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Abstract

Eliminating time-consuming post-production processes
and delivering high-quality videos in today’s fast-paced
digital landscape are the key advantages of real-time ap-
proaches. To address these needs, we present Real Time
GAZED: a real-time adaptation of the GAZED framework
integrated with CineFilter, a novel real-time camera trajec-
tory stabilization approach. It enables users to create pro-
fessionally edited videos in real-time. Comparative evalua-
tions against baseline methods, including the non-real-time
GAZED, demonstrate that Real Time GAZED achieves simi-
lar editing results, ensuring high-quality video output. Fur-
thermore, a user study confirms the aesthetic quality of the
video edits produced by the Real Time GAZED approach.
With these advancements in real-time camera trajectory op-
timization and video editing presented, the demand for im-
mediate and dynamic content creation in industries such as
live broadcasting, sports coverage, news reporting, and so-
cial media content creation can be met more efficiently.

1. Introduction

Creating professional recordings of live stage perfor-
mances involves skilled camera operators who capture the
performance from various angles. These camera feeds are
edited to create a polished and engaging final product. How-
ever, generating these professional edits is a challenging
task. Firstly, operating cameras during a live performance
is difficult even for experts, as there are no second chances
to retake footage, and there are limitations on camera an-
gles due to the impracticality of using large equipment like
trolleys or cranes. Secondly, manual video editing is a
slow and laborious process that requires the expertise of
skilled editors. Producing professional recordings of live
performances requires a professional camera crew, multi-
ple cameras and equipment, and experienced editors, which
increases the complexity and costs of the process.

To this end, small-scale productions end up using a fixed
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Figure 1. The initial row of bounding boxes illustrates the shots
carefully chosen by the Real Time GAZED system, indicated by
the green boxes, and the GAZED system, represented by the pink
boxes. The second row depicts the noisy (in gray) and real-time
stabilized (in blue) actor’s trajectory along horizontal (X) direction
in the video. The third row showcases the cropped shots from
frames.

wide-angle camera placed at a sufficiently large distance to
capture the entire stage. These static recordings are suitable
for archiving purposes. While they provide an overall un-
derstanding of the context, the distant camera feed fails to
showcase essential elements of cinematic storytelling, such
as close-up shots of faces, characters’ emotions and actions,
and important actor interactions for creating an engaging
experience.

A recent effort called GAZED [17] demonstrated
promise in automated editing from a single static high-
resolution recording employing the user’s gaze. They first
simulate multiple virtual cameras by moving a cropping
window inside the original static recording [9] and then per-
form camera selection among the simulated camera feeds.
Gaze information helps identify essential areas within the
scene, which are assigned gaze potentials that quantify the
significance of the available shots. These gaze potentials are
combined with other factors that adhere to cinematic prin-
ciples, such as avoiding abrupt cuts, maintaining rhythm,
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avoiding transient shots, etc. Dynamic programming is used
to solve the discrete optimization problem of camera selec-
tion.

The major limitation of GAZED is that both the vir-
tual camera simulation and camera selection procedures are
posed as an offline optimization, limiting its usage in live
streaming applications (like music concerts, staged dance
performances, etc.). In this work, we propose Real Time
GAZED, which extends the GAZED framework to such
scenarios by remodeling the optimization algorithms into
real-time setup, with a minimal look ahead into the future.
For virtual camera simulation, we adapt Cinefilter [1] and
propose a novel formulation for real-time camera selection,
with additional constraints enforcing continuity across time.
The Fig. 1 concisely represents the core functionalities en-
compassed by the Real Time GAZED and GAZED video
editing pipelines.

A user study involving 8 participants was conducted
to evaluate the system’s real-time performance. Multiple
edited versions of stage performance recordings are edited
using Real Time GAZED and compared against several
baseline methods. The user study results demonstrate that
Real Time GAZED outperforms the baseline methods in
terms of editing quality and performs equally well com-
pared to GAZED. Thus, even with a real-time version, in-
corporating gaze information and other cinematic principles
leads to more effective and engaging video edits. Our main
contributions can be summarized as follows:

1. We created an end-to-end cinematic editing pipeline
that operates in real-time. It allows for generating pro-
fessional quality videos from a static camera record-
ing. The approach involves selecting shots based on
an objective function that incorporates gaze potentials
and adheres to cinematic principles and shot continuity
constraints. This system empowers even novice users
to create polished and well-edited videos using their
eye gaze data and an affordable desktop eye tracker.

2. We conducted a comprehensive user study to validate
the method’s effectiveness compared to various edit-
ing baselines. The results demonstrate that users prefer
the outputs generated regarding several attributes that
characterize the editing quality.

2. Related Work

Many scholarly articles have taken on the challenge of
video editing by treating it as a discrete optimization prob-
lem [7] [8] [15] [16]. Most of these studies have embraced
dynamic programming techniques to determine the optimal
amalgamation of shots that enhance viewer engagement.
However, it is worth noting that these approaches enjoy
the luxury of unrestricted camera placement and movement

within their 3D environments - an advantage that is absent
from our methodology. Moreover, it is impractical to imple-
ment these approaches in real-time scenarios where retakes
are not feasible.

Meratbi et al. [15] employs a Hidden Markov Model for
editing using established film shot transition probabilities,
focusing on dialogue scenes with manual movie annotation.
In contrast, our approach offers versatile editing without
scene-specific limits, embracing creative potential. Galvane
et al. [8] contribute significantly, addressing cut placement,
rhythm, and continuity. We draw from these innovations,
but stage performance challenges are distinct, lacking 3D
scene data and camera freedom.

Ranjan et al. [19] transformed group meeting editing
using cues like speaker detection, posture, and head ori-
entation to establish effective editing rules. For instance,
switching to close-ups when speakers change or using
overview shots during conversations. Doubek et al. [6] fo-
cused on camera selection for surveillance. These studies
revolutionize video editing and camera choices, enhanc-
ing engagement. Sports event camera selection is also ad-
vanced [3] [4] [5] [22], often employing Hidden Markov
Models [4] [22] for diverse viewpoints.

Many studies explore learning-based video editing meth-
ods. For instance, Anyi et al. [20] excel in camera selec-
tion for broadcasting but miss actor emotions captured by
traditional editing. Hui-Yin Wu et al. [2] identify optimal
meeting shots via annotated videos, with high costs. In
contrast, our approach offers efficient, real-time deployment
with low computational needs and memory usage. Studies
like [11] [18] use eye gaze data for video retargeting, adapt-
ing content between display devices. Current methods fo-
cus on horizontal adjustments, leading to poorly composed
frames and odd zoom effects. GAZED [ | 7] offers improved
shot selection using gaze, but it’s limited to offline editing.
Our approach enhances GAZED for real-time use, address-
ing this limitation effectively.

3. Method

In Real Time GAZED, we enhanced the GAZED video
editing pipeline by adjusting its shot generation and shot
selection components. Firstly, we have replaced the offline
actor trajectory stabilization with a real-time actor trajec-
tory stabilization [1] for the shot generation component. In
the shot selection component, we have introduced a shot
continuity constraint in addition to the cost matrix and pre-
viously selected shots. This constraint ensures the selected
shots flow smoothly and maintain a coherent sequence. By
incorporating these modifications, we made it possible to
use these components in real-time settings. They rely on
contextual information available at any given moment and
rather not use information across time. Below, we briefly
explain the functionality of these components.
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3.1. GAZED

The video editing pipeline of GAZED [17] comprises
two components: shot generation and shot selection. The
shot generation component produces various combinations
of shots featuring the actor, utilizing de-noised data ob-
tained from a widely recognized human tracker called Byte-
Track [23]. An offline trajectory stabilizer is employed to
refine the actor’s trajectories to enhance the composition of
shots. The shot selection stage treats it as a convex opti-
mization problem. It employs dynamic programming tech-
niques to identify and select the most suitable shot at a given
time ¢. The approach uses an offline strategy that involves
backtracking through the entire video to identify a shot from
the optimal shot cost path.

3.2. Shot Generation

The shot generation component in the GAZED video
editing pipeline utilizes a wide-angle recording captured by
a stationary camera, providing a complete view of the en-
tire scene. Each frame in this input video serves as a mas-
ter shot. Through the application of a virtual camera sim-
ulation technique [9] known as multi-virtual pan-tilt-zoom
(PTZ) cameras, possible shots are automatically generated
for actors within each frame. It involves using virtual PTZ
cameras that focus on specific actors or groups of actors.
These cameras create zoomed-in shots that bring a sense of
depth and intimacy to the original wide-angle recording. To
determine the actor positions within each master shot, we
leverage the information provided by bounding boxes ob-
tained through the use of a human tracker [23].

3.2.1 CineFilter

However, these bounding boxes obtained from the tracker
may contain noise and exhibit jitter. Instead of relying on
an offline trajectory stabilization approaches [9, 10,21], we
employ CineFilter [1] a novel approach for real-time cam-
era trajectory optimization. It comprises two online filtering
methods: CineConvex and CineCNN. CineConvex utilizes
a sliding window-based convex optimization formulation,
while CineCNN employs a convolutional neural network as
an encoder-decoder model. Both methods are motivated by
cinematographic principles, producing smooth and natural
camera trajectories. With a minor latency of half a second,
CineConvex operates at approximately 250 frames per sec-
ond (fps), while CineCNN achieves an impressive speed of
1000 fps, making them highly suitable for real-time appli-
cations. It eliminates noise, jitter, and residual motion while
emulating an ideal camera trajectory composed of three seg-
ments: static segments, constant velocity segments, and
segments with constant acceleration, resulting in a smooth
trajectory. The middle row of Fig. 1 portrays an noisy and
the corresponding real-time stabilized trajectory.

Figure 2. The figure illustrates the various bounding boxes gen-
erated within a frame. These bounding boxes serve as virtually
simulated cameras, capturing different perspectives and composi-
tions from a single frame. These generated shots are used in Real
Time GAZED algorithm.

In generating shots with real-time actor trajectory stabi-
lization, we employ the CineCNN model as our preferred
choice. This model stands out due to its learning-based,
lightweight nature and fast processing capabilities.

With real-time actor trajectory stabilization integration,
the shot generation component can operate in real-time
without relying on temporal video information. Instead, it
focuses solely on the actors present within each frame at
a specific moment, stabilizes their trajectories, and rapidly
generates shots without considering the context across mul-
tiple frames. This approach instantaneously captures the
scene’s essence, enabling dynamic and on-the-fly shot se-
lection. Consequently, the process is fast and efficient.
When processing an input video, we generate a compre-
hensive set of possible shots for every combination of per-
formers in the scene. For a video with n performers, we
create n * (n + 1)/2 combinations of shots. We generate
n number of 1-shots for sequences with N actors, followed
by N — 1 number of 2-shots, N — 2 number of 3-shot type,
and so on, capturing different arrangements of performers.
We choose shots featuring neighboring actors, resulting in
N — 2 instances of 2-shots. This selection employs a sliding
window approach, avoiding the need for 2 permutations of
N actors. This process applies similarly to 3-shot sequences
and beyond.

The Fig. 2 portrays the possible shot combinations
within a single frame featuring three actors. We utilize a
Medium Shot (MS) for single actor shots (1-shots) to ensure
the generated shots are visually appealing. A medium shot
frames the performer from head to waist, while a medium
closeup focuses from head to mid-chest, offering an inti-
mate perspective. For sequences involving multiple actors,
we employ a Full Shot (FS) that captures each performer
from head to toe, providing a comprehensive view of the
group’s dynamics. By implementing these techniques, we
enhance the visual impact of the edited videos and create a
more immersive viewing experience for the audience. We
denote a set of shots generated from a frame (master-shot)
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To overcome the low resolution of shots generated from
the original video, Its recommended to capture video in
a higher resolution. Modern high-performance CPUs and
GPUs smoothly handle 4K or 8K video processing. Dedi-
cated graphics cards and specialized video chips accelerate
tasks like decoding, encoding, and editing. Quick access to
large video files requires fast SSDs with high read and write
speeds.

3.3. Shot Selection

In our video editing pipeline, the next crucial step after
generating shots is selecting the most compelling shot that
effectively tells the story at each moment. However, we
couldn’t directly utilize the shot selection component from
the GAZED pipeline as it heavily relies on the complete
temporal information of the video. To overcome this limita-
tion, we modified the shot selection component by consid-
ering only a small time frame, typically ranging from half
to one second, instead of the entire video. Additionally, we
introduced an extra penalty term called shot continuity to
ensure a smooth transition between shots.

The shot selection process is treated as a discrete opti-
mization problem, where we assess the importance of each
of the multiple shots generated for every video frame. Dur-
ing this assessment, we adhere to fundamental cinematic
principles such as avoiding abrupt cuts between overlap-
ping shots (jump cuts), preventing rapid shot transitions,
and maintaining a cohesive cutting rhythm. To determine
the importance of each shot at a given moment, we rely on
eye gaze data collected using an eye-tracking device. More-
over, we incorporate cinematic principles into the optimiza-
tion process through penalty terms that guide the shot selec-
tion. By making these modifications and incorporating eye
gaze data and cinematic principles, we enhance the overall
editing process, ensuring that the selected shots effectively
convey the story and captivate the audience.

For a scene with n actors, the editing graph consists of
n * (n + 1)/2 nodes at each frame ¢, where each node rep-
resents a shot and edges across time steps represent a tran-
sition from one shot to another (denoting a cut) or to itself
(no cut). Formally, given a sequence of frames ¢ = [1..T]
the set of generated shots S* = {s!}"*{"™)/2 and the raw
gaze data g}, corresponding to user k at time ¢, our algo-
rithm selects a sequence of shots € = {s’} where s* € S?,
by minimizing the following objective function:

T

E(e) =) —In(G(s)) + Y E(s's") (2
t=2

t=1

where E.(s'71, s') denotes cost for switching from one

Figure 3. The figure showcases the behavior of the gaze potential
function in response to human gaze. It provides a visual represen-
tation of this interaction by highlighting white dots that indicate
the precise locations where the human gaze is directed within the
frame. To better understand the influence of gaze on the scene,
accompanying histograms are displayed beside each frame. These
histograms present the gaze potential cost associated with each
bounding box in the scene. To make it even more intuitive, the
color-coded bars in the histograms correspond to the respective
bounding boxes, allowing for a quick and easy comparison. For
instance, the green bar in the histogram represents the gaze poten-
tial cost of the bounding box highlighted in green.

shot to another and G/(s') is a unary cost that represents the
gaze potential (modeling importance) for each shot.

3.3.1 Gaze Potential

Each generated shot is assigned a score that helps the opti-
mization algorithm find the most optimal path through the
editing graph. When editing a video, ensuring that the final
result captures each scene’s original narrative is essential.
Unlike previous methods [14], [8] that rely on additional
metadata or computational features to estimate actions or
emotions in a shot, which often overlook high-level scene
semantics that humans are sensitive to, we utilize gaze data
recorded from users. This approach has proven to be effec-
tive in accurately localizing focal scene events. We choose
to use the Gaze Potential component from GAZED as it has
several advantages. It is fast, does not depend on the tem-
poral context within the video, and can be computed in real-
time. G(s!) defines the Gaze potential for a shot s! at time
t. The Fig. 3 depicts the gaze potential dynamics within
a single frame when considering the gaze of five distinct
users. For gaze potential, a single human gaze path is suffi-
cient for gaze potential when it’s from a director. However,
for improved gaze potential, multiple human eye gaze paths
are needed.

3.3.2 Editing cost

We have enhanced the shot selection component to adapt
to real-time settings, unlike the implementation in GAZED,
which focused solely on offline processing. This process in-
volves computing a cost matrix using gaze potential and in-
corporating penalty terms inspired by cinematic principles
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to avoid jump cuts, abrupt transitions, and other undesir-
able effects. We maintain the same penalty terms used in
GAZED to construct the cost matrix. Moreover, the com-
putation of the cost matrix is fast and can be performed in
real-time.

To achieve shot selection in real-time, we leverage the
ongoing construction of the cost matrix. At any given mo-
ment ¢, while the cost matrix is being built for a future time
t+ f (with f serving as a look-ahead duration in the cost ma-
trix), we process the cost matrix information between time
t and t + f to make shot selection decisions at time ¢. Now,
let’s delve into the details of the cinematically motivated
penalty terms and the process of utilizing the cost matrix
information from ¢ to ¢t + f for shot selection.

We use the following cinematically motivated penalty
terms from GAZED [17] - To minimize abrupt shot tran-
sitions, we introduce a transition cost (17'). Smooth transi-
tions require a low overlap between shot framing to avoid
“jump cuts.” We also add a shot overlap cost (O) to prevent
these abrupt jumps. The frequency of cuts impacts editing,
where shot length influences audience perception. Longer
shots evoke stillness, fitting emotional scenes, while shorter
shots establish faster rhythms for energetic sequences. To
regulate editing pace, we consider shot duration, leading to
a cutting thythm cost (). These penalty terms contribute
to the total cost of transitioning from one shot, denoted as
st~ to another shot, denoted as st. Both st~! and s be-
long to the set of available shots, denoted as S. The cumu-
lative sum of these penalty costs determines the overall cost
of transitioning between shots.

E.(s771s") = T(s71, sH)4+0(s" 1 st y)+R(s 1, s, 7)
3)
We incorporate the defined penalty terms into the com-
putation of the cost matrix (C). The cost matrix is con-
structed along the time dimension, where each cell repre-
sents the minimum cost required to reach that specific point.
In building the cost matrix, we utilize recurrence relation -
4 that considers the information from the previous shot, the
current shot’s gaze potential, and other penalty terms. We
can determine the optimal path and associated costs to nav-
igate through the shots over time by evaluating this recur-
rence relation for each cell in the cost matrix.

—In(G(s)), t=1
C(S§7t) = min(C(s™',t —1) otherwise
“In(G(st)) + Eu(s! L, 51)),
4

To make the shot selection component work in real-time,
we introduce Future and Continuity penalty terms. Comput-
ing GAZED on small windows of time frame lacks coher-
ent shot selection between adjacent windows, leading to an

unpleasant viewing experience. To ensure a coherent shot
selection, we add penalty terms, addressing the issue of shot
selection continuity.

The Future penalty term F' encompasses the cost of
choosing a specific shot s’,fff at time ¢ + f when consid-
ering the entire path leading up to that point. We use the
notation s! to represent a specific shot s; from the set of
generated shots S in a video frame at a given time ¢.

Fo=0C(sH 1 p) 5)

Additionally, we introduce the method
Backtrack;(z,t), which allows us to backtrack from
a state z at time ¢ to its preceding state y, which is behind ¢
time steps. This backtracking process enables us to identify
the state y that led to the current state z during the forward
pass in the cost matrix.

The Continuity term in our methodology addresses the
smooth transition between shots by penalizing the cost of
switching from a previously selected shot, denoted as p, to a
new shot s. To calculate this term, we perform a backtrack
operation starting from a shot (state) s';:rf in the future at
time ¢ + f. This backtrack operation allows us to trace back
f—1 time steps and determine the cost of transitioning from
the previously selected shot p to the current shot q. Here, ¢
is obtained by applying the backtrack function.

q = Backtracks_1(sg,t + f) (6)

Considering the continuity term in our cost function
(Equation - 7), we ensure that the editing process main-
tains a seamless flow and avoids jarring transitions between
shots. This term allows us to evaluate the transition cost
between shots, considering the previously selected shot and
the desired shot at a future time.

Continuityr = C(p,t) —In(G(q)) + Ee(p,q) (7

Now we devised the penalty terms to build a cost matrix.
Rather than relying on a total cost matrix as in GAZED,
We designed a real-time shot selection process that incor-
porates a small look-ahead duration (f) to make informed
decisions. We follow a set of steps at each frame to deter-
mine the most suitable shot. We consider two parameters
minimum shot duration [ and shot timer 6 (which is cru-
cial for the rhythm penalty term). We experimented with
look-ahead (f) values of 32, 64, 128. For higher look-ahead
values (f > 128), Real Time GAZED generates video
edits more like GAZED. Even with minimal look-ahead
(f = 32), Real Time GAZED performs comparably equal
to GAZED.

Our real-time shot selection process ensures that each
shot satisfies the minimum duration requirement / to main-
tain coherence and avoid abrupt transitions. Additionally,
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Figure 4. The figure provides a visual representation of how the
cost matrix operates within the shot selection component of the
Real Time GAZED pipeline. The blue region highlights the frames
that had already been processed by the Real Time GAZED algo-
rithm for shot selection. As indicated by the labels X,Y, Z & A
are several shots that have been previously selected within the
timeframe from the start 7o up to the current time 7;. The yellow
region denotes the frames used for look ahead, providing a glimpse
into the frames that are considered for future shot selection. The
labels a1, as, ..., an—1 represent the intermediary shots that are as-
sessed by backtracking before the final shot B is chosen at a time
Ti+1. Finally, the red region represents the frames that are yet to
be processed by the Real Time GAZED algorithm. Horizontal di-
mension denotes time 7" and vertical dimension corresponds to the
potential number of shots generated for each frame.

we employ a shot timer 6 to track the selected shots’ du-
ration. This timer is essential for accurately assessing the
rhythm penalty, enabling us to maintain consistent pacing
and flow throughout the video.

1. If the shot timer 6 < [ we adhere to a strict constraint.
In this case, we select the previous shot as the current
shot and increment the shot timer § = 6 + 1 to keep
track of the elapsed time for the shot. In simpler terms,
if the time allotted for a shot is within the predefined
limit, we maintain continuity by keeping the same shot
as the previous one.

2. Else if the shot timer § > [, we proceed with the
shot selection process by minimizing objective func-
tion (Equation - 8). This objective function helps us
identify the most suitable shot to select. Additionally,
we reset the shot timer 6 if the selected shot s differs
from the previously selected shot, ensuring a fresh start
for the shot timer 6. However, if the selected shot s is
the same as the previous shot, we increment the shot
timer 6 to continue the sequence, which gets penalized
by rhythm cost R

ming (F, + o * Continuityy,) 8)

The objective function (Equation - 8) is formulated as a
combination of penalty terms that consider future shots

and shot continuity. However, a tuning parameter, de-
noted as «, is required to achieve the desired optimiza-
tion. The term F}, represents the cumulative cost of
previous shots, which is calculated using a recurrence
relation (Equation - 4). Without careful consideration,
the objective function may prioritize minimizing Fj
alone. When « is set to a higher value, the objec-
tive function is more likely to emphasize the continuity
penalty term (Continuityy).

To strike a balance between the cumulative cost of fu-
ture shots (F}) and shot continuity (Continuityy), itis
advisable to choose « in proportion to the look-ahead
duration (f). By adjusting « proportionally to f, We
ensure that the optimization process considers the im-
portance of the cumulative cost of previous shots and
maintains continuity in a more balanced manner. In
our experiments, we vary « within the range of 5 to
10. The Fig. 4 illustrates the step-by-step shot selec-
tion process within the cost matrix in the shot selection
component.

4. Comparison Baselines

To evaluate the effectiveness of Real Time GAZED,
we compare it against four video editing baselines: Wide,
Greedy Gaze, Speaker-based, and GAZED itself. We set
the minimum shot duration parameter () to 1.5 seconds to
ensure a fair comparison.

4.1. Wide

The Wide baseline approach is inspired by the concept
of video retargeting. It selects the widest shot possible, en-
compassing all performers on the stage.

4.2. Greedy Gaze

The Greedy Gaze [|7] editing algorithm greedily selects
the shot with the highest gaze potential at each time instant
t. However, since this approach solely relies on gaze infor-
mation without considering cinematic editing principles, it
may result in frequent shot switches that could hinder the
understanding of the scene and degrade the overall viewing
experience. To mitigate this issue, we enforce a minimum
shot duration of 1.5 seconds (specified by parameter [).

4.3. Speaker-based

Speaker cues enhance dialog-driven scene editing [19]
[14]. Our Speaker-based baseline (Sp) selects the optimal
shot for the speaker from rushes. Speaker data was manu-
ally annotated. Simultaneous speakers result in a combined
shot. The chosen shot persists until a speaker change, with
a minimum duration (/) to prevent quick transitions. Fol-
lowing an ablative study, our approach involves selecting a
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Figure 5. The figure showcases a visual comparison of shot selections made by Real Time GAZED (highlighted in green) and GAZED
(highlighted in pink) for two different videos. Shot selections made by Real Time GAZED exhibit a catching up behavior with GAZED,
given that it operates in real time. While there may be intermediary differences in shot selection, as depicted in the middle column, Real
Time GAZED dynamically adjusts its selection to minimize the overall cost and align with the shot chosen by GAZED.

wide shot when a period of silence exceeding 10 seconds is
detected.

4.4. GAZED

We also compare against the original GAZED frame-
work, which serves as a baseline for our real-time version.
It allows us to assess the improvements and performance
of Real Time GAZED compared to the offline GAZED ap-
proach. In the Fig. 5 provided, we can compare the shots
selected by GAZED and Real Time GAZED approaches

5. User Study

To assess the video editing capabilities of GAZED com-
pared to the baselines mentioned above, we conducted a
user study involving 12 participants and 4 video recordings.
Different editing strategies, including Wide, Greedy Gaze,
Speaker-based, GAZED, and Real Time GAZED, were ap-
plied to generate edited versions of these videos. During the
study, participants first watched the original video, followed
by the randomly presented edited versions. We designed the
study in a way that each participant viewed the original and
edited versions of two-stage recordings, resulting in a total
of 4 (different videos) x 2 (user ratings/video) x 5 (editing
strategies) combinations. Participants were unaware of the
specific editing strategy for each version they watched. Af-
ter viewing each edited version, they were asked to compare
it to the original and rate it on a scale of -5 to 5 for various
attributes. The attributes of interest included:

1. Narrational Effectiveness (NE): How effectively did
the edited video convey the original narrative?

2. Scene Actions (SA): How well did the edited video

capture actor movements and actions?

3. Actor Emotions (AE): How well did the edited video
capture the actor’s emotions?

4. Viewing Experience (VX): How would you rate the
edited video for aesthetic quality?

Prior to the study, participants were provided with in-
formation about the specific attributes and cinematic video
editing conventions. They were then asked to rate each
attribute using a scale relative to a reference score of 0’
assigned to the original video. A positive score indicated
that the edited version performed better than the original in
terms of the specific attribute, while a negative score indi-
cated that the edited version performed worse. The ratings
provided by the participants were collected, and the mean
scores for each attribute and editing strategy were calcu-
lated across all videos. The Fig. 6 presents user ratings for
all baselines, categorized according to each attribute.

5.1. Narrational Effectiveness (NE)

The Greedy Gaze (GG), Speaker-based (Sp), GAZED,
and Real Time GAZED strategies, which prioritize actors
and actions based on speech or gaze cues, outperform the
Wide baseline in terms of their ability to capture the essence
of the scene. The Wide approach often results in inefficient
framing of the scene characters.

5.2. Scene Actions (SA)

The Wide and Speaker-based (Sp) baselines demonstrate
similar performance in this aspect. These findings sug-
gest that relying solely on speaker cues may be less ef-
fective in capturing focal events during stage performances.
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Figure 6. Each bar in the histogram denotes the minimum and maximum user rating of narrational effectiveness (NE), scene actions (SA),
actor emotions (AE), and viewing experience (VX) for each baseline Wide, Greedy gaze (GG), Speaker based (Sp), GAZED (GZD) and

Real Time GAZED

For instance, if one performer verbally introduces other co-
performers to the audience, the Sp baseline may still pri-
oritize the introducer instead of the introducee. In such
cases, eye gaze turns out to be more accurate in captur-
ing the events and actors of interest compared to speech.
The Greedy Gaze (GG) strategy, which dynamically cap-
tures events of maximum interest at each time instant, ef-
fectively conveys scene actions and performs well.

5.3. Actor Emotions (AE)

The GG, Sp, GAZED, and Real Time GAZED tech-
niques yield comparable performance. These methods ef-
fectively capture the speaker or leading actor in the scene
through close-up shots, allowing for the clear conveyance
of facial expressions and emotions to viewers.

5.4. Viewing Experience (VX)

As expected, GAZED and Real Time GAZED per-
formed exceptionally well, receiving the highest scores for
viewing experience among the five methods tested. The
superiority of the Wide baseline over Greedy Gaze (GQG)
and Speaker-based (Sp) can be attributed to the fact that the
Wide strategy ensures the entire scene context is always vis-
ible to the viewer. On the other hand, GG and Sp frequently
cut between shots, focusing on perceived actions of interest,
which can disrupt the viewing experience.

In our user study, a baseline video edit is rated nega-
tively (below 0) if it fares poorly compared to the origi-
nal (unedited) video. As our baselines aim to incorporate
gaze or active speaker information, these edits were pre-
ferred over the original video, preventing any edit from re-
ceiving a score below 0, even if the rating fell in the range
of -5 to 5. For quantitative analysis, we contrast Real Time
GAZED’s shot selections with GAZED as the benchmark.
With minimal look-ahead (f = 32), there’s an 85% average
match on selected shots between the two methods. Increas-
ing the look-ahead (f = 128) raises the average percentage
of selected shots match to 98%.

6. Summary

This study introduces Real Time GAZED, a modified
version of the GAZED framework designed for real-time
editing of stage performance videos. Real Time GAZED
incorporates cinematic editing principles such as avoiding
abrupt transitions, eliminating quick shots, and controlling
the rhythm of shot changes by optimizing an energy mini-
mization function with a small look ahead. The user opin-
ions collected from a psychophysical study confirm the ef-
fectiveness of Real Time GAZED in producing visually
pleasing and engaging edited videos. It provides com-
petitive performance when compared against the original
GAZED framework and outperforms the studied baselines.

Real Time GAZED’s real-time processing capability
transforms editing into a dynamic task rather than a post-
processing one. However, there are challenges associated
with the real-time collection of human gaze data. The
main limitation of our experiments is that it utilizes pre-
recorded human gaze data, simulated in a causal manner.
For estimating real-time human eye gaze, virtual reality
headsets with built-in eye-tracking are suitable. Addition-
ally, several companies provide wearable glasses with in-
tegrated eye-tracking sensors, like SMI ETG (Eye Track-
ing Glasses) and Tobii Pro Glasses. Certain smartphones
have also begun incorporating basic eye-tracking functions,
such as “Smart Scroll,” which employs your eye movements
to scroll through content. In future work, we will explore
integrating such real time gaze collection devices into the
framework. Another future avenue would be to replace the
gaze data with saliency prediction algorithms [12, 13].
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