
An Approach for Speech Enhancement in Low SNR Environments
using Granular Speaker Embedding

Jayasree Saha
IIIT-Hyderabad

India
jayashree.saha@research.iiit.ac.in

Rudrabha Mukhopadhyay
IIIT-Hyderabad

India
radrabha.m@research.iiit.ac.in

Aparna Agrawal
IIIT-Hyderabad

India
aparna.agrawal@research.iiit.ac.in

Surabhi Jain
IIIT-Hyderabad

India
surabhi.jain@research.iiit.ac.in

C. V. Jawahar
IIIT-Hyderabad

India
jawahar@iiit.ac.in

ABSTRACT
The proliferation of speech technology applications has led to an un-
precedented demand for effective speech enhancement techniques,
particularly in low Signal-to-Noise Ratio (SNR) conditions. This
research presents a novel approach to speech enhancement, specif-
ically designed for very low SNR scenarios. Our technique focuses
on speaker embedding at a granular level and highlights its consis-
tent impact on enhancing speech quality and improving Automatic
Speech Recognition (ASR) performance, a significant downstream
task. Experimental findings demonstrate competitive speech qual-
ity and substantial enhancements in ASR accuracy compared to
alternative methods in low SNR situations. The proposed technique
offers promising advancements in addressing the challenges posed
by low SNR conditions in speech technology applications.

CCS CONCEPTS
• Computating methodologies → Learning paradigm; Con-
former ; multi-task learning; • Speech→ Speech enhancement.
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1 INTRODUCTION
Speech enhancement technique plays a vital role in enhancing
speech quality and intelligibility across various domains where en-
vironmental noise challenges effective communication. In telecom-
munication systems like mobile phones and Voice over IP (VoIP)
services, background noise can significantly degrade the quality
of speech during conversations. The growing popularity of voice-
controlled devices and virtual assistants, such as smart speakers and
voice-activated systems, has also highlighted the need for accurate
recognition and interpretation of user commands in noisy envi-
ronments. Additionally, individuals with hearing impairments face
significant difficulties in understanding speech when surrounded
by noise. Communication within vehicles presents another chal-
lenge, as road and engine noise and in-car distractions can hamper
effective communication. By implementing speech enhancement
algorithms, the clarity of speech can be improved in in-car commu-
nication systems, including hands-free calling and voice commands,
leading to a safer and more pleasant driving experience. Lastly, with
the increasing reliance on remote work and virtual meetings, au-
dio and video conferencing platforms have become essential for
effective communication. However, background noise often hinders
understanding speech during these virtual interactions. The chal-
lenges mentioned above become even more pronounced when the
Signal-to-Noise Ratio (SNR) is low. In low SNR conditions, where
the speech signal is significantly weaker than the background noise,
speech quality, and intelligibility degradation becomes more severe.
Therefore, developing and implementing robust speech enhance-
ment techniques are crucial in mitigating the detrimental effects of
low SNR scenarios, enabling clearer and more intelligible speech
communication in challenging acoustic environments.

In recent times, the field of speech enhancement has witnessed
the emergence of deep learning-based techniques, including recur-
rent neural networks (RNNs)[3, 16, 26], Variational Auto-Encoders
(VAEs)[12, 13], and Generative Adversarial Networks (GANs)[22,
23]. Audio-specific transformers [8, 14] represent a relatively new
approach that has only been explored in limited contexts for speech
enhancement tasks [4, 18, 27]. Nevertheless, they offer power-
ful solutions that leverage large-scale training datasets and high-
performance computing to learn complex mappings between noisy
and clean speech signals, leading to substantial improvements in
speech quality and intelligibility. Despite these advancements, chal-
lenges persist in developing effective techniques to handle very
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low SNR conditions. One of the critical issues is the degradation of
downstream tasks, such as Automatic Speech Recognition (ASR),
due to noise and other distortions in the speech signal. When de-
ploying a task-specific speech enhancement (SE) model, the most
straightforward approach is to use a loss function that is directly
relevant to the intended outcome. While a naive approach would be
to use a measure based solely on the difference in signal level, such
as the L1 or L2 loss, this may not fully capture the nuances of the
desired output and may result in suboptimal performance. Studies
have shown that it may not fully align with human auditory percep-
tion, intelligibility scores, or ASR accuracy. Despite this, integrating
various components to make speech enhancement more realistic
remains a challenging problem. Prior research has demonstrated
that an SE system can benefit from incorporating additional infor-
mation beyond just the audio signal. For example, incorporating
face/lip images [11] and symbolic sequences for acoustic signals [2]
have been explored to improve SE models’ performance.

In this work, we investigate a specialized application of an exist-
ing speaker embedding network. We aim to harness this network’s
capabilities to develop speech enhancement models that effectively
mitigate noise interference while preserving crucial phoneme char-
acteristics. Through rigorous analysis of the audio data, we have
made an intriguing observation: some small granular audio seg-
ments, with a duration of approximately 250 milliseconds, may be
unaffected by noise and maintain their pristine quality. This finding
serves as the basis for our approach, suggesting that the model can
learn valuable features from clean audio segments to enhance the
denoising process. In summary, our key contributions are:

(1) We present a novel application of a speaker embedding net-
work specifically designed for speech enhancement tasks.
Our research showcases the unique and valuable potential
of utilizing this network to improve the quality and intelligi-
bility of speech signals.

(2) We introduce a novel conformer-based architecture for speech
enhancement, which leverages a multi-task learning frame-
work to learn denoising masks.

(3) To further improve the quality of our denoised audio outputs,
we fine-tune the BigGAN vocoder [7]. By leveraging the
capabilities of this advanced vocoder, renowned for its ability
to generate smooth and high-quality audio, we strive to
enhance the overall audio quality and intangibility of the
denoised audio signals produced by our model.

2 PROPOSED METHOD
2.1 Model architecture
In this paper, a conformer-based speech enhancement network
architecture is proposed and presented in Figure 1. The architec-
ture includes various components such as feature Extraction mod-
ules for audio, a speaker verification model, two encoders (Spk-
enc and Spec-enc), a decoder, and two output blocks. The encoder
and decoder stages comprise N conformer blocks, which outper-
form previous transformer and convolution neural network (CNN)
based architectures by achieving state-of-the-art accuracy. The con-
former architecture is parameter-efficient and can learn an audio
sequence’s local and global dependencies. Spk-enc and Spec-enc
encode speaker embedding and linear spectrogram, respectively.

To ensure consistency in output dimensions between Spk-enc and
Spec-enc, an upsampler is added to the spec-enc. The encoded
features from both encoders are concatenated and passed to the
decoder, which also comprises 2 × 𝑁 conformer blocks. After the
decoder block, two output blocks are appended to obtain both the
linear spectrogram and mel spectrogram. Each output block fol-
lows a sequential structure consisting of layer normalization, a
feed-forward layer, Swish activation function, dropout, and another
feed-forward layer. This design ensures that both output blocks
receive consistent treatment and that the resulting spectrograms
are of high quality. Our proposed methodology consists of a se-
ries of steps for enhancing noisy audio data. First, we utilize the
“librosa" Python package to extract mel-spectrogram and linear
spectrogram representations from the input audio signal. To simu-
late prosody-like features, we slice the mel-spectrogram and pass
each slice through a speaker verification model. Following this, we
feed the linear spectrogram and prosody style feature into the spec-
enc and spk-enc modules, respectively. To allow concatenation, we
upsample the spk-enc output as its time dimensions differ from
that of the spec-enc output. We then pass the concatenated features
to the decoder block for further processing. In the final step, we
project the decoded feature onto separate output blocks to predict
both the linear and mel spectrogram. During inference, we use the
Griffin-lim [9] algorithm to generate the speech signal from the
linear spectrogram.

2.2 Speaker’s characteristic extraction
Our research aims to explore the potential benefits of preserving
speaker characteristics at the partial utterance level in enhancing
speech quality. To achieve this goal, we propose an approach that
decouples speaker modeling from speech enhancement by train-
ing an independent speaker-discriminative embedding network.
The most promising representation of a speaker is one that can
distinguish itself from other speakers. We use a speaker verification
model to produce such characteristics using only a short adaptation
signal, independent of phonetic content and background noise. We
adopt the highly scalable and effective neural network framework
proposed in [17] for speaker verification. This framework involves
a network that maps a sequence of log-mel spectrogram frames gen-
erated from a speech utterance of any length to a fixed-dimension
embedding vector. It is widely understood that noise affects differ-
ent sections of a speech signal unequally due to variations in the
time domain. As a result, micro-speech segments provide a better
opportunity to learn the speaker’s characteristics, such as rhythm,
stress, and pitch intonation, along the time axis. In this paper,
we are exploring the possibility of indirectly enhancing phonetic
content by restoring the speaker embedding at a micro-level. Our
hypothesis is that the speaker’s characteristics are highly correlated
with phonetic content in the broader context. Therefore, there is
a high probability that restoring such information while attempt-
ing to restore the speaker’s characteristics in the micro-segments
will result in improved phonetic content. In order to capture the
speaker’s style, which may vary over time, we utilize a speaker veri-
fication model to process mel-spectrograms of one second of speech
in a sliced manner. Based on the average speaking rate for American
English speakers of approximately 250 syllables per minute [21], we
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Figure 1: Diagram of the Proposed Speech Enhancement Model: The model’s primary objective is to learn a mask, and as part
of the process, noisy linear and mel spectrograms are combined with the mask to produce denoised spectrograms

divide the mel-spectrograms into 250mswindowswith 210ms stride.
After passing the slices through the speaker verification model, we
concatenate the resulting slices along the time dimension, assuming
that this feature can effectively capture the speaker’s style over
time. This approach enables us to better understand the correlation
between speaker characteristics and phonetic content and could
lead to an improved speech-enhancement algorithm.

2.3 Loss function
Deep neural network models for speech enhancement (SE) tasks of-
ten use the L1 loss as a loss function to learn a mask (additive or mul-
tiplicative) for noisy speech. Recent studies have highlighted a grow-
ing interest in SE methods that utilize multi-task learning [1, 15],
reflecting the potential benefits of leveraging additional information

sources in enhancing speech quality. Koizumi et al. [15] have in-
corporated speaker identification into a multi-task-learning-based
loss function for speech enhancement, as they believe that time-
dependent speaker information could better represent dynamic
phoneme information. Building on this idea, we take the next step
in utilizing speaker embedding as a valuable cue for training the
main SE framework. Specifically, we propose including speaker
embedding as an important cue for the SE task by training a sepa-
rate speaker verification network to learn speaker embedding from
noisy speech. We then integrate this auxiliary network into the
main framework as part of our multi-tasking strategy, ensuring
that the output of our SE model can reconstruct speaker embedding
similar to the auxiliary network. This approach reduces the chances
of denoising steps interfering with the phoneme quality of target
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Table 1: Results of different SEs in a low SNR condition.

LRS3 test dataset −5dB −10dB

Methods
Metric PESQ ↑ STOI ↑ CER ↓ WER↓ PESQ↑ STOI↑ CER↓ WER ↓

Noisy 1.145 0.536 1.423 1.391 1.094 0.396 2.522 2.098
DNS 64 1.462 0.776 1.076 1.173 1.289 0.612 1.836 1.789
SEGAN 1.121 0.525 2.122 1.998 1.089 0.365 2.888 2.362

Baseline-1 1.171 0.611 1.512 1.514 0.107 0.486 1.974 1.869
Baseline-2 1.122 0.514 1.694 1.577 1.090 0.395 2.525 2.194
Our Model 1.252 0.623 0.550 0.743 1.163 0.532 0.781 1.006

Our model + BigVGAN 1.256 0.642 0.584 0.790 1.157 0.544 0.833 1.056

Table 2: Ablation study on the order of 𝜆1, 𝜆2, and 𝜆3

LRS3 test dataset -5dB -10dB

Order
Metric PESQ↑ STOI↑ CER↓ WER↓ PESQ↑ STOI↑ CER↓ WER↓

𝜆1 > 𝜆2 > 𝜆3 1.252 0.623 0.550 0.743 1.163 0.532 0.781 1.006
𝜆1 > 𝜆3 > 𝜆2 1.107 0.518 0.550 0.716 1.098 0.421 1.423 1.410
𝜆2 > 𝜆3 > 𝜆1 1.102 0.514 0.592 0.755 1.092 0.416 1.458 1.443
𝜆2 > 𝜆1 > 𝜆3 1.110 0.519 0.579 0.733 1.098 0.518 1.340 1.354
𝜆3 > 𝜆1 > 𝜆2 1.098 0.513 0.601 0.752 1.103 0.421 1.259 1.251
𝜆3 > 𝜆2 > 𝜆1 1.100 0.520 0.546 0.715 1.104 0.424 1.396 1.388

speech. This speaker verification model takes a mel-spectrogram as
input to produce speaker embedding. Since the speaker verification
model takes a mel-spectrogram as input to produce speaker embed-
ding, joint prediction of both features within the SE network may
facilitate co-learning and lead to faster convergence. To incorporate
speaker embedding as a potential member of the multi-objective
loss function, we consider reconstructing three potential features
and use the following equation as the loss function

L = 𝜆1L𝑠𝑝𝑒𝑐 + 𝜆2L𝑚𝑒𝑙 + 𝜆3L𝑠𝑝𝑘 (1)

where, L𝑠𝑝𝑒𝑐 =
∑
𝑡 | |𝑥𝑡𝑠𝑝𝑒𝑐 − 𝑥𝑡𝑠𝑝𝑒𝑐 | |1, L𝑚𝑒𝑙 =

∑
𝑡 | |𝑥𝑡𝑚𝑒𝑙

− 𝑥𝑡
𝑚𝑒𝑙

| |1,
and L𝑠𝑝𝑘 =

∑
𝑡 | |𝑥𝑡𝑠𝑝𝑘 − 𝑥𝑡

𝑠𝑝𝑘
| |1. 𝑥 and 𝑥 are the corresponding

features of the enhanced and clean speech signal, respectively, and
𝑠𝑝𝑒𝑐,𝑚𝑒𝑙, 𝑠𝑝𝑘 determines the linear spectrogram, mel-spectrogram,
and speaker embedding, respectively. Also, 𝜆1, 𝜆2, 𝜆3 are the scaling
parameters that control the effect of the subtask. Moreover, we keep
𝜆1 > 𝜆2 > 𝜆3 for our task.

2.4 Finetune BigVGAN
Lee et al. [7] recently proposed BigVGAN, a universal vocoder
capable of effectively handling various out-of-distribution scenarios
without requiring fine-tuning. In their work, they introduced a
periodic activation function and anti-aliased representation into
the GAN generator. These additions provide the desired inductive
bias for audio synthesis and result in a significant enhancement in
audio quality. The researchers trained the model on clean speech
data from LibriTTS and achieved state-of-the-art performance in
zero-shot conditions such as unseen speakers, languages, recording
environments, singing voices, music, and instrumental audio. In
light of these promising results, we aim to further enhance the
audio quality by fine-tuning the BigVGAN model using denoised
audio generated by our method.

3 DATASET & EVALUATION METRICS
We conducted experiments using the “pre-train" sets of the LRS3
dataset [24], a publicly available collection of spoken sentences
from TED videos. It consists of approximately 400 hours of video
data and 118,516 utterances, for training purposes. To generate
the noisy data for our experiments, we used the VGG-Sound [10]
dataset. This dataset consists of 500 hours of diverse audio data,
spanning 310 distinct classes of challenging acoustic environments
and noise characteristics encountered in real-life applications. We
excluded audio samples from the VGG-Sound dataset in which
people were speaking. During the training process, we introduced
a random signal-to-noise ratio (SNR) ranging from -10dB to 5dB
to make the training data more challenging. We also resampled all

speech waveforms to a sampling rate of 16 kHz and transformed
the signal to linear and Mel-spectrograms using the Hann window
function with a frame length of 400 and hop length of 160, followed
by a 512-bin fast Fourier Transform (FFT).

To assess the performance of our method on a diverse range of
speakers and speech patterns, we selected the LRS3 test dataset,
which includes a total of 412 speaker utterances. We utilize two
standard metrics (higher is better) for speech quality and intelligibil-
ity: wideband Perceptual Evaluation of Speech Quality (PESQ) [20]
(-0.5 to 4.5) and Short-Time Objective Intelligibility (STOI) [25] (0
to 1). We have also shown the word error rate (WER) and character
error rate (CER) (lower is better) for evaluating the performance of
ASR on denoised data.

4 EXPERIMENTS
We followed the procedure outlined in the original paper [17] to
train our speaker verification network. For trainning SE model,
we utilized the Adam optimizer with a learning rate of 1 × 10−3
for every training step. We conducted 100,000 training steps for
our model, using a batch size of 64 and 8 workers. We employed 2
Nvidia GeForce GPUs to optimize training efficiency, which allowed
us to process large amounts of data in parallel and achieve faster
training times. We enhanced noisy speech in low SNR conditions by
utilizing this training approach. Using multiple GPUs and workers
further expedited the training process, allowing us to efficiently
process large amounts of data and optimize our model for improved
performance. The primary focus of our experiment is the sliced
speaker embedding strategy. We have compared our method with
dns64 [5] and SEGAN [19]. According to the experimental findings,
the use of dns64 significantly enhances speech intelligibility in
comparison to other techniques. Nevertheless, our approach yielded
comparable outcomes while also surpassing the performance of
ASR in low SNR conditions.

4.1 Ablation Study
To fully understand the importance of this approach, we imple-
mented several ablation setups in our evaluation. In the first setup
(Baseline-1), we removed the speaker embedding andmel-projection
block from the architecture to assess their impact on the model’s
overall performance. In the second setup (Baseline-2), we incorpo-
rated CNN blocks in the encoder and decoder architecture, as used
by Hedge et al. [11], to evaluate the efficacy of the conformer blocks
over CNN blocks. We have conducted a series of experiments to
explore the optimal time window size for granular speaker embed-
ding , their significance within the model, the ordering of values
for 𝜆1, 𝜆2, and 𝜆3, as well as the overall generality of our model.
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Table 3: Ablation study to understand slicing speaker embedding

-5dB -10dB

words/s
Metric PESQ↑ STOI↑ CER↓ WER↓ PESQ↑ STOI↑ CER↓ WER↓

1 1.106 0.514 0.569 0.747 1.106 0.424 1.290 1.296
3 1.105 0.517 0.617 0.775 1.094 0.423 1.318 1.359
4 1.252 0.623 0.550 0.743 1.163 0.532 0.781 1.006

4 (alt_voice) 1.101 0.520 0.534 0.700 1.101 0.420 1.302 1.329
4 (alt_spk) 1.101 0.513 0.570 0.742 1.093 0.420 1.354 1.294

Table 4: Performance of comparable methods on TIMIT dataset

-5dB -10dB

Methods
Metric PESQ↑ STOI↑ CER↓ WER↓ PESQ↑ STOI↑ CER↓ WER↓

Our_model 1.291 0.579 0.670 0.978 1.193 0.505 0.941 1.208
SEGAN 1.091 0.413 0.529 0.795 1.108 0.324 4.059 3.052
DNS64 1.461 0.756 0.569 0.856 1.280 0.607 1.155 1.306

Through our ablation experiments, we were able to gain a deeper
understanding of the impact of each component on the overall per-
formance of our sliced speaker embedding strategy. These findings
are critical in the development of more effective speech enhance-
ment algorithms and provide valuable insights for future research
in this field.

4.2 Results Analysis
Based on the findings in Table 1, our model demonstrated com-
parable results to dns64 [5] in the low SNR condition, the best-
performing method with respect to speech enhancement metrics.
The most remarkable outcome was the superior performance of our
approach compared to other methods in terms of Word Error Rate
(WER) under low SNR conditions. We also observed that BigVGAN
improves audio quality in terms of STOI. In Figures 2 and 3, we
showcase the noisy spectrogram, as well as the spectrograms for
the reconstructed speech signal using our methods, DNS 64, and the
clean version. The presence of background noise heavily affects the
speech, but our method successfully suppresses the noise-dominant
region. Moreover, BIgVGAN demonstrates further improvements
in the final result.
Speaker Embedding To evaluate the efficacy of granular speaker
embedding, we conducted a study in which we plotted the embed-
dings of three speakers using two different methods. In the first
method, we collected nine different speech contents from each
speaker, with each sample being one second long. We then passed
the mel-spectrogram of each sample through the speaker verifi-
cation network and applied t-SNE to plot the embeddings on a
scatter plot. In the second method, we collected slices of the mel-
spectrogram for each speaker’s content and passed them through
the same network before plotting the resulting embeddings. The
plots generated by these two methods are depicted in Figure 4. The
scatter plot produced by the first method showed distinct clusters
for each of the three individual speakers, indicating that the speaker
embeddings for the one-second sample can capture speaker-specific
features. However, the second method did not produce such dis-
tinct clusters, suggesting that it may not be as effective at capturing

speaker-specific features across different speeches of a speaker.
Nonetheless, we noticed distinct small clusters from a speaker sam-
ple that were closely spaced together upon closer inspection. This
observation indicates that the granular speaker embedding has
the potential to capture various variations in speech. To assess its
effectiveness within our model, we conducted an ablation study
on the length of slices (varying words/s) and have summarized the
results in Table 3, which suggests that a 250 ms time window (4
words/second) is the optimal choice for our algorithm. Additionally,
we conducted another experiment involving speaker embeddings
of 250 ms time slices from the same speaker but different speech
(alt_voice in Table 3), as well as speaker embeddings from a differ-
ent speaker (alt_spk in Table 3). The results displayed in Table 3
demonstrate that opting for distinct speech data from the same
speaker or speech data from a different speaker results in a per-
formance decline. This decline is even more significant than the
baseline-1 performance, which does not include the speaker em-
bedding module.
Generalizability: We executed our model on the test datasets of
TIMIT [6]. The results in Table 4 indicate a similar level of perfor-
mance as observed on the LRS3 test dataset.

5 CONCLUSION & FUTUREWORK
This work introduced a novel speech enhancement technique that
utilizes granular speaker embedding within a multi-task learning
framework. Our findings highlight the substantial influence of
speaker embedding on the design of speech enhancement models.
Experimental results demonstrate that our approach enables the Au-
tomatic Speech Recognition (ASR) system to accurately recognize
words in low Signal-to-Noise Ratio (SNR) conditions, outperform-
ing alternative methods that struggle in such scenarios.
One potential future direction for exploration is incorporating
phoneme information to influence ASR outcomes in low SNR con-
ditions directly. Integrating phoneme-level details makes it possible
to enhance ASR performance further and address the challenges
posed by low SNR environments.
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(a) noisy (b) Our model (c) our model + BigVGAN (d) DNS64 (e) clean

Figure 2: Samples generated from LRS3 test set and VGGSound noise and we set SNR=-5dB. It can be seen that BigGAN surely
improves our model’s outcome further.

(a) noisy (b) Our model (c) our model + BigVGAN (d) DNS64 (e) clean

Figure 3: Samples generated from LRS3 test set and VGGSound noise and we set SNR=-10dB. It can be seen that BigGAN surely
improves our model’s outcome further.

(a) speaker embedding (b) slices of speaker embedding

Figure 4: t-SNE analysis for three speakers’ embedding. Each color represents separate speaker

REFERENCES
[1] Yoshiaki Bando, Kouhei Sekiguchi, and Kazuyoshi Yoshii. 2020. Adaptive Neu-

ral Speech Enhancement with a Denoising Variational Autoencoder. In Proc.
Interspeech 2020. 2437–2441.

[2] X. Lu C.-F. Liao, Y. Tsao and H. Kawai. 2019. Incorporating Symbolic Sequential
Modeling for Speech Enhancement. In Interspeech.

[3] S. Takaki C. Valentini-Botinhao, X. Wang and J. Yamagishi. 2016. Investigating
rnn-based speech enhancement methods for noise robust text-to-speech. In
Proceedings of Speech Synthesis Work- shop (SSW).

[4] Timo Gerkmann Danilo de Oliveira, Tal Peer. 2022. Efficient Transformer-based
Speech Enhancement Using Long Frames and STFT Magnitudes. In Proceedings
of Interspeech. 2948–2952.

[5] Alexandre Defossez, Gabriel Synnaeve, and Yossi Adi. 2020. Real Time Speech
Enhancement in the Waveform Domain. In Interspeech.

[6] J. Garofolo, Lori Lamel, W. Fisher, Jonathan Fiscus, D. Pallett, N. Dahlgren, and V.
Zue. 1992. TIMIT Acoustic-phonetic Continuous Speech Corpus. Linguistic Data
Consortium (11 1992).

[7] Sang gil Lee, Wei Ping, Boris Ginsburg, Bryan Catanzaro, and Sungroh Yoon.
2023. BigVGAN: A Universal Neural Vocoder with Large-Scale Training. In The
Eleventh International Conference on Learning Representations. https://openreview.
net/forum?id=iTtGCMDEzS_

[8] Yuan Gong, Cheng-I Lai, Yu-An Chung, and James Glass. 2022. SSAST: Self-
Supervised Audio Spectrogram Transformer. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, Vol. 36. 10699–10709.

330

https://openreview.net/forum?id=iTtGCMDEzS_
https://openreview.net/forum?id=iTtGCMDEzS_


CODS-COMAD 2024, January 04–07, 2024, Bangalore, India

[9] D. Griffin and J.S. Lim. 1984. Signal Estimation from Modified Short-Time Fourier
Transform. IEEE Transactions on Acoustics Speech and Signal Processing (1984).

[10] A. Vedaldi H. Chen, W. Xie and A. Zisserman. 2020. Vggsound: A large-scale
audio-visual dataset. In IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). 721–725.

[11] Sindhu B. Hegde, K.R. Prajwal, Rudrabha Mukhopadhyay, Vinay P. Namboodiri,
and C.V. Jawahar. 2021. Visual Speech EnhancementWithout a Real Visual Stream.
In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer
Vision (WACV). 1926–1935.

[12] T. V. Ho andM. Akagi. 2020. Non-parallel Voice Conversion based on Hierarchical
Latent Embedding Vector Quantized Variational Autoencoder. In Proc. Joint
Workshop for the Blizzard Challenge and Voice Conversion Challenge. 140–144.

[13] Tuan Vu Ho, Quoc Huy Nguyen, Masato Akagi, and Masashi Unoki. 2022. Vector-
quantized Variational Autoencoder for Phase-aware Speech Enhancement. In
Proc. Interspeech 2022. 176–180.

[14] Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia,
Ruslan Salakhutdinov, and Abdelrahman Mohamed. 2021. HuBERT: Self-
Supervised Speech Representation Learning by Masked Prediction of Hidden
Units. IEEE/ACM Trans. Audio, Speech and Lang. Proc. 29 (2021), 3451–3460.

[15] Yuma Koizumi, Kohei Yatabe, Marc Delcroix, Yoshiki Masuyama, and Daiki
Takeuchi. 2020. Speech Enhancement Using Self-Adaptation and Multi-Head
Self-Attention. In ICASSP 2020 - 2020 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). 181–185.

[16] X. Li and R. Horaud. 2020. Online monaural speech enhancement using delayed
subband LSTM. In Proceedings of Interspeech. 2462–2466.

[17] Alan Papir Li Wan, Quan Wang and Ignacio Lopez Moreno. 2018. Generalized
end-to-end loss for speaker verification. In Proc. IEEE International Conference on
Acoustics, Speech, and Signal Processing.

[18] Yi Luo and Nima Mesgarani. 2019. Conv-TasNet: Surpassing Ideal
Time–Frequency Magnitude Masking for Speech Separation. IEEE/ACM Transac-
tions on Audio, Speech, and Language Processing 27, 8 (2019), 1256–1266.

[19] Santiago Pascual, Antonio Bonafonte, and Joan Serrà. 2017. SEGAN: Speech
Enhancement Generative Adversarial Network. arXiv preprint arXiv:1703.09452
(2017).

[20] A.W. Rix, J.G. Beerends, M.P. Hollier, and A.P. Hekstra. 2001. Perceptual evalua-
tion of speech quality (PESQ)-a new method for speech quality assessment of
telephone networks and codecs. In IEEE International Conference on Acoustics,
Speech, and Signal Processing. Proceedings (Cat. No.01CH37221), Vol. 2. 749–752.

[21] Michael P. Robb, Margaret A. Maclagan, and Yang Chen. 2004. Speaking rates of
American and New Zealand varieties of English. Clinical Linguistics & Phonetics
18, 1 (2004), 1–15.

[22] Y. Tsao S.-W. Fu, C.-F. Liao and S.-D. Lin. 2019. Metricgan: Generative adversarial
networks based black-box metric scores optimization for speech enhancement.
In International Conference on Machine Learning. PMLR. 2031–2041.

[23] M. H. Soni, N. Shah, and H. A. Patil. 2018. Time-frequency masking-based
speech enhancement using generative adversarial network. In IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). 5039–5043.

[24] J. S. Chung T. Afouras and A. Zisserman. 2018. Lrs3-ted: a large- scale dataset
for visual speech recognition. arXiv preprint arXiv:1809.00496, 2018 (2018).

[25] Cees H. Taal, Richard C. Hendriks, Richard Heusdens, and Jesper Jensen. 2011.
An Algorithm for Intelligibility Prediction of Time–Frequency Weighted Noisy
Speech. IEEE Transactions on Audio, Speech, and Language Processing 19, 7 (2011),
2125–2136.

[26] N. L. Westhausen and B. T. Meyer. 2020. Dual-signal transformation LSTM
network for real-time noise suppression. In Proceedings of Interspeech. 2477–2481.

[27] Wang H. et al Yu W., Zhou J. 2022. SETransformer: Speech Enhancement Trans-
former. Cogn Comput 14 (2022), 1152–1158.

331


	Abstract
	1 Introduction
	2 Proposed Method
	2.1 Model architecture
	2.2  Speaker's characteristic extraction
	2.3 Loss function
	2.4 Finetune BigVGAN

	3 Dataset & Evaluation metrics
	4 Experiments
	4.1 Ablation Study
	4.2 Results Analysis

	5 Conclusion & Future work
	References

