
United We Stand, Divided We Fall:
UnityGraph for Unsupervised Procedure Learning from Videos

Siddhant Bansal*

CVIT, IIIT, Hyderabad
Chetan Arora

IIT, Delhi
C.V. Jawahar

CVIT, IIIT, Hyderabad

Abstract

Given multiple videos of the same task, procedure learn-
ing addresses identifying the key-steps and determining
their order to perform the task. For this purpose, existing
approaches use the signal generated from a pair of videos.
This makes key-steps discovery challenging as the algo-
rithms lack inter-videos perspective. Instead, we propose
an unsupervised Graph-based Procedure Learning (GPL)
framework. GPL consists of the novel UnityGraph that rep-
resents all the videos of a task as a graph to obtain both
intra-video and inter-videos context. Further, to obtain sim-
ilar embeddings for the same key-steps, the embeddings of
UnityGraph are updated in an unsupervised manner using
the Node2Vec algorithm. Finally, to identify the key-steps,
we cluster the embeddings using KMeans. We test GPL
on benchmark ProceL, CrossTask, and EgoProceL datasets
and achieve an average improvement of 2% on third-person
datasets and 3.6% on EgoProceL over the state-of-the-art.

1. Introduction
Motivation: Consider developing a robot capable of as-
sembling a phone in a factory. Hard coding the sequence
of steps required to piece together the phone will require
years of effort. Instead, it would be useful if a robot could
observe a person fabricating the phone multiple times and
learns from it! Driven by this objective, we focus on unsu-
pervised procedure learning from videos. Broadly, the task
involves identifying the key-steps and their order via multi-
ple videos of the same activity.
Applications: A framework that can distill the steps re-
quired to perform a task from multiple demonstrations
could help develop robots for manufacturing pipelines, cre-
ate assistive machines , or monitor and guide a novice learn-
ing a new task. Formally, given multiple videos of a task,
procedure learning deals with (a) identifying the key-steps
and (b) their order to perform the task [3, 15, 16, 50].

*Corresponding author: siddhant.bansal@research.iiit.ac.in

Temporal edge facilitate 

intra-video context

Spatial edges facilitate
inter-videos context

Node represent a clip 

from the video

Figure 1. UnityGraph for three pizza making videos. UnityGraph
facilitates procedure learning by creating a unified representation
of an arbitrary number of videos from the same category. Here,
the nodes represent a clip from the video. Further, the temporal
edges connect temporally close frames, allowing intra-video con-
text, whereas the spatial edges connect semantically similar frames
across the videos, enabling inter-videos context.

Difference from action segmentation/detection: As
shown in Figure 1, procedure learning deals with multiple
videos of a task. In contrast, action-based tasks [32] deal
with a single video, hence losing the capability to determine
repetitive key-steps across the videos. Secondly, these tasks
do not consider the order of individual events, which is often
crucial for identifying key-steps, and/or procedures/recipes.
For example, action-based tasks do not capture the differ-
ence in the order of key-steps in V2 and V3 (Fig. 1). Other
efforts for video understanding using instructional videos
aim at procedure planning [63], procedure sequence veri-
fication [44], and instructional video summarisation [41].
Furthermore, as procedure learning deals with localising the
key-steps, it differs from the video alignment task [8, 14].
Therefore, considering the utility of procedure learning and
its distinctness from existing tasks, we devise the Graph-
based Procedure Learning (GPL) framework.

Our approach: GPL is a three-staged unsupervised frame-
work for procedure learning. The first stage of GPL consists

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

6509



of UnityGraph, shown in Figure 1. UnityGraph is a graph
that models an arbitrary number of videos from the same
task. For creating UnityGraph at clip-level, the video clips
are first passed through a pre-trained I3D ResNet-50 [5,22]
to get a node. The nodes are later connected based on (a) se-
mantic similarity across videos (spatial edges) and (b) tem-
poral closeness in the same video (temporal edges). Due
to this structure, UnityGraph captures both the inter-video
and intra-videos context. This sets UnityGraph apart from
the previous approaches that estimate the procedure using
one [15, 16, 27, 31, 52] or two [3] videos.
Justification of the approach: As a graph enables us to
create a spatial edge between two nodes from different
videos irrespective of the key-step order (Figure 1), it en-
ables us to overcome previous works’ key-step ordering
constraints [31, 52]. Also, the range of granularity (number
of frames) to create the nodes is controllable, allowing us to
test various configurations. Finally, as shown in Figure 1,
the edges capture two forms of relationships (a) temporal
across the same video and (b) semantic across the videos,
enabling us to model inter-video and intra-videos context.
Difference from existing techniques: Most works explore
procedure learning in a supervised [40,47,64] or weakly su-
pervised [4, 6, 12, 24, 34, 35, 45, 46, 65] setting. Supervised
methods require frame-level key-step annotations, making
them unscalable [3]. On the other hand, weakly supervised
learning methods require an ordered or unordered list of
key-steps. Creating the lists requires viewing the videos or
defining heuristics leading to scalability issues [15, 16]. In-
stead, the second stage of GPL enhances UnityGraph’s node
embeddings in an unsupervised manner using Node2Vec.
Similar works: The works closely related to ours em-
ploy various methods to create frame-level features to iden-
tify the procedure. Kukleva et al. [31] use the signal pro-
vided by the relative timestamp of the frame. Elhamifar et
al. [15] discover and utilise the attention features from in-
dividual frames. Bansal et al. [3] solve the problem in a
self-supervised manner by utilising the signal from corre-
sponding frames among the videos of the same task. These
works exploit different attributes of videos to extract the sig-
nal. However, they fall short in creating a graph-based rep-
resentation to utilise the relationship between all the frames
across the input videos. In this work, we propose Unity-
Graph, which first creates a clip-level representation and
then captures the correspondences between the key-steps
across videos. Our major contributions are:
(1) We propose the Graph-based Procedure Learning

(GPL) framework. Contrary to existing graph-based
frameworks, GPL does not require node or edge anno-
tations, enabling unsupervised procedure learning.

(2) We create a novel graph representation for an arbitrary
number of videos: UnityGraph. UnityGraph captures
(a) temporal relationship in the same video and (b) se-

mantic relationship across the videos.
(3) To identify the background frames, we propose to de-

tect hand-object interactions in egocentric videos. This
leads to an improvement of 1.1% on EgoProceL.

(4) We perform experiments on benchmark EgoProceL,
ProceL, and CrossTask datasets and achieve on aver-
age 2% improvement on third-person datasets (ProceL
and CrossTask) and 3.6% improvement on EgoProceL
over the state-of-the-art. We will release the code for
the work upon acceptance.

2. Related Works
Graph-based Representation for Video Understanding:
Previous works have used graphs for action localisation [26,
59, 62], task completion [25], video super-resolution [60],
grounding in instructional videos [23], question answer-
ing [54], and action recognition [7, 28, 37, 55]. Hussein
et al. [26] utilise graphs to analyse human activity from a
single video. G-TAD [59] proposes a graph where video
clips are nodes, correlations between the nodes form edges,
and actions associated with context are used to create tar-
get sub-graphs. Khan and Cuzzolin [28] propose to create
a graph consisting of nodes based on the action tubes and
edges encoding the relationships between the action tubes.
However, generating action tubes is computationally expen-
sive and not reliable [28]. Contrary to previous works, GPL
proposes UnityGraph to discover key-steps across multiple
videos and is the first to utilise graphs for procedure learn-
ing. Furthermore, UnityGraph is a task-level graph com-
pared to the video-level graph in [59], enabling us to dis-
cover key-steps across videos. Finally, in contrast to the su-
pervised setting in previous works, GPL learns embeddings
in an unsupervised manner.
Representation Learning for Procedure Learning: Pre-
vious works on procedure learning have developed meth-
ods to learn frame-level features [15, 16, 31, 52]. Kukl-
eva et al. [31] learn the representation space by using rel-
ative timestamps of the frames. On the other hand, Vidal
et al. [52] predict the future frame and its timestamps. El-
hamifar et al. [15] learn and employ attention features for
individual frames. Bansal et al. [3] exploit temporal cor-
respondences across the videos to generate the signal and
learn frame-level embeddings. However, these methods fall
short in modelling either temporal or spatial relationships.
In contrast, GPL consists of UnityGraph that (a) represents
videos at the clip-level and (b) forms edges between seman-
tically similar and temporally close frames.
Multi-modal Procedure Learning: A sub-set of previous
works utilises multi-modal data for procedure learning, for
example, narrated text and videos [2,9,13,18,38,48,50,61,
66]. These works have to assume an alignment between the
videos and the text [2, 38, 61], which is inaccurate in most
cases [15, 16]. Furthermore, they utilise an imperfect Auto-

6510



Key-step
4

Key-step 
3

Key-step 
2

Key-step
1

List of Key-steps

Key-step 1 Key-step 2

Key-step 3UnityGraph

Filtering background
frames and clustering

Updating embeddings 
using Node2Vec

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 Key-step 4

Legend:

 
 
 
 
 

 
 
 
 
  

 
 
 
 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

Temporal Edge  
(Intra-video)

Clip-level  
Embeddings

 
 
 
 
 

 
 
 
 
 

 
 
 
 
 

Spatial Edge  
(Inter-videos)

Highlighting a portion of
UnityGraph

Figure 2. Graph-based Procedure Learning (GPL) framework. Given multiple videos of the same task, we create UnityGraph. Using
the Node2Vec algorithm, we exploit the structure of UnityGraph to enhance the node embeddings in an unsupervised manner. For example,
the temporal and spatial clips that were originally far in the embedding space are closer after Node2Vec (highlighted in blue). Finally, we
cluster the embeddings using KMeans and filter the background frames to obtain the key-steps required to perform the task.

matic Speech Recognition system to generate text, leading
to the requirement of manually cleaning the text, and there-
fore, is unscalable. To overcome these issues, following [3],
we employ only visual modality as our input to GPL, mak-
ing our framework highly scalable.
Learning Key-step Ordering: Most of the previous works
do not capture different key-step ordering to perform the
task. They either assume strict ordering [16, 31, 52] or do
not predict the order [15,50]. However, we observe that sub-
jects perform the same task in multiple ways (Fig. 1), mo-
tivating us to capture different ways to accomplish a task.
Therefore, GPL aims to create a key-step order for each
video and infer the relevant ordering to perform the task.
Self-Supervised Representation Learning for Videos:
Recent works have explored various pretext tasks for learn-
ing the representation in a self- or unsupervised manner.
For example, utilizing temporal coherence and order as sig-
nals [17, 33, 39, 57, 58], predicting successive frames [1, 11,
21, 29, 51, 53] or identifying the arrow of time [56]. Video
representation learning methods mentioned generate signals
from a limited number of videos. However, our goal is to
identify the key-steps from multiple videos. To this end,
we explore graphs for procedure learning and propose GPL
consisting of UnityGraph to improve video understanding.

3. Graph-based Procedure Learning (GPL)
Autonomously inferring the key-steps required to per-

form a task opens up the possibility of creating a variety of
autonomous, guidance, and assistive systems. The majority
of the previous works generate self-supervised signals from
either single or a couple of videos. However, to better dis-
cover the procedure, getting the signal across all the videos
is crucial. To this end, we utilise the capability of graphs
to represent abstract video data. As shown in Figure 2, the
first part of GPL framework consists of the proposed Uni-

tyGraph. It is a novel graph representation for an arbitrary
number of videos of a task (Section 3.1).

The initial features of UnityGraph are created using a
pre-trained I3D ResNet-50 [5, 22]. To further improve the
features, as shown in Figure 2, the next step in GPL in-
volves updating the embeddings using the Node2Vec algo-
rithm in an unsupervised manner. Once the embeddings
are learned, they are clustered using the KMeans algorithm
(Section 3.2). The final step of GPL involves ordering the
discovered clusters based on the average timestamps of the
constituting frames (Section 3.2).

Notations: As shown in Figure 2, GPL takes in n
untrimmed videos of the same task, denoted by V = {Vi :
i ∈ N, 1 ≤ i ≤ n}. Note that the n videos can have a
different number of frames. A video Vx with m frames is
divided into multiple clips using a sampling rate, stride, and
window size of σ, ω, and ψ, respectively. The clips are then
passed through a pre-trained I3D ResNet-50, denoted as fθ
(with parameters θ), used to generate node-level embed-
dings of dimension d for UnityGraph. The clips for video
Vx with z clips are denoted as Vx = {c1x, c2x, . . . , czx} and
the video’s node-level embeddings are denoted as fθ(Vx) =
{v1x, v2x, . . . , vzx}. Furthermore, we assume K key-steps in
a task where K is a hyperparameter.

3.1. Representing Videos using UnityGraph

Assumptions: We make the following design choices when
creating UnityGraph: (a) To compensate for the high frame
rate and long action duration, we create UnityGraph’s nodes
at the clip level. (b) Using a 3D CNN, each clip is converted
to an embedding. The motivation here is that the sampled
clip either contains one action or none. (c) To keep the prob-
lem tractable, we assume the objects and actions are seman-
tically similar across the task’s videos.

6511



3.1.1 Creating UnityGraph’s nodes and edges

a) Creating the Nodes

I3D 
ResNet-50

W
in

do
w

 S
iz

e

St
rid

e
Sa

m
pl

ed
 

fr
am

es

UnityGraph 
Node 1

UnityGraph 
Node 2

t = 0

t = n

b) Creating the Edges

0.6 0.9

0.8

0.4

0.3

0.5

0.2

0.3

0.3

0.1

Figure 3. a) Given window size (ψ), stride (ω), and sampling
rate (σ), a clip from a video is passed through a pre-trained I3D
ResNet-50 to generate the node’s embedding. b) We consider
nodes from three videos (V1, V2, V3). For brevity, we show simi-
larity score between v12 and all the nodes in V1 and V3. The edges
with highest semantic similarity (marked in green) are retained.

Figure 3 summarises the creation of UnityGraph. A node
v1x in UnityGraph is the embedding of a clip c1x for video Vx.
The embedding is a d dimensional vector created using an
I3D ResNet-50 [5, 22]. For example, for V1 with z = 5, the
nodes are created as:

vi1 = fθ(c
i
1),where i ∈ {1, . . . , z} (1)

Creating nodes in this way helps with (a) converting a
volume of frames (the clip) to an embedding and (b) com-
paring and modifying the embeddings to understand the
procedure. Figure 3 (a) summarises this process.

Once the nodes are created, the graph is completed by
creating edges between them. The edges are created at two
levels (a) spatial that facilitate inter-videos connection and
(b) temporal that facilitate intra-video connection.

To better understand the process, consider two videos
(V1, V2) from Figure 3 (b). Let us focus on creating an
edge between the first node (v12) from V2 and nodes from
V1. The goal is to find the node in V1 having the highest
semantic similarity with v12 . To this end, we calculate the
cosine similarity (SC) between v12 and all the nodes in V1:

SC(v
1
2 , v

i
1) =

∑d
j=1 v

1
2jv

i
1j√∑d

j=1(v
1
2j)

2

√∑d
j=1(v

i
1j)

2
,

where i ∈ {1, . . . , z}. (2)

a) No hand-object interaction; Background

b) Hand Object Interaction; Foreground

Figure 4. We use the hand-object detection model from [49]. a)
Frames not containing hand-object interaction. Second image in
the first row contains a hand without an interaction with an object,
hence, background. b) Frames containing hand-object interaction
and contribute towards understanding the procedure.

The spatial edge is created between the node with the high-
est similarity score:

Edge(v12 , v
i
1) =

{
1, ifmax(SC(v

1
2 , v

i
1))

0, otherwise
,

where i ∈ {1, . . . , z}. (3)

To create the temporal edges, we connect the neighboring
nodes from the same video. Let us consider creating tem-
poral edges for V2:

Edge(vi2, v
j
2) =

{
1, if |i− j| = 1

0, otherwise
,

where i, j ∈ {1, . . . , z}. (4)

To summarise, UnityGraph consists of nodes created us-
ing Equation (1). The nodes are spatially connected using
Equation (3) and temporally connected using Equation (4).

3.1.2 Detecting background frames

The procedure learning datasets majorly consists of back-
ground frames [3, 65], making it difficult to determine the
procedure. We observe that a majority of the background
frames involve people searching for objects, reading in-
structions, and waiting for an automated step to finish. Fur-
thermore, as shown in Fig. 4, these activities do not involve
hand-object interaction. Therefore, we argue that the frames
lacking hand-object interactions represent the background
and we propose to use Shan et al.’s hand-object interaction
model [49] to filter out such frames in egocentric videos.

3.2. Identifying Key-steps and their Order

Updating and Clustering UnityGraph’s Embeddings:
As illustrated in Figure 2, using default embeddings ob-

6512



Table 1. Hyper-parameter values for different components of the
GPL framework. Here, “Ego” refers to first-person, “ThP” refers
to third-person, and “Ablation table” refers to the table containing
quantitative results for the respective hyper-parameter

Hyper-
parameter

Notation Value (Ego) Value (ThP) Ablation
Table

Sampling Rate σ 8 4 Table 4
Stride ω 5 10 Table 4
UnityGraph’s
Window Size ψ 10 10 Table 4

Walk Count α 100 50 Table 5
Walk Length γ 100 50 Table 5
Node2Vec’s
Window Size β 12 10 Table 5

Return Parameter p 1.0 1.0 Table 6
In-out Parameter q 1.0 1.0 Table 6
No. of
Key-steps K 7 7 Table 7

No. of
Videos n max(n) max(n) Table 9

Embedding
Dimension d 400 400 −

tained from the pre-trained network can result in embed-
dings lying far from each other. To improve the embed-
dings in an unsupervised manner, we update them using
the Node2Vec algorithm [19]. The updated embeddings are
clustered using KMeans to discover the key-steps.
Utility of Node2Vec: Node2Vec [19] learns embeddings
while preserving neighborhood information by simulating
biased random walks. UnityGraph connects semantically
similar frames from multiple videos and temporally close
frames from the same video. Node2Vec exploits these con-
nections (refer to Figure 1 in supplementary) in an unsu-
pervised manner to improve the embeddings. In contrast,
DeepWalk [43] utilises uniform random walks and falls
short of capturing this structure [19].
Identifying the Order of Key-steps: Once we have the
clusters of key-steps, we follow [3] to determine their or-
der. For each clip, the normalized time is calculated [3,31].
Based on the cluster clips’ normalized time, the average
time for the cluster is calculated. The clusters are then ar-
ranged in an increasing order of time to generate the order
of key-steps. This approach has two advantages (a) it al-
lows each video to have its own key-step order and (b) does
not require providing key-step ordering information.
Complexity Analysis: We extract information simultane-
ously from multiple offline videos and do not optimise for
time. Hence, GPL’s time complexity is exponential in the
number of videos. Considering we have n videos of the
same length (l), then the time complexity is O(n2l2).

4. Dataset and Evaluation Methodology

Evaluation: Unless otherwise mentioned, we evaluate the
proposed GPL framework following [3]. We take the mean

Table 2. Procedure Learning from Third-person Videos. Com-
parison between state-of-the-art methods and GPL on third-person
datasets [16,65]. Results in bold and underline are the highest and
second highest in a column, respectively. P, R, and F represent
precision, recall, and F-score, respectively

ProceL [16] CrossTask [65]

P R F P R F

Uniform 12.4 9.4 10.3 8.7 9.8 9.0
Alayrc et al. [2] 12.3 3.7 5.5 6.8 3.4 4.5
Kukleva et al. [31] 11.7 30.2 16.4 9.8 35.9 15.3
Elhamifar et al. [15] 9.5 26.7 14.0 10.1 41.6 16.3
Fried et al. [18] − − − − 28.8 −
Shen et al. [50] 16.5 31.8 21.1 15.2 35.5 21.0
CnC [3] 20.7 22.6 21.6 22.8 22.5 22.6
GPL-2D (ours) 21.7 23.8 22.7 24.1 23.6 23.8
UG-I3D (ours) 21.3 23.0 22.1 23.4 23.0 23.2
GPL (ours) 22.4 24.5 23.4 24.9 24.1 24.5

of the scores over all the key-steps and report F1 and IoU
Scores. F1-Score is the harmonic mean of the precision and
recall scores. For precision, we calculate the ratio between
the number of frames having correct key-steps prediction
and the number of frames assigned to the key-steps. For
recall, the denominator is the number of ground truth key-
step frames across all the key-steps of the video. Follow-
ing [2, 3, 15, 16, 31, 50], we obtain the one-to-one mapping
between the ground truth and prediction using the Hungar-
ian algorithm [30].
Experimental Setup: We use features from the final layer
of 3D ResNet-50 [22] pre-trained on Kinetics 400 [5] pro-
vided by PyTorch [42]. To keep feature extraction tractable,
we reshape the short side of the video frame to 256, while
maintaining the aspect ratio. For detecting the hand-object
interactions, we use the ‘handobj 100K+ego’ model pro-
vided by [49]. We create and manipulate graphs using
NetworkX [20]. Furthermore, Table 1 contains the hyper-
parameter values obtained for egocentric and third-person
view after an extensive ablation study.
Baselines: (a) Random: Here, the labels are obtained by
randomly sampling predictions from a uniform distribution
with K values representing K key-steps. (b) CnC [3]:
This work generates frame-level embeddings by learning
an embedding space that exploits temporal correspondences
across a couple of videos. (c) GPL-2D: Here, to compare
between clip- and frame-level features, we create Unity-
Graph nodes utilizing features from ResNet-50 initialised
on ImageNet and further use Node2Vec to update the fea-
tures. (d) UG-I3D: Here, we do not update the embeddings
using Node2Vec. Instead, UnityGraph consisting of nodes
embeddings from I3D ResNet-50 [5, 22].
Datasets: Contrary to previous works that use either first-
or third-person datasets for procedure learning, we per-
form experiments on both views. For third-person pro-
cedure learning, we choose standard benchmark datasets,

6513



Table 3. Results on egocentric view on EgoProceL, GPL outperforms previous work on most of the tasks. This highlights the effectiveness
of video representation generated using the proposed UnityGraph and Node2Vec for updating the embeddings based on node neighbor-
hoods. Note that EgoProceL is a recent dataset for egocentric procedure learning, due to this, there is only one approach (CnC [3]) to
fairly compare with. Furthermore, as other methods have been specifically designed around third-person datasets, we compare with them
on those datasets in Table 2. Here, CnC and GPL-2D (with Node2Vec) utilize features from ResNet-50 initialised on ImageNet whereas,
UG-I3D (without Node2Vec) and GPL (with Node2Vec) utilize features from I3D ResNet-50 initialised on Kinetics-400. Results in bold
and underline are the highest and second highest in a column, respectively

EgoProceL

CMU-MMAC EGTEA G. MECCANO EPIC-Tents PC Assembly PC Disassembly

F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU

Random 15.7 5.9 15.3 4.6 13.4 5.3 14.1 6.5 15.1 7.2 15.3 7.1
CnC [3] 22.7 11.1 21.7 9.5 18.1 7.8 17.2 8.3 25.1 12.8 27.0 14.8
GPL-2D (ours) 21.8 11.7 23.6 14.3 18.0 8.4 17.4 8.5 24.0 12.6 27.4 15.9
UG-I3D (ours) 28.4 15.6 25.3 14.7 18.3 8.0 16.8 8.2 22.0 11.7 24.2 13.8
GPL (ours) 31.7 17.9 27.1 16.0 20.7 10.0 19.8 9.1 27.5 15.2 26.7 15.2

CrossTask [65] and ProceL [16]. CrossTask consists of 213
hours of videos from 18 primary tasks (2763 videos). Pro-
ceL consists of 47.3 hours of videos from 12 diverse tasks
(720 videos). To demonstrate the efficiency of the pro-
posed GPL framework, we evaluate it in the first-person
EgoProceL [3] dataset. It consists of 62 hours of egocen-
tric videos of 130 subjects performing 16 tasks. Please note
that we do not alter the key-step ordering provided by these
datasets. Hence, they are identical to the previous works
[2, 3, 15, 18, 31, 50].

5. Experiments and results
Results on Third-person View: Table 2 compares state-of-
the-art methods and GPL on two third-person datasets [16,
65]. We obtain the results for the previous works from [3,
50]. Here, for a fair comparison, the framework is evalu-
ated using the metrics laid out in [15, 31, 50]. We observe
that [15, 31] assigns majority of the frames to one key-step.
Due to this, the recall is high, however, the precision de-
creases, lowering the F-score significantly.
Results on Egocentric View: Table 3 compares state-of-
the-art and GPL on the EgoProceL dataset. The results for
tasks in CMU-MMAC [10] and EGTEA G. [36] have been
averaged and reported. Note that EgoProceL is a recent
dataset for egocentric procedure learning, hence, there is
only one approach [3] to fairly compare with. We compare
methods developed on third-person datasets in Table 2.

The results obtained highlight (a) generalisation capa-
bilities of GPL. As GPL obtains high results on tasks using
objects with high variability in size, different locations, and
a variety of lighting conditions. (b) Effectiveness of us-
ing UnityGraph for modeling temporal and spatial relation-
ships across the videos by creating a single representation
for an arbitrary number of videos. (c) The results consis-
tently increase upon using Node2Vec for updating the em-

beddings of UG-I3D. This further justifies our hypothesis,
shown in Figure 2, that Node2Vec improves the embeddings
and helps in inferring the procedure. (d) Utility of using
clips for creating UnityGraph. GPL-2D performs compara-
ble to previous frame-level techniques (e.g. [3]). However,
as clips allow averaging the frame-level noise, collating in-
formation from clips performs the best.

Qualitative Results: Figure 5 shows the qualitative results
obtained using the baselines and the proposed GPL frame-
work on two tasks from EgoProceL.

6. Ablation Study

To determine optimal hyper-parameters, unless other-
wise mentioned, we perform ablation on two challenging
tasks: PC Assembly [3] and Change Tire [16]. Due to dif-
ferent attributes of first- and third-person videos, we select
one set of hyper-parameters for each of the views. Finally,
unless otherwise mentioned, for egocentric videos, Unity-
Graph is created using background frame detection.

Creating UnityGraph: In Table 4, we check values for
frame sampling rate (σ), stride (ω), and window size (ψ).
As egocentric videos have high motion variability, the maxi-
mum scores are obtained for a high sampling rate of 8. Also,
the stride (5) and window size (10) are lowest for egocentric
videos enabling the creation of nodes with high variability
in less time. For third-person videos, the maximum scores
are obtained for a low sampling rate of 4. This is because
third-person cameras are fixed and do not have high vari-
ability in scenes. Furthermore, the stride of 10 and window
size of 10 works best as it allows to sample sparsely.

Learning and clustering the embeddings: In Table 5, we
explore various values for Walk Count (α), Walk Length
(γ), and Window Size (β). For egocentric videos, we
achieve best results for α as 100, γ as 100, and β as 12.

6514



MECCANO Bike Assembly
Ground

Truth

Random

CnC

PC Assembly

GPL + I3D

GPL 

Figure 5. Qualitative Results for one video each of Bike and PC Assembly. Each color for a task denotes one key-step and gray sections are
the background. First row contains the ground truth label, second row contains the results obtained by randomly predicting the key-steps,
third row shows results obtained using CnC [3], fourth row highlight the results using UnityGraph’s node generated using I3D ResNet-50,
and the last row shows results obtained for the GPL framework. As can be seen, the segments obtained from GPL are more coherent upon
using Node2Vec to update UnityGraph’s embeddings. This highlights the efficacy of both, UnityGraph and Node2Vec

Table 4. Hyper-parameters for creating UnityGraph. Here, the
results are obtained upon changing various parameters for creating
UnityGraph. R, and F represent recall, and F-score, respectively

Sampling
Rate Stride Window

Size
PC Assembly Change Tire

R F IoU R F IoU

4 5 10 23.0 22.6 12.5 23.1 20.7 12.6
8 5 10 28.8 27.2 15.1 23.8 21.0 12.8
4 10 10 20.0 19.9 11.0 26.2 23.2 13.9
8 10 10 28.1 26.8 15.0 23.7 21.1 12.7
4 15 10 25.0 24.3 13.5 23.8 21.4 13.1
8 15 10 25.7 26.6 14.3 23.2 21.0 12.9
4 5 15 22.2 21.7 11.9 24.1 21.0 12.4
8 5 15 21.1 20.6 10.7 21.2 19.6 11.9
4 10 15 25.2 24.0 13.2 23.9 21.6 13.2
8 10 15 23.4 22.3 12.3 25.1 22.8 13.6
4 15 15 23.7 22.9 12.8 22.7 20.1 12.2
8 15 15 22.7 21.8 11.9 24.2 21.8 13.3

Table 5. Hyper-parameters for learning the embeddings. Here,
the results are obtained upon varying Node2Vec’s parameters. R,
and F represent recall, and F-score, respectively
Walk
Count

Walk
Length

Window
Size

PC Assembly Change Tire

R F IoU R F IoU

50 50 8 28.7 27.2 15.1 20.6 19.2 11.6
100 50 8 23.0 22.3 12.1 20.6 19.2 11.6
50 100 8 28.3 26.6 14.7 23.8 21.1 12.9
100 100 8 28.1 26.1 14.3 25.1 21.9 13.1
50 150 8 28.2 26.6 14.7 23.9 21.1 12.9
100 150 8 28.0 26.0 14.3 25.0 21.7 13.0
50 50 10 28.8 27.3 15.1 26.1 22.6 13.4
100 50 10 27.9 26.3 14.5 24.3 21.9 13.2
50 100 10 28.8 27.2 15.1 23.8 21.0 12.8
100 100 10 23.1 22.5 12.1 24.4 21.7 13.2
50 150 10 23.0 22.4 12.0 24.4 22.0 13.3
100 150 10 27.7 26.2 14.4 23.9 21.1 12.9
50 50 12 28.9 27.5 15.2 24.8 21.7 12.9
100 50 12 24.6 23.4 12.5 24.4 21.8 13.2
50 100 12 27.8 26.3 14.3 24.4 21.1 12.7
100 100 12 29.0 27.5 15.2 25.6 21.9 13.1
50 150 12 28.7 27.1 14.8 24.4 21.1 12.7
100 150 12 28.8 27.3 15.0 24.6 21.8 13.2

Table 6. Hyper-parameters for walks over UnityGraph. Here,
we perform multiple walks to analyse the hyper-parameters for
Node2Vec. R, and F represent recall, and F-score, respectively

Return
Parameter

In-out
Parameter

PC Assembly Change Tire

R F IoU R F IoU

0.1 0.5 28.7 26.9 14.8 24.5 21.8 13.2
0.1 1.0 28.4 26.7 14.7 24.5 21.8 13.2
0.5 0.1 24.2 23.0 12.3 20.5 18.9 11.4
0.5 1.0 28.5 26.8 14.7 20.6 19.0 11.5
1.0 0.1 24.6 24.6 14.5 25.6 21.9 13.0
1.0 0.5 28.8 27.3 15.1 20.4 18.9 11.4
1.0 1.0 29.0 27.5 15.2 25.6 21.9 13.1

Due to the high variability of scenes in egocentric videos,
the walk count required to update the embeddings are high.
This also leads to having a high walk length and a high num-
ber of frames in a window. Instead, for third-person videos,
we require comparatively less walk count (50), walk length
(50), and window size (10). As the majority of the videos in
third-person datasets are from the internet, they skip a large
number of repetitive portions of the task [3]. Due to this,
the number of walks and the length are less. Furthermore,
these datasets contain multiple non-relevant frames (expla-
nation/animation) that should be circumvented.

In Table 6, we analyses the return parameter that controls
the likelihood of immediately revisiting a node in the walk,
and in-out parameter that allows the search to differentiate
between inward and outward nodes [19]. For both views,
we obtain the highest results for p and q as 1.0.
Number of key-steps and background frames: Table 7
contains results obtained upon varying K (number of key-
steps) for the GPL framework. The results follow the trend
in the previous work [3] and are highest for K = 7. The
results decrease significantly as the values of K increase.

In Section 3.1.2, we discussed the presence of a
high number of background frames in procedure learn-
ing datasets [65]. To address this issue, we employ a

6515



Table 7. Tuning K. Here, the results are obtained for various
values of K. R, and F represent recall, and F-score, respectively

K
PC Assembly Change Tire

R F IoU R F IoU

7 29.0 27.5 15.2 25.6 21.9 13.1
10 19.5 20.4 10.4 17.6 16.9 10.2
12 18.8 20.5 10.2 14.4 14.2 8.5
15 19.7 22.5 10.7 13.5 13.6 7.4

Table 8. Detecting background frames. Results are obtained
upon filtering frames that do not contain hand-object interaction.
Results improve for categories with subjects working in an unre-
stricted space. R, and F represent recall, and F-score, respectively

Hand-Object
Interaction

PC Assembly Greek Salad

R F IoU R F IoU

Not Checked 29.5 27.6 14.4 25.4 22.3 12.7
Checked 29.0 27.5 15.2 34.9 26.5 21.4

hand-object interaction detection method on first-person
videos. Frames that exhibit hand-object interaction are cat-
egorized as foreground, while the rest are considered back-
ground. The effectiveness of background frame filtration
is demonstrated in Table 8, showcasing improved results
for categories involving open spaces. For instance, in the
Greek Salad dataset [36], the subjects work in an unre-
stricted kitchen environment, as opposed to PC Assem-
bly [3], where they work in a confined space with hands
being visible for the majority of the time. It should be noted
that hand-object detection in third-person videos fails due
to small hands and constant hand visibility. Hence, we ex-
clusively utilize hand-object interaction for background fil-
tering in egocentric videos. The enhanced results for third-
person videos are solely attributed to GPL. Results for other
categories in EgoProceL are in the supplementary materials.

Number of videos for creating UnityGraph: Table 9 con-
tains results obtained by increasing the number of videos
used to create UnityGraph. The objective here is to assess
the effectiveness of the GPL framework in relation to the
number of videos utilized. Here, we specifically select tasks
with a number of videos that are powers of two. We then
generate n

Video Count graphs and concatenate the results to
maintain consistency with the other experiments. As shown
in Table 9, the highest F-score and IoU are achieved when
using the maximum number of videos. This supports our
main claim that employing UnityGraph to create a unified
representation for all task videos enables capturing both the
temporal relationships within individual videos and the se-
mantic relationships across multiple videos. Furthermore,
as the dataset size increases, GPL, in conjunction with Uni-
tyGraph, consistently achieves high-performance results.

Table 9. Number of Videos. Here, the results are obtained upon
systematically increasing the number of videos for creating Unity-
Graph. R, and F represent recall, and F-score, respectively

Video
Count

Bacon and Eggs [36] Tie-Tie [16]

R F IoU R F IoU

4 23.6 20.0 11.4 20.9 18.4 11.2
8 25.0 22.1 12.1 21.3 18.8 11.2
16 27.8 23.1 12.6 20.1 17.6 10.7
32 − − − 20.2 18.0 10.8
64 − − − 23.5 19.7 11.4

Remark on hyper-parameter selection: Determining the
optimal values poses a challenge due to the unsupervised
nature of the problem. To address this, we conduct experi-
ments using both first- and third-person views and perform
an extensive ablation study. We present a set of hyper-
parameters for each view in Table 1. In an effort to achieve
generalizable hyper-parameter tuning, we perform the ab-
lation study on a single task from each view. It is worth
noting that the EgoProceL dataset [3] contains videos from
multiple sources, resulting in significant domain variation.
Nonetheless, the superior performance of GPL over existing
approaches on three datasets demonstrates that the chosen
hyper-parameters are applicable across different datasets.
Assumptions and Limitations: Proposed GPL framework
exhibits limitations that stem from certain assumptions.
Firstly, UnityGraph relies on subjects using similar objects
for identical key-steps, which might lead to inaccuracies
when dissimilar objects are employed. Additionally, while
our method filters background frames based on hand-object
interactions, cases like the ‘check booklet’ from MEC-
CANO challenge this assumption. We’re actively working
to address these limitations in future iterations of our work
to enhance UnityGraph’s robustness and accuracy.

7. Conclusion
Procedure learning is an important direction toward cre-

ating systems capable of assisting humans. Contrary to
current approaches, we propose the graph-based procedure
learning (GPL) framework. GPL consists of UnityGraph
that creates a unified representation for multiple videos of
the same task. UnityGraph allows us to model both, tem-
poral and spatial information. The results obtained and the
ablation performed demonstrate the capability of a graph-
based approach for procedure learning.
Acknowledgments: The work was supported in part by
the Department of Science and Technology, Government
of India, under DST/ICPS/Data-Science project ID T-138.
The authors thank Makarand Tapaswi and Charu Sharma
for their Topics in Deep Learning course which motivated
the paper’s central idea.

6516



References
[1] U. Ahsan, Chen Sun, and Irfan Essa. DiscrimNet: Semi-

Supervised Action Recognition from Videos using Genera-
tive Adversarial Networks. In Computer Vision and Pattern
Recognition Workshops (CVPRW) ‘Women in Computer Vi-
sion (WiCV)’, 2018. 3

[2] Jean-Baptiste Alayrac, Piotr Bojanowski, Nishant Agrawal,
Ivan Laptev, Josef Sivic, and Simon Lacoste-Julien. Unsu-
pervised learning from Narrated Instruction Videos. In Com-
puter Vision and Pattern Recognition (CVPR), 2016. 2, 5, 6

[3] Siddhant Bansal, Chetan Arora, and C.V. Jawahar. My
View is the Best View: Procedure Learning from Egocen-
tric Videos. In European Conference on Computer Vision
(ECCV), 2022. 1, 2, 3, 4, 5, 6, 7, 8

[4] Piotr Bojanowski, Rémi Lajugie, Francis Bach, Ivan Laptev,
Jean Ponce, Cordelia Schmid, and Josef Sivic. Weakly Su-
pervised Action Labeling in Videos under Ordering Con-
straints. In European Conference on Computer Vision
(ECCV), 2014. 2

[5] João Carreira and Andrew Zisserman. Quo Vadis, Action
Recognition? A New Model and the Kinetics Dataset. In
Computer Vision and Pattern Recognition (CVPR), 2017. 2,
3, 4, 5

[6] Chien-Yi Chang, De-An Huang, Yanan Sui, Li Fei-Fei,
and Juan Carlos Niebles. D3TW: Discriminative Differen-
tiable Dynamic Time Warping for Weakly Supervised Ac-
tion Alignment and Segmentation. In Computer Vision and
Pattern Recognition (CVPR), 2019. 2

[7] Yunpeng Chen, Marcus Rohrbach, Zhicheng Yan, Yan
Shuicheng, Jiashi Feng, and Yannis Kalantidis. Graph-based
global reasoning networks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), 2019. 2

[8] Richard W. Conners and Charles A. Harlow. A Theoretical
Comparison of Texture Algorithms. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 1980. 1

[9] Dima Damen, Teesid Leelasawassuk, Osian Haines, Andrew
Calway, and Walterio Mayol-Cuevas. You-Do, I-Learn: Dis-
covering Task Relevant Objects and their Modes of Interac-
tion from Multi-User Egocentric Video. In British Machine
Vision Conference (BMVC), 2014. 2

[10] F. De La Torre, J. Hodgins, A. Bargteil, X. Martin, J. Macey,
A. Collado, and P. Beltran. Guide to the Carnegie Mellon
University Multimodal Activity (CMU-MMAC) database. In
Robotics Institute, 2008. 6

[11] Ali Diba, Vivek Sharma, L. Gool, and R. Stiefelhagen. Dy-
namoNet: Dynamic Action and Motion Network. In Inter-
national Conference on Computer Vision (ICCV), 2019. 3

[12] Li Ding and Chenliang Xu. Weakly-Supervised Action Seg-
mentation with Iterative Soft Boundary Assignment. In
Computer Vision and Pattern Recognition (CVPR), 2018. 2

[13] Hazel Doughty, Ivan Laptev, Walterio Mayol-Cuevas, and
Dima Damen. Action Modifiers: Learning From Adverbs in
Instructional Videos. In Computer Vision and Pattern Recog-
nition (CVPR), 2020. 2

[14] Debidatta Dwibedi, Yusuf Aytar, Jonathan Tompson, Pierre
Sermanet, and Andrew Zisserman. Temporal Cycle-

Consistency Learning. In Computer Vision and Pattern
Recognition (CVPR), 2019. 1

[15] Ehsan Elhamifar and Dat Huynh. Self-supervised Multi-task
Procedure Learning from Instructional Videos. In European
Conference on Computer Vision (ECCV), 2020. 1, 2, 3, 5, 6

[16] Ehsan Elhamifar and Zwe Naing. Unsupervised Procedure
Learning via Joint Dynamic Summarization. In International
Conference on Computer Vision (ICCV), 2019. 1, 2, 3, 5, 6,
8

[17] Basura Fernando, Hakan Bilen, E. Gavves, and Stephen
Gould. Self-Supervised Video Representation Learning with
Odd-One-Out Networks. In Computer Vision and Pattern
Recognition (CVPR), 2017. 3

[18] Daniel Fried, Jean-Baptiste Alayrac, P. Blunsom, Chris
Dyer, S. Clark, and Aida Nematzadeh. Learning to Segment
Actions from Observation and Narration. In Association for
Computational Linguistics (ACL), 2020. 2, 5, 6

[19] Aditya Grover and Jure Leskovec. node2vec: Scalable Fea-
ture Learning for Networks. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery
and Data Mining, 2016. 5, 7

[20] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Ex-
ploring Network Structure, Dynamics, and Function using
NetworkX. In Proceedings of the 7th Python in Science Con-
ference, 2008. 5

[21] Tengda Han, Weidi Xie, and Andrew Zisserman. Video Rep-
resentation Learning by Dense Predictive Coding. In Work-
shop on Large Scale Holistic Video Understanding, ICCV,
2019. 3

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep Residual Learning for Image Recognition. In Com-
puter Vision and Pattern Recognition (CVPR), 2016. 2, 3, 4,
5

[23] De-An Huang*, Shyamal Buch*, Lucio Dery, Animesh
Garg, Li Fei-Fei, and Juan Carlos Niebles. Finding “It”:
Weakly-Supervised, Reference-Aware Visual Grounding in
Instructional Videos. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), 2018. 2

[24] De-An Huang, Li Fei-Fei, and Juan Carlos Niebles. Con-
nectionist Temporal Modeling for Weakly Supervised Ac-
tion Labeling. In European Conference on Computer Vision
(ECCV), 2016. 2

[25] De-An Huang, Suraj Nair, Danfei Xu, Yuke Zhu, Animesh
Garg, Li Fei-Fei, Silvio Savarese, and Juan Carlos Niebles.
Neural Task Graphs: Generalizing to Unseen Tasks From a
Single Video Demonstration. Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), 2019. 2

[26] Noureldien Hussein, Efstratios Gavves, and Arnold W. M.
Smeulders. VideoGraph: Recognizing Minutes-Long Hu-
man Activities in Videos. ArXiv, abs/1905.05143, 2019. 2

[27] Lei Ji, Chenfei Wu, Daisy Zhou, Kun Yan, Edward Cui,
Xilin Chen, and Nan Duan. Learning Temporal Video Pro-
cedure Segmentation from an Automatically Collected Large
Dataset. In 2022 IEEE/CVF Winter Conference on Applica-
tions of Computer Vision (WACV), 2022. 2

6517



[28] Salman Khan and Fabio Cuzzolin. Spatiotemporal De-
formable Models for Long-Term Complex Activity Detec-
tion. In British Machine Vision Conference (BMVC), 2021.
2

[29] Dahun Kim, Donghyeon Cho, and In-So Kweon. Self-
Supervised Video Representation Learning with Space-Time
Cubic Puzzles. In AAAI Conference on Artificial Intelli-
gence, 2019. 3

[30] H. W. Kuhn. The Hungarian method for the assignment prob-
lem. Naval Research Logistics Quarterly, 1955. 5

[31] Anna Kukleva, Hilde Kuehne, Fadime Sener, and Jurgen
Gall. Unsupervised learning of action classes with contin-
uous temporal embedding. In Computer Vision and Pattern
Recognition (CVPR), 2019. 2, 3, 5, 6

[32] Sateesh Kumar, Sanjay Haresh, Awais Ahmed, Andrey
Konin, M. Zeeshan Zia, and Quoc-Huy Tran. Unsupervised
Action Segmentation by Joint Representation Learning and
Online Clustering. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
2022. 1

[33] Hsin-Ying Lee, Jia-Bin Huang, Maneesh Kumar Singh, and
Ming-Hsuan Yang. Unsupervised Representation Learning
by Sorting Sequences. In International Conference on Com-
puter Vision (ICCV), 2017. 3

[34] Jun Li, Peng Lei, and Sinisa Todorovic. Weakly Supervised
Energy-Based Learning for Action Segmentation. In Inter-
national Conference on Computer Vision (ICCV), 2019. 2

[35] Jun Li and Sinisa Todorovic. Set-Constrained Viterbi for Set-
Supervised Action Segmentation. In Computer Vision and
Pattern Recognition (CVPR), 2020. 2

[36] Yin Li, Miao Liu, and James M. Rehg. In the Eye of Be-
holder: Joint Learning of Gaze and Actions in First Per-
son Video. In European Conference on Computer Vision
(ECCV), 2018. 6, 8

[37] Xingyu Liu, Joon-Young Lee, and Hailin Jin. Learning
Video Representations From Correspondence Proposals. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), 2019. 2

[38] J. Malmaud, Jonathan Huang, V. Rathod, Nick Johnston, An-
drew Rabinovich, and K. Murphy. What’s Cookin’? Inter-
preting Cooking Videos using Text, Speech and Vision. In
HLT-NAACL, 2015. 2

[39] Ishan Misra, C. L. Zitnick, and M. Hebert. Shuffle and Learn:
Unsupervised Learning Using Temporal Order Verification.
In European Conference on Computer Vision (ECCV), 2016.
3

[40] Zwe Naing and Ehsan Elhamifar. Procedure Completion by
Learning from Partial Summaries. In British Machine Vision
Conference (BMVC), 2020. 2

[41] Medhini Narasimhan, Arsha Nagrani, Chen Sun, Michael
Rubinstein, Trevor Darrell, Anna Rohrbach, and Cordelia
Schmid. TL;DW? Summarizing Instructional Videos with
Task Relevance and Cross-Modal Saliency. In European
Conference on Computer Vision (ECCV), 2022. 1

[42] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,

Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An
Imperative Style, High-Performance Deep Learning Library.
In Neural Information Processing Systems, 2019. 5

[43] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deep-
Walk: Online Learning of Social Representations. In Pro-
ceedings of the 20th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, 2014. 5

[44] Yicheng Qian, Weixin Luo, Dongze Lian, Xu Tang, Peilin
Zhao, and Shenghua Gao. SVIP: Sequence VerIfication for
Procedures in Videos. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), 2022. 1

[45] Alexander Richard, Hilde Kuehne, and Juergen Gall. Action
Sets: Weakly Supervised Action Segmentation Without Or-
dering Constraints. In Computer Vision and Pattern Recog-
nition (CVPR), 2018. 2

[46] Alexander Richard, Hilde Kuehne, Ahsan Iqbal, and Juergen
Gall. NeuralNetwork-Viterbi: A Framework for Weakly Su-
pervised Video Learning. In Computer Vision and Pattern
Recognition (CVPR), 2018. 2

[47] Fadime Sener and Angela Yao. Zero-Shot Anticipation
for Instructional Activities. In International Conference on
Computer Vision (ICCV), 2019. 2

[48] Ozan Sener, Amir R. Zamir, Silvio Savarese, and Ashutosh
Saxena. Unsupervised Semantic Parsing of Video Collec-
tions. In International Conference on Computer Vision
(ICCV), 2015. 2

[49] Dandan Shan, Jiaqi Geng, Michelle Shu, and David Fouhey.
Understanding human hands in contact at internet scale. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), 2020. 4, 5

[50] Yuhan Shen, Lu Wang, and Ehsan Elhamifar. Learning To
Segment Actions From Visual and Language Instructions via
Differentiable Weak Sequence Alignment. In Computer Vi-
sion and Pattern Recognition (CVPR), 2021. 1, 2, 3, 5, 6

[51] Nitish Srivastava, Elman Mansimov, and Ruslan Salakhutdi-
nov. Unsupervised Learning of Video Representations Using
LSTMs. In International Conference on Machine Learning
(ICML), 2015. 3

[52] Rosaura G. VidalMata, Walter J. Scheirer, Anna Kuk-
leva, David Cox, and Hilde Kuehne. Joint Visual-
Temporal Embedding for Unsupervised Learning of Ac-
tions in Untrimmed Sequences. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer
Vision (WACV), 2021. 2, 3

[53] Carl Vondrick, Hamed Pirsiavash, and Antonio Torralba.
Generating Videos with Scene Dynamics. In Neural Infor-
mation Processing Systems, 2016. 3

[54] Shaojie Wang, Wentian Zhao, Ziyi Kou, Jing Shi, and Chen-
liang Xu. How to Make a BLT Sandwich? Learning VQA
Towards Understanding Web Instructional Videos. In Pro-
ceedings of the IEEE/CVF Winter Conference on Applica-
tions of Computer Vision (WACV), 2021. 2

[55] Xiaolong Wang and Abhinav Gupta. Videos as space-time
region graphs. In European Conference on Computer Vision
(ECCV), 2018. 2

6518



[56] Donglai Wei, Joseph Lim, Andrew Zisserman, and
William T Freeman. Learning and Using the Arrow of Time.
In Computer Vision and Pattern Recognition (CVPR), 2018.
3

[57] Jin woo Choi, Gaurav Sharma, S. Schulter, and Jia-Bin
Huang. Shuffle and Attend: Video Domain Adaptation. In
European Conference on Computer Vision (ECCV), 2020. 3

[58] Dejing Xu, Jun Xiao, Zhou Zhao, Jian Shao, Di Xie, and
Yueting Zhuang. Self-Supervised Spatiotemporal Learning
via Video Clip Order Prediction. In Computer Vision and
Pattern Recognition (CVPR), 2019. 3

[59] Mengmeng Xu, Chen Zhao, David S. Rojas, Ali Thabet, and
Bernard Ghanem. G-TAD: Sub-Graph Localization for Tem-
poral Action Detection. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), 2020. 2

[60] Chenyu You, Lianyi Han, Aosong Feng, Ruihan Zhao, Hui
Tang, and Wei Fan. MEGAN: Memory Enhanced Graph At-
tention Network for Space-Time Video Super-Resolution. In
Proceedings of the IEEE/CVF Winter Conference on Appli-
cations of Computer Vision (WACV), 2022. 2

[61] Shoou-I Yu, Lu Jiang, and Alexander Hauptmann. Instruc-
tional Videos for Unsupervised Harvesting and Learning of
Action Examples. In ACM International Conference on Mul-
timedia, 2014. 2

[62] Runhao Zeng, Wenbing Huang, Mingkui Tan, Yu Rong,
Peilin Zhao, Junzhou Huang, and Chuang Gan. Graph Con-
volutional Networks for Temporal Action Localization. In
International Conference on Computer Vision (ICCV), 2019.
2

[63] He Zhao, Isma Hadji, Nikita Dvornik, Konstantinos G. Der-
panis, Richard P. Wildes, and Allan D. Jepson. P3IV: Prob-
abilistic Procedure Planning From Instructional Videos With
Weak Supervision. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
2022. 1

[64] Luowei Zhou, Chenliang Xu, and Jason J Corso. Towards
Automatic Learning of Procedures From Web Instructional
Videos. In AAAI Conference on Artificial Intelligence, 2018.
2

[65] Dimitri Zhukov, Jean-Baptiste Alayrac, Ramazan Gokberk
Cinbis, David Fouhey, Ivan Laptev, and Josef Sivic. Cross-
task weakly supervised learning from instructional videos.
In Computer Vision and Pattern Recognition (CVPR), 2019.
2, 4, 5, 6, 7

[66] D. Zhukov, J.-B. Alayrac, I. Laptev, and J. Sivic. Learning
Actionness via Long-range Temporal Order Verification. In
European Conference on Computer Vision (ECCV), 2020. 2

6519


