective
training.

Hence, there is an escalating need for a more expansive and varied dataset designed explicitly
for offline English handwritten images captured in natural settings. This demand has arisen to
address the evolving research requirements in HTR. Establishing such a dataset is paramount for
pushing the boundaries of research in this domain fostering advancements in HTR technologies. We
introduce IIIT-HW-English-Word, a comprehensive and diverse compilation of offline handwritten
English documents captured in unconstrained settings to fulfill this imperative need. We present
noteworthy contributions in our pursuit of facilitating an exploration of this domain. Foremost
among these is the meticulous curation of the innovative dataset, deliberately tailored to meet
the demands of HTR research. It sets itself apart from existing datasets through a range of key
attributes:

– Introducing a dataset, designed for capturing offline English handwriting in authentic, real-
world settings. This dataset comprises 20,800 document images, encapsulating a wide variety
of 757,830 words authored by 1,215 distinct writers, refer to Fig. 1. For an overview and a
comparison with existing datasets such as IAM and GNHK, refer to Table 1. The presented
statistics demonstrate that compared to current datasets, ours is notably 13 times and 30 times
larger than IAM and GNHK concerning page images, leading to a more extensive collection of
unique words in the dataset.
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– Within the dataset encompassing a total of 757,830 words, there exist 174,701 unique words,
including alphabetic, numeric, stop-words, and other categories. Among these 174,701 unique
words, a breakdown reveals that 66,324 are uniquely alphabetic, 97,916 are uniquely numeric,
137 are uniquely stop-words, and the remaining 10,324 falls into the “other” category, encom-
passing special symbols, characters, and combinations of alphabets and numerals. Table 2 high-
lights the diversity and uniqueness of words across various categories in our dataset, surpassing
the existing two datasets.

– Furthermore, we establish a baseline for evaluating the proposed dataset in the context of word
recognition tasks. The significance of datasets in shaping the generalization and assessing the
difficulty of various algorithms cannot be overstated, as highlighted by previous research [16].
We employ the cross-dataset analysis method [14] to study these aspects comprehensively. It
involves training a model on one dataset and testing its performance on others, providing
insights into its adaptability and performance across diverse datasets (see Table 3).

2 Related Work

Offline handwriting recognition is challenging due to the inherent diversity and variability in hand-
writing styles, making it difficult to build accurate and robust recognition systems. Researchers
and developers in document analysis and handwriting recognition have made significant efforts to
overcome these challenges. One crucial aspect of advancing the area is the creation of benchmark
datasets that serve as a standardized evaluation platform for various handwriting recognition meth-
ods. These datasets usually contain many handwritten samples covering multiple writing styles and
content types.

Latin Handwritten Datasets: Several widely recognized datasets are crucial for advancing offline
handwriting recognition tasks for Latin scripts such as English and French. These datasets, each
with unique characteristics, contribute significantly to evaluating and benchmarking recognition
systems. Here are some notable datasets: IAM (English) [17,8], IUPR (English) [2], IRONOFF
(English) [15], GHNK (English) [7], Deepwriting (English) [1], Belfort (English) [13], and RIMES
(French) [6].

The IAM dataset encompasses English text authored by 657 writers, comprising 1,539 para-
graphs, 5,685 sentences, 13,353 lines, and 115,320 words. The IUPR dataset is widely recognized
and features an extensive collection of handwritten text samples. On the other hand, the IRONOFF
dataset focuses on isolated characters, digits, and cursive words written by French writers. The
GNHK dataset comprises camera-captured images of English handwritten text from diverse global
regions, totaling 687 document images. It encompasses 9,363 lines, 39,026 words, and 172,936 char-
acters. On the other hand, the Deepwriting dataset combines IAM-OnDB with fresh samples,
featuring 85,181 words and 406,956 characters handwritten by 294 distinct authors. The Belfort
dataset comprises minutes from the Belfort municipal council spanning 1790 to 1946, featuring
24,105 text-line images. Each line image is associated with up to four transcriptions. On the other
hand, the RIMES dataset, a widely used resource for offline handwritten text recognition in French,
encompasses 5,605 real mail. This dataset encompasses 250,000 words, showcasing diverse writing
styles and content types.

Latin Historical Handwritten Datasets: Several historical handwritten datasets in Latin
script, including Bentham [10], George Washington [4], Saint Gall [3], Digital Peter [9], READ [11],
and SIMARA [12], are available for research purposes.
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The Bentham dataset contains over 6000 documents written by the famous English philosopher
and reformer Jeremy Bentham. It is a valuable source of information containing over 100K running
words with extensive lexicons. On the other hand, the George Washington database was created at
the Library of Congress using George Washington Papers dating back to the eighteenth century. It
comprises 20 pages, 656 text lines, 4894 words, 1471 classes of words, and 82 letters, providing a
glimpse into the past. The Saint Gall dataset is another intriguing historical document, consisting
of 60 pages with 1410 text lines and 11597 words of manuscripts written in Latin script in the 9th
century. Lastly, the Digital Peter dataset comprises Peter the Great’s manuscripts annotated for
segmentation and text recognition, containing a staggering 9694 images and text files corresponding
to lines with 265788 symbols and approximately 50998 words in historical documents. The READ
dataset comprises about 30000 pages written in Early Modern German, and the ground truth in this
set is provided in PAGE format with line-level annotations in the PAGE files. On the other hand,
the SIMARA corpus consists of 5393 finding aids from six series spanning the 18th-20th centuries,
which can be used to extract information from historical handwritten documents.

We could highlight the significant focus of HTR research on historical documents, yet there exists
a vast array of practical and immediate applications for HTR in modern handwritten documents.
Our emphasis lies within this domain.

3 IIIT-HW-English-Word Dataset

From an extensive English text corpus1, a curated compilation of 20,800 text paragraphs has been
meticulously crafted. Each paragraph receives a unique ID and is constrained to a maximum of
50 words. Users worldwide who are proficient in English reading and writing are assigned up to
30 paragraphs to transcribe onto standard A4-sized pages, allowing unrestrained and creatively
expressive writing. Following this, writers are invited to scan the written pages using any scanning
app or capture images using a mobile camera. With the involvement of over 1,215 writers, we collect
a diverse set of 20,800 handwritten document pages, each page being annotated in a bounding box
and text transcript at word level on a page. In Fig.2, a sample annotation is showcased. Fig.2(a)
illustrates the ground truth bounding boxes along with their corresponding text transcriptions, (b)
displays the actual text sequences, and (c) reveals how the ground truth information is stored in
JSON format.

After creating a corpus, we need effective and efficient methods to access the dataset. The
recognizers may require the data in a specific format. Thus, a large dataset calls for a standard
representation independent of the script. With the generation of extensive data, there is a need for
an efficient access mechanism. The data should be organized and stored in a structured way for
efficient access. A standard is required to ensure the ease of access by a spectrum of communities
that may need the data. JSON provides an efficient method of data storage. It is easy to write
applications on a standard dataset. Even updation and changes to the data can be done quickly in
a JSON storage standard. All communities of the world accept JSON for data representation. For
a handwritten page or document, a JSON contains word bounding boxes and their corresponding
textual transcriptions. A set of standard application program interfaces (APIs) are required for
adequate access to the datasets. The annotation data (the text and word image) is required for the
development and performance evaluation of recognizers.

1 https://wortschatz.uni-leipzig.de/en/download/English



Bridging the Gap in Resource for Offline English Handwritten Text Recognition 5

Fig. 2. Showcases a single annotated handwritten document page alongside its standard representation. In
(a), a single annotated page from our dataset is depicted. (b) Displays the actual text sequence considered
as the ground truth. Finally, (c) represents the content encapsulated within the JSON file.

3.1 Dataset Feature and Statistics

Diversity: As the handwritten document pages are contributed by individuals spanning various
age groups, educational backgrounds, and professional experiences under unconstrained settings
across India, the resulting collection is characterized by its diversity. The process of capturing
these handwritten document pages using a mobile camera under unconstrained settings introduces
several challenges, encompassing (i) varying illumination, (ii) shadows, (iii) extensive unwanted
background, (iv) presence of irrelevant background text, (v) fluctuations in orientation, vi) low
resolution, and (vii) skewed page alignment. A few sample handwritten images captured under
unconstrained settings are depicted in Fig. 3. Additionally, we provide several sample word level
images from our dataset in Fig.4; a diverse range of words is depicted, showcasing variations in
style, imaging, quality, and other aspects.

Page Image Resolution Distribution: Writers utilize their smartphone cameras to capture
images of handwritten document pages, leading to variations in the resolution of the captured page
images. Acknowledging that high-resolution document images offer clear text content, facilitate
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Fig. 3. Shows examples of handwritten document page images taken under uncontrolled conditions. These
camera-captured images exhibit various characteristics, including blurred text, text with unwanted large
backgrounds, oriented text, variations in illumination, and text with overexposure, among others.

effective model training, and yield superior performance during testing is crucial. Including page
images with diverse resolutions introduces variability in content visibility, contributing to the ro-
bustness of the model. Fig. 5(a) displays the distribution of resolutions in page images, showcasing
a substantial number of images ranging from 2500 × 1500 to 4000 × 3000. This visualization offers
insights into the dataset’s inherent variability. This diversity in resolution further enhances the
adaptability and generalization capabilities of the model.

Word Level Image Resolution Distribution: The diversity in both the text content and the
individual writers contributes to variations in the resolution of handwritten words. This diversity
in word image resolution plays a crucial role in enhancing the model’s generalization capabilities.
Fig. 5(b) provides a visual representation of the distribution of resolutions in word level images,
showcasing the range of variability present in the dataset. Most word images have a height-to-width
ratio between 0.1 and 0.25, resulting in word images having various resolution. Including words with
varying resolutions enriches the dataset, enabling the model to adapt to a broader spectrum of visual
characteristics and improving its performance across different writing styles and conditions.

Text Distribution: Within the compilation of 20,800 document page images, 757,830 instances of
words have been identified, covering a spectrum of alphabetic, numeric, stop-words, and text featur-
ing combinations of special symbols, alphabets, and numeric characters. Among these occurrences,
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(a) (b)

Fig. 4. A few examples of word level images from our dataset: (a) showcases sample word level images from
all users, while (b) presents explicitly sample word level images from just two users, namely, user-1 and
user-2.

(a) (b)

Fig. 5. Left Image: page image resolution distribution and Right Image: word level image resolution distri-
bution. For page images, the majority exhibit a height-to-width ratio ranging from 1.29 to 1.33. Conversely,
most word images have a height-to-width ratio between 0.1 and 0.25.

174,701 are deemed unique, encompassing alphabetic, numeric, stop-word, and other categories. A
more detailed breakdown of these 174,701 unique words reveals that 66,324 are uniquely alphabetic,
97,916 are uniquely numeric, 137 are uniquely stop-words, and the remaining 10,324 fall into other
categories. On average, each page image contains approximately 37 instances of words. Fig. 6 visu-
ally presents the word cloud distribution of unique alphabetic words in the dataset. The word ‘also’
is most occurring. While ‘one’, ‘first’, ‘people’, ‘however’ are frequently occurring words. Visualize
the distribution of the dataset’s top 70 most frequently occurring alphabetic words using Fig. 7.
Notably, words such as ‘also’, ‘one’, ‘first’, ‘people’, ‘however’, ‘time’, and ‘many’ appear more than
20,000 times each.2

Writer Characteristics: Globally, 1,215 contributors have actively participated in curating hand-
written documents, resulting in a diverse dataset encompassing various handwriting styles, camera

2 Additional word clouds and plots can be found in the supplementary material.
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Fig. 6. Visualize the distribution of unique alphabetic words in the dataset through word clouds. It depicts
the distribution of all unique alphabetic words in our dataset. The x-axis illustrates each unique word, while
the y-axis represents their occurrence on a logarithmic scale.

Fig. 7. Presents the frequency distribution of the most common 70 words within the dataset through
visualizations. It illustrates the distribution of the top 70 common alphabetic words while plotting.

specifications, scanning methods, and more. The statistical distribution of writers is illustrated in
Fig. 8(a), where it is revealed that out of the 1,215 contributors, 972 are female writers, and 243 are
male writers. Within the male writers, 7 are identified as left-handed, while 236 are right-handed.
Among the female contributors, 25 are left-handed, and the majority, specifically 947, are right-
handed. Further demographic details, such as age distribution, are presented in Fig. 8(b). Notably,
a significant portion of the contributors falls within the age range of 20 to 40.

Dataset Splits: To furnish an extensive training dataset for deep learning models, our dataset has
been partitioned into 521,298 word level images for training, 66,566 word level images for validation,
and 169,966 word level images for testing. It will ensure that the models are trained on a large and
diverse dataset and will help to improve their accuracy and performance.
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(a) (b)

Fig. 8. The statistics provide insights into the demographics of writers collecting handwritten documents.
Sub-figure (a) presents data on the distribution of left and right-handed writers among males and females.
Sub-figure (b) showcases the demographic distribution of writers categorized by age groups.

Comparison with Existing Datasets: Table 1 comprehensively compares our dataset and exist-
ing offline English handwritten text recognition datasets, emphasizing significant distinctions and
advantages. Factors such as dataset size, diversity in handwriting styles, and the inclusion of di-
verse texts are carefully evaluated. Compared to current datasets, ours is notably 13 times and 30
times larger than IAM and GNHK concerning page images, leading to a more extensive collection of
unique texts in the dataset. Additionally, our dataset features twice the number of writers compared
to IAM, introducing greater diversity in handwriting styles. The experimental section further delves
into the potential impact of these differences on the performance and generalization capabilities of
models trained on each dataset. This comparative analysis aims to offer a comprehensive under-
standing of our proposed dataset’s distinctive contributions and characteristics within the broader
context of existing resources.

4 Benchmark Experiments

4.1 Experimental Settings

Baselines: We adopt the network architecture introduced by Gongidi et al. [5] shown in Fig. 9, as a
baseline for this experiment. The employed network comprises four key modules: the Transformation
Network (TN), Feature Extractor (FE), Sequence Modeling (SM), and Predictive Modeling (PM).
The Transformation Network is composed of six plain convolutional layers with 16, 32, 64, 128, 128,
and 128 channels. Each layer follows a filter size, stride, and padding size of 3, 1, and 1, respectively,
and is succeeded by a 2 ×2 max-pooling layer with a stride of 2. The Feature Extractor module
adopts the ResNet architecture. The Sequence Modeling incorporates a 2-layer Bidirectional LSTM
(BLSTM) architecture with 256 hidden neurons in each layer. Finally, Predictive Modeling employs
Connectionist Temporal Classification (CTC) to decode and recognize characters by aligning the
feature sequence with the target character sequence. Interested readers can find more details in [5].

Implementation Details: The baseline model undergoes training on a single NVIDIA GeForce
GTX 1080 Ti GPU. Input word level images are resized to dimensions of 96 × 256. Stochastic
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Fig. 9. Processing text recognition through the baseline pipeline.

Gradient Descent (SGD) employs the Adadelta optimizer for all experiments, with a learning rate
set to 0.001, a batch size of 64, and momentum fixed at 0.09.

Training/Testing Details: The baseline model undergoes training on the training set of our
dataset. Subsequently, we assess the performance of the baseline model on the test sets of our,
IAM, and GNHK datasets.

Evaluation Metrics: We utilize two widely recognized evaluation metrics, namely, Character
Recognition Rate (CRR) (alternatively Character Error Rate, CER) and Word Recognition Rate
(WRR) (alternatively Word Error Rate, WER), to evaluate the performance of the baseline. Error
Rate (ER) is defined as:

ER = (S +D + I)/N, (1)

where S represents the number of substitutions, D denotes the number of deletions, I signifies the
number of insertions, and N indicates the total number of instances in reference text. In the context
of CER, Eq. (1) operates at the character level, and while of WER, Eq. (1) operates at the word
level. The Recognition Rate (RR) is defined as:

RR = 1− ER. (2)

For CRR, Eq. (2) operates at the character level, and for WRR, it functions at the word level.

4.2 Benchmark Results on Word Level Text Recognition

The performance evaluation outcomes of our baseline model on various offline English handwritten
text recognition datasets are displayed in Table 3. The table indicates that the model performs best
when trained and tested on the same dataset. More precisely, when the model is trained with IAM
and subsequently tested on IAM, trained with GNHK and tested on GNHK, or trained with our
dataset and tested on our dataset, it consistently exhibits superior performance within the specific
dataset (see 1st row of IAM, GNHK, our dataset in Table 3). This consistent pattern underscores
the model’s effectiveness when deployed within the dataset on which it was initially trained.

The adaptability and complexity of datasets significantly influence the training and evalua-
tion of diverse algorithms [16]. To scrutinize these aspects, we employ the cross-dataset analysis
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Train on Finetune on Test Dataset
IAM GHNK Our
CRR WRR CRR WRR CRR WRR

IAM - 89.36 74.76 61.45 32.52 83.09 58.19
GNHK 82.54 59.61 81.28 60.64 91.17 72.35
Our 80.77 53.35 75.02 47.82 96.27 86.65

GHNK - 75.64 49.23 77.22 53.83 87.86 65.64
IAM 89.19 74.93 65.90 38.41 82.92 58.90
Our 74.53 45.04 70.72 41.78 95.90 85.49

Our - 77.16 50.34 70.72 41.97 96.33 86.83
IAM 90.85 77.92 67.59 39.27 89.37 67.84
GNHK 83.26 60.35 83.44 64.31 93.89 79.33

Our+IAM+GNHK - 88.35 71.77 79.57 55.52 96.20 86.33

Table 3. Quantitative results on different English handwritten text recognition datasets. While model pre-
trained with our dataset and fine-tuned with respective datasets, the model consistently achieves optimal
performance on those respective datasets. The best results are highlighted in bold text.

method [14], wherein a model is trained on one dataset and tested on others. We choose three
prominent datasets for our study: IAM, GNHK, and our newly introduced dataset. This systematic
approach allows us to assess the generalization capabilities and challenges different datasets pose
on algorithmic performance. From the entries in the table (refer to the 1st row corresponding to
IAM, GNHK, and our dataset in Table 3), it is evident that when the model is trained with IAM
and evaluated on GNHK and our datasets (case-I), it yields the lowest performances on GNHK
(61.45 CRR and 32.52 WRR) and our dataset (83.09 CRR and 58.19 WRR). However, in the
scenario where the model is trained with GNHK and assessed on IAM and our datasets (case-II),
it demonstrates an improvement, with a 7.45 WRR increase compared to case-I for our dataset.
Additionally, when the model is trained with our dataset and tested on IAM and GNHK datasets
(case-III), it achieves a 1.25 WRR improvement over case-II on the IAM dataset.

We also conducted an additional experiment wherein a model was trained on one dataset and
then fine-tuned using a different, new dataset, followed by testing the fine-tuned model on the
new dataset. In Experiment-I, the model underwent training with IAM, underwent fine-tuning
using GNHK, and was then tested on GNHK. Similarly, in Experiment-II, the model was trained
with IAM, fine-tuned on our dataset, and tested on our dataset. Incorporating fine-tuning in both
cases resulted in performance improvements, notably achieving higher word recognition rates (28.12
WRR and 30.56 WRR) for both GNHK and our datasets, surpassing the outcomes of the base
experiment (case-I). In Experiment-III, the baseline model underwent training with GNHK, was
fine-tuned using IAM, and tested on IAM. Simultaneously, in Experiment-IV, the model was trained
with GNHK, fine-tuned with our dataset, and then tested on our dataset. In both scenarios, the
introduction of fine-tuning led to significant performance improvements (25.7 WRR and 19.85
WRR) for both IAM and our datasets, outperforming the results of the base experiment (case-II).
Moving to Experiment-V, the baseline model was initially trained with our dataset, underwent
fine-tuning using IAM, and was subsequently tested on IAM. Conversely, in Experiment-VI, the
model underwent training with our dataset, fine-tuned with GNHK, and was then tested on GNHK.
In both cases, the implementation of fine-tuning resulted in substantial performance enhancements



12 A. Mondal et al.

Fig. 10. Displays visual results using various methods. Optimal viewing experience is achieved in color and
when zoomed in. The first row showcases results obtained when the model is trained with the IAM dataset.
The second row presents results obtained from training the model with the GNHK dataset. The third row
illustrates results acquired when the model is trained with our dataset. The fourth row exhibits results
obtained when the model is trained with the our dataset and fine-tuned with the respective datasets.

(27.58 WRR and 22.34 WRR) for both IAM and GNHK datasets, surpassing the outcomes of the
initial experiment (case-III).

From these experiments, several noteworthy findings emerge: (i) when the model is trained with
our dataset and tested on the same dataset (case-III), (ii) when the model is trained with our
dataset, fine-tuned on IAM, and subsequently tested on IAM, and (iii) when the model is trained
with our dataset, fine-tuned on GNHK, and tested on GNHK, the model consistently achieves the
best results, as highlighted by the bold values in Table 3. These experiments underscore the superior
generalization capabilities of our dataset compared to the other two existing datasets. Furthermore,
they suggest that our dataset can serve as an effective pre-training source to enhance performance
on their respective datasets.

Moreover, an additional experiment was conducted, where the model underwent training using
all datasets, including IAM, GNHK, and our datasets. Subsequently, evaluations were performed on
these datasets, as illustrated in the last row of Table 3. The results from the table indicate that the
performance of combined training is lower than that of pre-training and fine-tuning, as evidenced
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Fig. 11. Examples of page level results for word detection and recognition. Blue bounding boxes and texts
highlight the results of word detection and recognition.

by the lower word recognition rates in the case of IAM (6.15 WRR), GNHK (8.79 WRR), and our



14 A. Mondal et al.

dataset (0.5 WRR). It suggests that training with a combined dataset is less effective than the
pre-training and fine-tuning approach, as demonstrated in Experiment-I through Experiment-VI.

In Fig. 10, visual results are presented, showcasing the model’s performance when trained with
different datasets. Notably, when the model is trained solely with the IAM dataset, it inaccurately
predicts four out of eight words. However, incorporating fine-tuning with IAM after training with
our dataset reduces this error to just one incorrectly predicted word out of eight on IAM. Similarly,
training the model with the GNHK dataset leads to two erroneous predictions out of eight words
in the GNHK dataset. Conversely, when the model is initially trained with our dataset and subse-
quently fine-tuned with GNHK, the number of incorrect predictions is reduced to just one out of
eight words in the GNHK dataset. The visual results underscore the effectiveness of pre-training
with our dataset in minimizing incorrect predictions across different datasets. This observation
suggests that a pre-training strategy with a broader dataset can significantly enhance the model’s
overall predictive accuracy.

4.3 Page Level Results

We provide a few page level results in Fig. 11 for visual illustration. The results depict both word
detection and recognition in blue colored bounding boxes and blue colored text. The results of page
level handwritten text recognition demonstrate the effectiveness of our approach in accurately tran-
scribing handwritten text from entire pages. The results show that we have significantly improved
our model’s performance. These results underscore the potential of our methodology to handle
the complexities and variability inherent in handwritten documents, paving the way for enhanced
document digitization and text recognition applications.

5 Conclusions

We introduced IIIT-HW-English-Word, a large and diverse offline handwritten text recognition
dataset. This dataset comprises unconstrained camera-captured images of English handwritten
documents gathered from various regions in India. With a total of 20,800 document pages con-
tributed by 1,215 distinct writers, the dataset provides a rich and varied collection. Among the
20,800 page images, 757,830 instances of words were identified, encompassing alphabetic, numeric,
stop-words, and other categories. Of these occurrences, 174,701 are unique. Our paper presents
benchmark results on text recognition using well-established architectures. The experiments in-
dicate that training the model with our dataset enhances its performance on established offline
handwritten text recognition datasets. Thus, our dataset improves the model’s performance across
existing datasets. Future research avenues could explore end-to-end approaches, integrating local-
ization and recognition within the same framework. We welcome contributions from researchers and
developers to create new models leveraging this dataset.
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