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Figure 1: Summary of our contributions extending & accelerating Linearly Transformed Cosines (LTC) and multi-scattering in
path tracing. (a) We first relax the polygonal light only and no visibility assumptions of a previous analytic method (LTC) for
area light rendering. (b) Next, we relax the isotropic BRDF only assumption by supporting anisotropic BRDFs. (c) While both
our preceding contributions focus on direct lighting, our third contribution accelerates the recursion (multi-scattering) in path
tracing specifically for hair, using online trained neural networks.

ABSTRACT
Path tracing is ubiquitous for photorealistic rendering of various
light transport phenomenon. At it’s core, path tracing involves the
stochastic evaluation of complex & recursive integrals leading to
high computational complexity. Research efforts have thus focused
on accelerating path tracing either by improving the stochastic
sampling process to achieve better convergence or by using approx-
imate analytical evaluations for a restricted set of these integrals.
Another interesting set of research efforts focus on the integration
of neural networks within the rendering pipeline, where these net-
works partially replace stochastic sampling and approximate it’s
converged result. The analytic and neural approaches are attrac-
tive from an acceleration point of view. Formulated properly &
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coupled with advances in hardware, these approaches can achieve
much better convergence and eventually lead to real-time perfor-
mance. Motivated by this, we make contributions to both avenues
to accelerate path tracing. The first set of efforts aim to reduce the
computational effort spent in stochastic direct lighting calculations
from area light sources by instead evaluating it analytically. To this
end, we introduce the analytic evaluation of visibility in a previ-
ously proposed analytic area light shading method. Second, we add
support for anisotropic GGX to this method. This relaxes an impor-
tant assumption enabling the analytic rendering of a wider set of
light transport effects. Our final contribution is a neural approach
that attempts to reduce yet another source of high computational
load - the recursive evaluations. We demonstrate the versatility
of our approach with an application to hair rendering, which ex-
hibits one of the most challenging recursive evaluation cases. All
our contributions improve on the state-of-the art and demonstrate
photo-realism on par with reference path tracing.

CCS CONCEPTS
• Computing methodologies → Visibility; Ray tracing; Re-
flectance modeling; Volumetric models; Parametric curve and sur-
face models.
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1 INTRODUCTION
Achieving photorealism in rendered images requires intricate geo-
metric objects, rich material models, and versatile lighting. Com-
puter graphics has come a long way in rendering detailed 3D scenes
with rich and complex material and lighting models. Modern phys-
ically based photorealistic rendering is achieved through Monte
Carlo (MC) path tracing, which is widely adopted for visual effects
in movies and in computer games.

At it’s core, path tracing computes solutions to the Light Trans-
port Equation (LTE) [Kajiya 1986; Veach 1998]::

𝐿(𝑥, 𝜔𝑣) =
∫
Ω
𝜌 (𝑥,𝜔𝑣, 𝜔𝑙 )𝐿(𝑡 (𝑥, 𝜔𝑙 ),−𝜔𝑙 ) |cos𝜃𝑙 | 𝑑𝜔𝑙 , (1)

where on the left hand side, 𝐿 is the radiance from a 3D point
𝑥 in the view direction 𝜔𝑣 . Inside the integrand, we have the Bi-
directional Reflectance Distribution Function (BRDF) 𝜌 , a cosine
foreshortening factor on the angle 𝜃𝑙 between directions 𝜔𝑙 on the
upper hemisphere Ω and the surface normal 𝑛 at 𝑥 . We yet again
have 𝐿 inside the integrand, which gives the radiance from the
point 𝑡 (𝑥,𝜔𝑙 ) in the direction −𝜔𝑙 . We define 𝑡 as the ray-casting
operator that gives the first point intersected by a ray from 𝑥 in the
direction 𝜔𝑙 .

Eq. 1 is stochastically evaluated with MC and converges to the
correct result at a rate of 𝑂 (𝑁 −1/2). Artefacts due to MC sampling
manifest as noise in the resulting rendered images. Practically, the
noise in MC evaluation of Eq. 1 is more due it’s recursive nature (𝐿
appears on both sides).

Let’s first consider direct lighting, which is one of the major
sources noise in path tracing. We can rewrite Eq. 1 to only consider
emitted radiance 𝐿𝑒 from all area light sources 𝐴 in the scene:

𝐿(𝑥, 𝜔𝑣) =
∫
𝐴

𝜌 (𝑥, 𝜔𝑣, 𝜔𝑙 )𝐿𝑒 (𝑡 (𝑥,𝜔𝑙 ),−𝜔𝑙 ) |cos𝜃𝑙 | 𝑑𝜔𝑙 , (2)

where the point returned by the ray-casting operator 𝑡 (𝑥, 𝜔𝑙 ) will
now lie on the light source which emits a radiance 𝐿𝑒 . The above
equation is no longer recursive, however it still exhibits noise from
sampling. This has inspired research in analytic solutions to Eq. 2
which are attractive since the correct answer is computed at the
outset without any noise. In Sect. 2.1, we discuss one such state-
of-the-art analytic solution along with it’s assumptions. In Sect.
2.2 & 2.3, we describe two of our contributions that relax these
assumptions, enabling analytic rendering of a wider set of light
transport effects.

Next, consider Eq. 1, for which deriving analytic solutions is con-
siderably more challenging, primarily due to it’s recursive nature.
Much of computer graphics research has thus focused on better
sampling strategies to improve it’s convergence with MC. Recent
efforts propose an interesting new direction - to use neural net-
works to approximate a part or whole of this recursion. The only
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Figure 2: Visualization of the BRDF response and the pro-
jection of a polygonal area light on a unit sphere centered
around the shading point 𝑥 . (a) A GGX lobe cannot be analyt-
ically integrated over the spherical domain covered by the
area light. (b) An LTC represented by a matrix𝑀 provides a
good approximation to the GGX lobe, and the integral equals
(c) the analytic integral of a cosine lobe over the light trans-
formed by𝑀−1.

constraint on these networks is that they need to be extremely
small Multi Layer Perceptrons (MLPs). This is done for training &
inference efficiency as well as generalizability with online training
(as opposed to offline training on a dataset). In Sect. 3.1, we discuss
such a recent method and show why it fails for high recursion
depth. In Sect. 3.2, we describe our third contribution that solves
this failure case using a similar neural approach. The resulting
method is at best 70% faster than path tracing with a small amount
of bias. We further formulate our method in such a way to provide
control over both this bias & the speedup. The primary motivation
& application of our method is to render hair, which is one of the
prominent cases exhibiting high recursion depth.

This report is a summary of two of our recent peer-reviewed
papers [KT et al. 2022, 2021] on relaxing assumptions for analytic
direct lighting and a third peer-reviewed paper [KT et al. 2023] on
using online trained MLPs to accelerate hair rendering.

2 ANALYTIC DIRECT LIGHTING FROM AREA
LIGHTS

This section first discusses Linearly Transformed Cosines (LTC)
[Heitz et al. 2016], which is a method to analytically compute the
solution of the integral in Eq. 2 under certain assumptions. We then
discuss two of our contributions that relax these assumptions.

2.1 Linearly Transformed Cosines
• Assumption 0. This assumption restricts 𝐿𝑒 to be spatially
constant and diffuse (directionally constant). This means 𝐿𝑒
can now be taken out of the integral by accounting for the
implicit visibility function. Note that Heitz et al. [Heitz et al.
2016] also describe a method to handle spatially varying area
lights involving a second-level approximation.

• Assumption 1. The first assumption restricts 𝐿𝑒 to originate
from polygonal area light sources. Denote 𝑃 as the spheri-
cal polygon subtended by the polygonal area light (Fig. 2).
Together with assumption 0, we can rewrite Eq. 2 as:

𝐿(𝑥,𝜔𝑣) = 𝐿𝑒

∫
𝑃

𝜌 (𝑥,𝜔𝑣, 𝜔𝑙 )𝑉 (𝑥, 𝑡 (𝑥,𝜔𝑙 )) |cos𝜃𝑙 | 𝑑𝜔𝑙 , (3)

where 𝑉 defines the binary visibility of a point 𝑡 (𝑥,𝜔𝑙 ) on
the light source from 𝑥 (𝑉 = 1 if visible, 𝑉 = 0 otherwise).
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Figure 3: High-level steps of our algorithm to compute shad-
ing and soft shadows from area lights. Unit spheres at an
unoccluded shading point (yellow) and at a shading point in
the penumbra (purple) are visualized with the corresponding
spherical polygons of the light source (icosphere, marked as
blue polygon) and occluder (cube, marked as red polygon).

• Assumption 2. The next assumption is to ignore the visibil-
ity function𝑉 in Eq. 3. In effect, we set𝑉 = 1 over the entire
integration domain, irrespective of the visibility of the point
𝑡 (𝑥,𝜔𝑙 ).

• Assumption 3. The third assumption restricts the BRDF 𝜌 to
be isotropic. This reduces the dimensionality of 𝜌 and paves
the way for a simpler and memory efficient precomputation
that is eventually used for analytic calculations.

With these assumptions, Heitz et al. [Heitz et al. 2016] show
that given a linear transformation matrix𝑀 which transforms the
direction vectors of the clamped cosine distribution to the direction
vectors of the BRDF 𝜌 (Fig. 2 (b), (c)), the resulting integral can be
written as:

𝐿(𝑥,𝜔𝑣) = 𝐿𝑒

∫
𝑃

𝜌 (𝑥,𝜔𝑣, 𝜔𝑙 ) |cos𝜃𝑙 | 𝑑𝜔𝑙

≈ 𝐿𝑒

∫
𝑃𝑜

1
𝜋
|cos𝜃𝑜 | 𝑑𝜔𝑜 = 𝐿𝑒𝐸 (𝑃𝑜 )

(4)

𝑃𝑜 = 𝑀−1𝑃 is the transformed spherical polygon, cos𝜃𝑜 = 𝜔𝑜 · 𝑛
and 𝜔𝑜 =

𝑀−1𝜔𝑙

| |𝑀−1𝜔𝑙 | | are the transformed direction vectors. The
irradiance integral 𝐸 can be analytically computed.

Note that the LTC matrix 𝑀 does not accurately approximate
𝜌 . This is a source of bias and thus their method and all methods
based on it are ultimately approximate.

2.2 Relaxing Assumptions 1 & 2
We extend the method of Heitz et al. [Heitz et al. 2016] to light
sources of arbitrary 3D shapes, relaxing assumption 1. The key
observation here is that for a convex 3D light source, the spherical
polygon 𝑃 in Eq. 4 can be obtained using its silhouette edges as
viewed from 𝑥 . Non-convex lights are simple decomposed into a
set of convex lights. These are then projected to the unit sphere to
obtain a spherical polygon of the silhouette (Fig. 3(a) blue polygon).
We then clip the spherical polygon to the horizon (Fig. 3(b)). Next, to
obtain a polygon 𝑃 that represents only the visible region of the light
source, we compute silhouette edges and corresponding spherical
polygons for all potential occluders and clip them to the horizon
(Fig. 3(a) red polygon). The clipped light and occluder polygons
are then projected to a plane, where we perform a set difference

(c) broken symmetry (Sec. 6) (d) early inversion (Sec. 7)(b) ill-defined interpolation (Sec. 5)(a) broken fitted entry (Sec. 4)

Figure 4: Illustration of the problems to overcome for apply-
ing LTCs to anisotropic GGX.

between them. Finally, we reproject the resultant polygon to the
unit sphere (Fig. 3(c)), apply LTC and clip the result to the horizon,
to obtain 𝑃𝑜 for analytic evaluation of Eq. 4 (Fig. 3(d)). These steps
are repeated for each light source in the scene. This procedure
relaxes assumption 2 described above.

Our method accurately accounts for visibility within the analytic
LTC framework, and produces better renderings in equal time as
compared with stochastic methods (Fig. 1 (a), Fig. 3 left).

2.3 Relaxing Assumption 3
Heitz et al. [Heitz et al. 2016] use a fitting procedure to precompute
LTC matrices for a given isotropic BRDF 𝜌 and store them in a 2D
table. The difficulty is that this fitting approach cannot be simply
extended to the more general anisotropic BRDFs. Indeed, in the
isotropic case, the full dimensionality of LTCs is not used and this
avoids several problems that arise in the anisotropic case.

The artefacts highlighted in Fig. 4 show that successfully bring-
ing LTCs to anisotropic GGX requires robust fitting, well-defined
interpolation, valid symmetries and accurate storage.

We achieve robust fitting by using the Sliced Wasserstein (SW)
loss instead of a loss based on the magnitude of the BRDF. The
SW loss is based on sample distributions which is the reason for
it’s robustness. A drawback of such a loss is that interpolation
is not guaranteed, which we fix by aligning the LTC matrices by
removing unnecessary rotations and flips. Both of these allow to
dramatically reduce the precomputed table resolution. We exploit
symmetries in GGX to further reduce the resolution to 8 × 8 × 8 ×
8. Our method makes careful design choices resulting from new
insights into the mathematical properties of LTCs. With this, we
have relaxed assumption 3 described above.

The final outcome of our method is a 4D look-up table that yields
a plausible and artifact-free LTC approximation to anisotropic GGX
and is memory efficient. Fig. 1 (b) shows area-light shading using
this table compared to the 2D table of Heitz et al. [Heitz et al. 2016].
Fitting LTCs to anisotropic GGX allows the analytic rendering of
brushed metal appearance that was not possible before.

3 NEURAL NETWORKS FOR ACCELERATING
RECURSION IN LTE

In this section, we first discuss Neural Radiance Caching (NRC)
[Müller et al. 2021] which is the first method to use online trained
MLPs to accelerate the recursion present in Eq. 1. Our contribution
& method is discussed in Sect. 3.2.

3.1 Neural Radiance Caching
NRC uses a small MLP to fully approximate Eq. 1. During rendering,
only short paths are traced and the radiance at the last vertex of
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Figure 5: We compare 5k spp renderings of our method for 𝛽 = 1, 5 to 5k spp renderings of Neural Radiance Caching (NRC), dual
scattering& a 10k spp path traced reference. We also compare to a version of NRC where all the training paths are unbiased
(NRC++). All these methods fail to reproduce the soft look and saturation in hair.

these short paths is approximated with the MLP. To achieve online
training, they randomly choose a small percentage of the total paths
and train on the radiance at each path vertex. This online training
is extremely fast thanks to their use of fully-fused MLPs. Their
method results in faster convergence than path tracing, at the cost
of some bias from the network.

We are interested in rendering human hair, which exhibits very
deep recursions due to long path lengths. Directly applying NRC
to such cases fails due to the following reasons:

• NRC learns on the radiance at each path vertex, which is
useful in surfaces (NRC’s target application) with energy
quickly degrading deeper in the path, and results in more
training data for the same number of paths. However, for
very deep recursion, this strategy leads to averaging in the
network’s output.

• NRC sets Eq. 1 as its target signal to be learnt by the MLP.
However, if this signal is typically high frequency (which is
the case in hair), which the small MLP is unable to represent
well leading to artefacts in the final rendering.

Additionally, the resulting render from NRC will have bias from
the network, which cannot be directly controlled. It is however
desirable to have this control for certain applications.

3.2 Rendering Human Hair with MLPs
Reformulating Eq. 1 as a path integral:

𝐿 =

∞∑︁
𝑘=1

∫
Ω𝑘

𝑓 (x̄)d𝜇 (x̄), (5)

where Ω𝑘 is the space of light paths x̄ and 𝑓 is the path contribution
function. x𝑘 and x0 are 3D points placed on a light source and the
sensor respectively, and the differential measure d𝜇 (x̄) models the
area/volume integration for each vertex in the path.

We begin by setting a maximum depth 𝛽 << ∞ in Eq. 5, giving
the radiance 𝐿′ arriving at the pixel:

𝐿′ =
𝛽∑︁

𝑘=1

∫
Ω𝑘

𝑓 (x̄)d𝜇 (x̄). (6)

We estimate ⟨𝐿′⟩ inplace of ⟨𝐿⟩ during rendering. Modifying Eq. 5
in this way effectively sets a maximum depth for path termination,

which introduces bias/error in ⟨𝐿′⟩, given by:

𝐸 = 𝐿 − 𝐿′ . (7)

We task an MLP 𝜎 to learn ⟨𝐸⟩ at the primary path vertex x1, given
the view direction 𝜔 =

x0−x1
| |x0−x1 | | and the hair tangent t1 at x1:

𝜎 (x1, 𝜔, t1) ≈ ⟨𝐸⟩. (8)

Our formulation solves the limitations of NRC mentioned in
the previous section while also naturally allowing control over the
renderer’s bias & speedup via the parameter 𝛽 . Fig. 5 compares
renderings of our approach for 𝛽 = 1, 5 with NRC and dual scatter-
ing. Our method quantitatively & qualitatively outperforms both
methods and is has better convergence than path tracing (Fig. 1 (c)).

4 CONCLUSION
We presented approaches for accelerating physically based ren-
dering using analytic & neural methods. First, we relaxed three
assumptions made by LTCs, which is a previous analytic method,
enabling the rendering of a wider set of light transport effects. Sec-
ond, we presented a neural approach to approximate high recursion
depth in path integrals with a specific application to hair render-
ing. All our proposed methods outperform the state-of-the-art in
analytic & neural domains and we hope will inspire future research.
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