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Abstract

We introduce Ego4D, a massive-scale egocentric video
dataset and benchmark suite. It offers 3,670 hours of daily-
life activity video spanning hundreds of scenarios (house-
hold, outdoor, workplace, leisure, etc.) captured by 931
unique camera wearers from 74 worldwide locations and 9
different countries. The approach to collection is designed
to uphold rigorous privacy and ethics standards, with con-
senting participants and robust de-identification procedures
where relevant. Ego4D dramatically expands the volume of
diverse egocentric video footage publicly available to the
research community. Portions of the video are accompanied
by audio, 3D meshes of the environment, eye gaze, stereo,
and/or synchronized videos from multiple egocentric cam-
eras at the same event. Furthermore, we present a host of
new benchmark challenges centered around understanding
the first-person visual experience in the past (querying an

episodic memory), present (analyzing hand-object manipu-
lation, audio-visual conversation, and social interactions),
and future (forecasting activities). By publicly sharing this
massive annotated dataset and benchmark suite, we aim to
push the frontier of first-person perception. Project page:
https://ego4d-data.org/

1. Introduction

Today’s computer vision systems excel at naming objects
and activities in Internet photos or video clips. Their tremen-
dous progress over the last decade has been fueled by major
dataset and benchmark efforts, which provide the annota-
tions needed to train and evaluate algorithms on well-defined
tasks [49, 60, 61, 92, 108, 143].

While this progress is exciting, current datasets and mod-
els represent only a limited definition of visual perception.
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Figure 1. Ego4D is a massive-scale egocentric video dataset of daily life activity spanning 74 locations worldwide. Here we see a snapshot of
the dataset (5% of the clips, randomly sampled) highlighting its diversity in geographic location, activities, and modalities. The data includes
social videos where participants consented to remain unblurred. See https://ego4d-data.org/fig1.html for interactive figure.

First, today’s influential Internet datasets capture brief, iso-
lated moments in time from a third-person “spectactor” view.
However, in both robotics and augmented reality, the input
is a long, fluid video stream from the first-person or “ego-
centric” point of view—where we see the world through
the eyes of an agent actively engaged with its environment.
Second, whereas Internet photos are intentionally captured
by a human photographer, images from an always-on wear-
able egocentric camera lack this active curation. Finally,
first-person perception requires a persistent 3D understand-
ing of the camera wearer’s physical surroundings, and must
interpret objects and actions in a human context—attentive
to human-object interactions and high-level social behaviors.

Motivated by these critical contrasts, we present the
Ego4D dataset and benchmark suite. Ego4D aims to cat-
alyze the next era of research in first-person visual percep-
tion. Ego is for egocentric, and 4D is for 3D spatial plus
temporal information.

Our first contribution is the dataset: a massive ego-video
collection of unprecedented scale and diversity that captures
daily life activity around the world. See Figure 1. It consists
of 3,670 hours of video collected by 931 unique participants
from 74 worldwide locations in 9 different countries. The
vast majority of the footage is unscripted and “in the wild”,
representing the natural interactions of the camera wearers as

they go about daily activities in the home, workplace, leisure,
social settings, and commuting. Based on self-identified
characteristics, the camera wearers are of varying back-
grounds, occupations, gender, and ages—not solely graduate
students! The video’s rich geographic diversity supports the
inclusion of objects, activities, and people frequently absent
from existing datasets. Since each participant wore a camera
for 1 to 10 hours at at time, the dataset offers long-form video
content that displays the full arc of a person’s complex inter-
actions with the environment, objects, and other people. In
addition to RGB video, portions of the dataset also provide
audio, 3D meshes, gaze, stereo, and/or synchronized multi-
camera views that allow seeing one event from multiple
perspectives. Our dataset draws inspiration from prior ego-
centric video data efforts [43,44,129,138,179,201,205,210],
but makes significant advances in terms of scale, diversity,
and realism.

Equally important to having the right data is to have the
right research problems. Our second contribution is a suite
of five benchmark tasks spanning the essential components
of egocentric perception—indexing past experiences, ana-
lyzing present interactions, and anticipating future activity.
To enable research on these fronts, we provide millions of
rich annotations that resulted from over 250,000 hours of
annotator effort and range from temporal, spatial, and seman-
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tic labels, to dense textual narrations of activities, natural
language queries, and speech transcriptions.

Ego4D is the culmination of an intensive two-year effort
by Facebook and 13 universities around the world who came
together for the common goal of spurring new research in
egocentric perception. We are kickstarting that work with a
formal benchmark challenge to be held in June 2022. In the
coming years, we believe our contribution can catalyze new
research not only in vision, but also robotics, augmented real-
ity, 3D sensing, multimodal learning, speech, and language.
These directions will stem not only from the benchmark
tasks we propose, but also alternative ones that the commu-
nity will develop leveraging our massive, publicly available
dataset.

2. Related Work
Large-scale third-person datasets In the last decade, an-
notated datasets have both presented new problems in com-
puter vision and ensured their solid evaluation. Existing
collections like Kinetics [108], AVA [92], UCF [207], Ac-
tivityNet [61], HowTo100M [157], ImageNet [49], and
COCO [143] focus on third-person Web data, which have
the benefit and bias of a human photographer. In contrast,
Ego4D is first-person. Passively captured wearable camera
video entails unusual viewpoints, motion blur, and lacks
temporal curation. Notably, pre-training egocentric video
models with third-person data [70,221,224,239] suffers from
the sizeable domain mismatch [139, 201].

Egocentric video understanding Egocentric video offers
a host of interesting challenges, such as human-object in-
teractions [26, 46, 163], activity recognition [110, 139, 243],
anticipation [4, 75, 86, 144, 205], video summarization [48,
129, 131, 147, 148, 232], detecting hands [16, 134], parsing
social interactions [66, 168, 231], and inferring the camera
wearer’s body pose [107]. Our dataset can facilitate new
work in all these areas and more, and our proposed bench-
marks (and annotations thereof) widen the tasks researchers
can consider moving forward. We defer discussion of how
prior work relates to our benchmark tasks to Sec. 5.

Egocentric video datasets Multiple egocentric datasets
have been developed over the last decade. Most relevant to
our work are those containing unscripted daily life activity,
which includes EPIC-Kitchens [43, 44], UT Ego [129, 210],
Activities of Daily Living (ADL) [179], and the Disney
dataset [66]. The practice of giving cameras to participants
to take out of the lab, first explored in [66,129,179], inspires
our approach. Others are (semi-)scripted, where camera
wearers are instructed to perform a certain activity, as in
Charades-Ego [201] and EGTEA [138]. Whereas today’s
largest ego datasets focus solely on kitchens [44,44,124,138],
Ego4D spans hundreds of environments both indoors and out-
doors. Furthermore, while existing datasets rely largely on

Figure 2. Ego4D camera wearer demographics—age, gender, coun-
tries of residence, and occupations (self-reported). Font size reflects
relative frequency of the occupation.

graduate students as camera wearers [43,44,66,129,129,138,
168, 179, 194, 210], Ego4D camera wearers are of a much
wider demographic, as detailed below. Aside from daily
life activity, prior ego datasets focus on conversation [170],
inter-person interactions [66, 168, 194, 231], place localiza-
tion [183, 208], multimodal sensor data [124, 166, 204], hu-
man hands [16, 134] human-object interaction [106, 184],
and object tracking [56].

Ego4D is an order of magnitude larger than today’s largest
egocentric datasets both in terms of hours of video (3,670
hours vs. 100 in [43]) and unique camera wearers (931 peo-
ple vs. 71 in [201]); it spans hundreds of environments
(rather than one or dozens, as in existing collections); and
its video comes from 74 worldwide locations and 9 coun-
tries (vs. just one or a few cities). The Ego4D annotations
are also of unprecedented scale and depth, with millions
of annotations supporting multiple complex tasks. As such,
Ego4D represents a step change in dataset scale and diversity.
We believe both factors are paramount to pursue the next
generation of perception for embodied AI.

3. Ego4D Dataset
Next we overview the dataset, which we are making pub-

licly available under an Ego4D license.

3.1. Collection strategy and camera wearers

Not only do we wish to amass an ego-video collection that
is substantial in scale, but we also want to ensure its diversity
of people, places, objects, and activities. Furthermore, for
realism, we are interested in unscripted footage captured by
people wearing a camera for long periods of time.

To this end, we devised a distributed approach to data
collection. The Ego4D project consists of 14 teams from
universities and labs in 9 countries and 5 continents (see
map in Figure 1). Each team recruited participants to wear a
camera for 1 to 10 hours at a time, for a total of 931 unique
camera wearers and 3,670 hours of video in this first dataset
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Figure 3. Scenarios in Ego4D. Outer circle shows the 14 most
common scenarios (70% of the data). Wordle shows scenarios in
the remaining 30%. Inner circle is color coded by the contributing
partner (see map color legend in Fig 1).

release (Ego4D-3K). Participants in 74 total cities were re-
cruited by word of mouth, ads, and postings on community
bulletin boards. Some teams recruited participants with occu-
pations that have interesting visual contexts, such as bakers,
carpenters, landscapers, or mechanics.

Both the geographic spread of our team as well as our
approach to recruiting participants were critical to arrive at
a diverse demographic composition, as shown in Figure 2.1

Participants cover a wide variety of occupations, span many
age brackets, with 96 of them over 50 years old, and 45%
are female. Two participants identified as non-binary, and
two preferred not to say a gender.

3.2. Scenarios composing the dataset

What activities belong in an egocentric video dataset?
Our research is motivated by problems in robotics and aug-
mented reality, where vision systems will encounter daily
life scenarios. Hence, we consulted a survey from the U.S.
Bureau of Labor Statistics2 that captures how people spend
the bulk of their time in the home (e.g., cleaning, cooking,
yardwork), leisure (e.g., crafting, games, attending a party),
transportation (e.g., biking, car), errands (e.g., shopping,
walking dog, getting car fixed), and in the workplace (e.g,
talking with colleagues, making coffee).

To maximize coverage of such scenarios, our approach is
a compromise between directing camera wearers and giving
no guidance at all: (1) we recruited participants whose col-
lective daily life activity would naturally encompass a spread
of the scenarios (as selected freely by the participant), and
(2) we asked participants to wear the camera at length (at
least as long as the battery life of the device) so that the activ-
ity would unfold naturally in a longer context. A typical raw
video clip in our dataset lasts 8 minutes—significantly longer
than the 10 second clips often studied in third-person video

1for 64% of all participants; missing demographics are due to protocols
or participants opting out of answering specific questions.

2https://www.bls.gov/news.release/atus.nr0.htm

Carpenter > 7 hrs of videos Bike Mechanic > 5.5 hrs of videosCrafting > 12 hrs of videos

Figure 4. Some videos (bottom) have coupled 3D meshes (top)
from Matterport3D scanners, allowing one to relate the dynamic
video to the static 3D environment (middle).

understanding [108]. In this way, we capture unscripted
activity while being mindful of the scenarios’ coverage.

The exception is for certain multi-person scenarios,
where, in order to ensure sufficient data for the audio-visual
and social benchmarks, we asked participants at five sites
who had consented to share their conversation audio and un-
blurred faces to take part in social activities, such as playing
games. We leverage this portion of Ego4D for the audio-
visual and social interaction benchmarks (Sec. 5.3 and 5.4).

Figure 3 shows the wide distribution of scenarios captured
in our dataset. Note that within each given scenario there are
typically dozens of actions taking place, e.g., the carpentry
scenario includes hammering, drilling, moving wood, etc.
Overall, the 931 camera wearers bestow our dataset with a
glimpse of daily life activity around the world.

3.3. Cameras and modalities

To avoid models overfitting to a single capture device,
seven different head-mounted cameras were deployed across
the dataset: GoPro, Vuzix Blade, Pupil Labs, ZShades, OR-
DRO EP6, iVue Rincon 1080, and Weeview. They offer
tradeoffs in the modalities available (RGB, stereo, gaze),
field of view, and battery life. The field of view and cam-
era mounting are particularly influential: while a GoPro
mounted on the head pointing down offers a high resolu-
tion view of the hands manipulating objects (Fig. 5, right),
a heads-up camera like the Vuzix shares the vantage of a
person’s eyes, but will miss interactions close to the body
(Fig. 5, left).

In addition to video, portions of Ego4D offer several other
data modalities: 3D scans, audio, gaze3, stereo, multiple syn-
chronized wearable cameras, and textual narrations. See
Table 1. Each can support new research challenges. For
example, having Matterport3D scans of the environment

3Eye trackers were deployed by Indiana U. and Georgia Tech only.
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Modality: RGB video Text narrations Features Audio Faces 3D scans Stereo Gaze IMU Multi-cam
# hours: 3,670 3,670 3,670 2,535 612 491 80 45 836 224

Table 1. Modalities of data in Ego4D and their amounts. “Narrations” are dense, timestamped descriptions of camera wearer activity
(cf. Sec. 4). “3D scans” are meshes from Matterport3D scanners for the full environment in which the video was captured. “Faces” refers to
video where participants consented to remain unblurred. “Multi-cam” refers to synchronized video captured at the same event by multiple
camera wearers. “Features” refers to precomputed SlowFast [70] video features. Gaze collected only by Indiana U. and Georgia Tech.

coupled with ego-video clips (Figure 4) offers a unique op-
portunity for understanding dynamic activities in a persistent
3D context, as we exploit in the Episodic Memory bench-
mark (see Sec. 5.1). Multiple synchronized egocentric video
streams allow accounting for the first and second-person
view in social interactions. Audio allows analysis of conver-
sation and acoustic scenes and events.

3.4. Privacy and ethics

From the onset, privacy and ethics standards were critical
to this data collection effort. Each partner was responsible
for developing a policy. While specifics vary per site, this
generally entails:

• Comply with own institutional research policy, e.g.,
independent ethics committee review where relevant

• Obtain informed consent of camera wearers, who can
ask questions and withdraw at any time, and are free to
review and redact their own video

• Respect rights of others in private spaces, and avoid
capture of sensitive areas or activities

• Follow de-identification requirements for personally
identifiable information (PII)

In short, these standards typically require that the video be
captured in a controlled environment with informed consent
by all participants, or else in public spaces where faces
and other PII are blurred. Appendix K discusses potential
negative societal impact.

3.5. Possible sources of bias

While Ego4D pushes the envelope on massive every-
day video from geographically and demographically diverse
sources, we are aware of a few biases in our dataset. 74
locations is still a long way from complete coverage of the
globe. In addition, the camera wearers are generally located
in urban or college town areas. The COVID-19 pandemic
led to ample footage in stay-at-home scenarios such as cook-
ing, cleaning, crafts, etc. and more limited opportunities to
collect video at major social public events. In addition, since
battery life prohibits daylong filming, the videos—though
unscripted—tend to contain more active portions of a partic-
ipant’s day. Finally, Ego4D annotations are done by crowd-
sourced workers in two sites in Africa. This means that there

Figure 5. Example narrations. “C” refers to camera wearer.

will be at least subtle ways in which the language-based
narrations are biased towards their local word choices.

3.6. Dataset accessibility

At 3,670 hours of video, we are mindful that Ego4D’s
scale can be an obstacle for accessibility for some re-
searchers, depending on their storage and compute resources.
To mitigate this, we have taken several measures. First, we
provide precomputed action features (SlowFast 8x8 with
ResNet 101 backbone pretrained for Kinetics 400) with the
dataset, an optional starting point for any downstream work.
Second, only portions of the data constitute the formal chal-
lenge train/test sets for each benchmark—not all 3,670 hours
(see Appendix E). As Ego4D annotations increase, we will
create standardized mini-sets. Finally, we provide the option
to download only the data targeting an individual benchmark
or modality of interest.

4. Narrations of Camera Wearer Activity

Before any other annotation occurs, we pass all video
through a narration procedure. Inspired by the pause-and-
talk narrator [44], annotators are asked to watch a 5 minute
clip of video, summarize it with a few sentences, and then
re-watch, pausing repeatedly to write a sentence about each
thing the camera wearer does. We record the timestamps
and the associated free-form sentences. See Figure 5. Each
video receives two independent narrations from different
annotators. The narrations are temporally dense: on average
we received 13.2 sentences per minute of video, for a total of
3.85M sentences. In total the narrations describe the Ego4D
video using 1,772 unique verbs (activities) and 4,336 unique
nouns (objects). See Appendix D for details.

The narrations allow us to (1) perform text mining for
data-driven taxonomy construction for actions and objects,
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Figure 6. The Ego4D benchmark suite centers around the first-person visual experience—from remembering the past, to analyzing the
present, to anticipating the future.

(2) sort the videos by their content to map them to relevant
benchmarks, and (3) identify temporal windows where cer-
tain annotations should be seeded. Beyond these uses, the
narrations are themselves a contribution of the dataset, po-
tentially valuable for research on video with weakly aligned
natural language. To our knowledge, ours is the largest repos-
itory of aligned language and video (e.g., HowTo100M [157],
an existing Internet repository with narrations, contains noisy
spoken narrations that only sometimes comment on the ac-
tivities taking place).

5. Ego4D Benchmark Suite
First-person vision has the potential to transform many

applications in augmented reality and robotics. However,
compared to mainstream video understanding, egocentric
perception requires new fundamental research to account for
long-form video, attention cues, person-object interactions,
multi-sensory data, and the lack of manual temporal curation
inherent to a passively worn camera.

Inspired by all these factors, we propose a suite of chal-
lenging benchmark tasks. The five benchmarks tackle the
past, present, and future of first-person video. See Figure 6.
The following sections introduce each task and its annota-
tions. The first dataset release has annotations for 48-1,000
hours of data per benchmark, on top of the 3,670 hours of
data that is narrated. The Appendices describe how we sam-
pled videos per benchmark to maximize relevance to the task
while maintaining geographic diversity.

We developed baseline models drawing on state-of-the-
art components from the literature in order to test drive all
Ego4D benchmarks. The Appendix presents the baseline
models and quantitative results. We are running a formal
Ego4D competition in June 2022 inviting the research com-
munity to improve on these baselines.

5.1. Episodic Memory

Motivation Egocentric video from a wearable camera
records the who/what/when/where of an individual’s daily
life experience. This makes it ideal for what Tulving called
episodic memory [213]: specific first-person experiences
(“what did I eat and who did I sit by on my first flight

Figure 7. Episodic Memory’s three query types

to France?”), to be distinguished from semantic memory
(“what’s the capital of France?”). An augmented reality as-
sistant that processes the egocentric video stream could give
us super-human memory if it could appropriately index our
visual experience and answer queries.

Task definition Given an egocentric video and a query, the
Ego4D Episodic Memory task requires localizing where
the answer can be seen within the user’s past video. We
consider three query types. (1) Natural language queries
(NLQ), in which the query is expressed in text (e.g., “What
did I put in the drawer?”), and the output response is the
temporal window where the answer is visible or deducible.
(2) Visual queries (VQ), in which the query is a static image
of an object, and the output response localizes the object
the last time it was seen in the video, both temporally and
spatially. The spatial response is a 2D bounding box on the
object, and optionally a 3D displacement vector from the
current camera position to the object’s 3D bounding box. VQ
captures how a user might teach the system an object with
an image example, then later ask for its location (“Where
is this [picture of my keys]?”). (3) Moments queries (MQ),
in which the query is the name of a high-level activity or
“moment”, and the response consists of all temporal windows
where the activity occurs (e.g., “When did I read to my
children?”). See Figure 7.

Annotations For language queries, we devised a set of 13
template questions meant to span things a user might ask
to augment their memory, such as “what is the state of
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object X?”, e.g., “did I leave the window open?”. Annotators
express the queries in free-form natural language, and also
provide the slot filling (e.g., X = window). For moments,
we established a taxonomy of 110 activities in a data-driven,
semi-automatic manner by mining the narration summaries.
Moments capture high-level activities in the camera wearer’s
day, e.g., setting the table is a moment, whereas pick up is
an action in our Forecasting benchmark (Sec. 5.5).

For NLQ and VQ, we ask annotators to generate lan-
guage/visual queries and couple them with the “response
track” in the video. For MQ, we provide the taxonomy of
labels and ask annotators to label clips with each and every
temporal segment containing a moment instance. In total,
we have ∼74K total queries spanning 800 hours of video.

Evaluation metrics and baselines For NLQ, we use top-k
recall at a certain temporal intersection over union (tIoU)
threshold. MQ adopts a popular metric used in temporal
action detection: mAP at multiple tIoU thresholds, as well as
top-kx recall. VQ adopts temporal and spatio-temporal local-
ization metrics as well as timeliness metrics that encourage
speedy searches. Appendix F presents the baseline models
we developed and reports results.

Relation to existing tasks Episodic Memory has some
foundations in existing vision problems, but also adds new
challenges. All three queries call for spatial reasoning in
a static environment coupled with dynamic video of a per-
son who moves and changes things; current work largely
treats these two elements separately. The timeliness met-
rics encourage work on intelligent contextual search. While
current literature on language+vision focuses on captioning
and question answering for isolated instances of Internet
data [12, 35, 119, 228], NLQ is motivated by queries about
the camera wearer’s own visual experience and operates over
long-term observations. VQ upgrades object instance recog-
nition [23, 85, 126, 155] to deal with video (frequent FoV
changes, objects entering/exiting the view) and to reason
about objects in the context of a 3D environment. Finally,
MQ can be seen as activity detection [141, 229, 237] but for
the activities of the camera wearer.

5.2. Hands and Objects

Motivation While Episodic Memory aims to make past
video queryable, our next benchmark aims to understand
the camera wearer’s present activity—in terms of inter-
actions with objects and other people. Specifically, the
Hands and Objects benchmark captures how the camera
wearer changes the state of an object by using or manip-
ulating it—which we call an object state change. Though
cutting a piece of lumber in half can be achieved through
many methods (e.g., various tools, force, speed, grasps, end-
effectors), all should be recognized as the same state change.
This generalization ability will enable us to understand hu-

pre-condition PNR post-condition

State-change: Plant removed from ground

pre-condition PNR post-condition

State-change: Wood smoothed

Figure 8. Hands and Objects: Example object state changes defined
by pre-condition, PNR, and post-condition frames.

man actions better, as well as to train robots to learn from
human demonstrations in video.

Task definitions We interpret an object state change to in-
clude various physical changes, including changes in size,
shape, composition, and texture. Object state changes can be
viewed along temporal, spatial and semantic axes, leading to
these three tasks: (1) Point-of-no-return temporal localiza-
tion: given a short video clip of a state change, the goal is to
estimate the keyframe that contains the point-of-no-return
(PNR) (the time at which a state change begins); (2) State
change object detection: given three temporal frames (pre,
post, PNR), the goal is to regress the bounding box of the
object undergoing a state change; (3) Object state change
classification: given a short video clip, the goal is to classify
whether an object state change has taken place or not.

Annotations We select the data to annotate based on activi-
ties that are likely to involve hand-object interactions (e.g.,
knitting, carpentry, baking, etc.). We start by labeling each
narrated hand-object interaction. For each, we label three
moments in time (pre, PNR, post) and the bounding boxes
for the hands, tools, and objects in each of the three frames.
We also annotate the state change types (remove, burn, etc.,
see Fig. 8), action verbs, and nouns for the objects.

Evaluation metrics and baselines Object state change
temporal localization is evaluated using absolute temporal
error measured in seconds. Object state change classifica-
tion is evaluated by classification accuracy. State change
object detection is evaluated by average precision (AP). Ap-
pendix G details the annotations and presents baseline model
results for the three Hands and Objects tasks.

Relation to existing tasks Limited prior work considers
object state change in photos [102,164] or video [8,68,242];
Ego4D is the first video benchmark dedicated to the task of
understanding object state changes. The task is similar to
action recognition (e.g., [100,110,139,221,243]) because in
some cases a specific action can correspond to a specific state
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Figure 9. Audio-Visual and Social benchmark annotations

change. However, a single state change (e.g., cutting) can
also be observed in many forms (various object-tool-action
combinations). It is our hope that the proposed benchmarks
will lead to the development of more explicit models of
object state change, while avoiding approaches that simply
overfit to action or object observations.

5.3. Audio-Visual Diarization

Motivation Our next two tasks aim to understand the cam-
era wearer’s present interactions with people. People com-
municate using spoken language, making the capture of con-
versational content in business meetings and social settings
a problem of great scientific and practical interest. While
diarization has been a standard problem in the speech recog-
nition community, Ego4D brings in two new aspects (1)
simultaneous capture of video and audio (2) the egocentric
perspective of a participant in the conversation.

Task definition and annotations The Audio-Visual Di-
arization (AVD) benchmark is composed of four tasks (see
Figure 9):
• Localization and tracking of the participants (i.e., candi-

date speakers) in the visual field of view (FoV). A bound-
ing box is annotated around each participant‘s face.

• Active speaker detection where each tracked speaker is as-
signed an anonymous label, including the camera wearer
who never appears in the visual FoV.

• Diarization of each speaker’s speech activity, where
we provide the time segments corresponding to each
speaker’s voice activity in the clip.

• Transcription of each speaker’s speech content (only En-
glish speakers are considered for this version).

Evaluation metrics and baselines We use standardized ob-
ject tracking (MOT) metrics [18, 19] to evaluate speaker
localization and tracking in the visual FoV. Speaker detec-
tion with anonymous labels is evaluated using the speaker
error rate, which measures the proportion of wrongly as-
signed labels. We adopt the well studied diarization error

rate (DER) [11] and word error rate (WER) [114] for di-
arization and transcription, respectively. We present AVD
baseline models and results in Appendix H.

Relation to existing tasks The past few years have seen
audio studied in computer vision tasks [245] for action clas-
sification [110,226], object categorization [125,234], source
localization and tracking [14, 197, 212] and embodied navi-
gation [33]. Meanwhile, visual information is increasingly
used in historically audio-only tasks like speech transcrip-
tion, voice recognition, audio spatialization [5, 80, 104, 161],
speaker diarization [10,83], and source separation [57,78,82].
Datasets like VoxCeleb [39], AVA Speech [31], AVA active
speaker [192], AVDIAR [83], and EasyCom [53] support this
research. However, these datasets are mainly non-egocentric.
Unlike Ego4D, they do not capture natural conversational
characteristics involving a variety of noisy backgrounds,
overlapping, interrupting and un-intelligible speech, environ-
ment variation, moving camera wearers, and speakers facing
away from the camera wearer.

5.4. Social Interactions

Motivation An egocentric video provides a unique lens for
studying social interactions because it captures utterances
and nonverbal cues [115] from each participant’s unique
view and enables embodied approaches to social understand-
ing. Progress in egocentric social understanding could lead
to more capable virtual assistants and social robots. Compu-
tational models of social interactions can also provide new
tools for diagnosing and treating disorders of socialization
and communication such as autism [188], and could support
novel prosthetic technologies for the hearing-impaired.

Task definition While the Ego4D dataset can support such
a long-term research agenda, our initial Social benchmark
focuses on multimodal understanding of conversational in-
teractions via attention and speech. Specifically, we focus on
identifying communicative acts that are directed towards the
camera-wearer, as distinguished from those directed to other
social partners: (1) Looking at me (LAM): given a video in
which the faces of social partners have been localized and
identified, classify whether each visible face is looking at the
camera wearer; and (2) Talking to me (TTM): given a video
and audio segment with the same tracked faces, classify
whether each visible face is talking to the camera wearer.

Annotations Social annotations build on those from AV di-
arization (Sec. 5.3). Given (1) face bounding boxes labeled
with participant IDs and tracked across frames, and (2) asso-
ciated active speaker annotations that identify in each frame
whether the social partners whose faces are visible are speak-
ing, annotators provide the ground truth labels for LAM and
TTM as a binary label for each face in each frame. For LAM,
annotators label the time segment (start and end time) of a
visible person when the individual is looking at the camera
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wearer. For TTM, we use the vocal activity annotation from
AVD, then identify the time segment when the speech is
directed at the camera wearer. See Figure 9.

Evaluation metrics and baselines We use mean average
precision (mAP) and Top-1 accuracy to quantify the classifi-
cation performance for both tasks. Unlike AVD, we measure
precision at every frame. Appendix I provides details and
presents Social baseline models and results.

Relation to existing tasks Compared to [67], Ego4D con-
tains substantially more participants, hours of recording, and
variety of sensors and social contexts. The LAM task is most
closely related to prior work on eye contact detection in ego-
video [36, 159], but addresses more diverse and challenging
scenarios. Mutual gaze estimation [54, 150–152, 172, 176]
and gaze following [37, 65, 111, 186] are also relevant. The
TTM task is related to audio-visual speaker detection [7,193]
and meeting understanding [21, 132, 154].

5.5. Forecasting

Motivation Having addressed the past and present of the
camera wearer’s visual experience, our last benchmark
moves on to anticipating the future. Forecasting move-
ments and interactions requires comprehending the camera
wearer’s intention. It has immediate applications in AR and
human-robot interaction, such as anticipatively turning on
appliances or moving objects for the human’s convenience.
The scientific motivation can be seen by analogy with lan-
guage models such as GPT-3 [24], which implicitly capture
knowledge needed by many other tasks. Rather than predict
the next word, visual forecasting models the dynamics of an
agent acting in the physical world.

Task definition The Forecasting benchmark includes four
tasks (Fig. 10): (1) Locomotion prediction: predict a set
of possible future ground plane trajectories of the camera
wearer. (2) Hand movement prediction: predict the hand
positions of the camera wearer in future frames. (3) Short-
term object interaction anticipation: detect a set of possible
future interacted objects in the most recent frame of the clip.
To each object, assign a verb indicating the possible future
interaction and a “time to contact” estimate of when the inter-
action is going to begin. (4) Long-term action anticipation:
predict the camera wearer’s future sequence of actions.

Annotations Using the narrations, we identify the occur-
rence of each object interaction, assigning a verb and a target
object class. The verb and noun taxonomies are seeded from
the narrations and then hand-refined. For each action, we
identify a contact frame and a pre-condition frame in which
we annotate bounding boxes around active objects. The
same objects as well as hands are annotated in three frames
preceding the pre-condition frame by 0.5s, 1s and 1.5s. We
obtain ground truth ego-trajectories of the camera wearer
using structure from motion.

Locomotion Movements Hands Movements Short-Term Anticipation

take 
dough in 

0.8s take 
dough in 

0.8s

Input video

prediction: knead dough put dough pack spice pour spice

Long-Term Anticipation

Figure 10. The Forecasting benchmark aims to predict future loco-
motion, movement of hands, next object interactions, and sequences
of future actions.

Evaluation metrics and baselines We evaluate future loco-
motion movement and hand movement prediction using L2
distance. Short-term object interaction anticipation is eval-
uated using a Top-5 mean Average Precision metric which
discounts the Top-4 false negative predictions. Long-term ac-
tion anticipation is evaluated using edit distance. Appendix J
details the tasks, annotations, baseline models, and results.

Relation to existing tasks Predicting future events from
egocentric vision has increasing interest [191]. Previous
work considers future localization [113, 120, 174, 230], ac-
tion anticipation [76,77,86,118,127,219], next active object
prediction [20,74], future event prediction [149,167], and fu-
ture frame prediction [145,146,153,215,218,227]. Whereas
past work relies on different benchmarks and task definitions,
we propose a unified benchmark to assess progress in the
field.

6. Conclusion
Ego4D is a first-of-its-kind dataset and benchmark suite

aimed at advancing multimodal perception of egocentric
video. Compared to existing work, our dataset is orders of
magnitude larger in scale and diversity. The data will allow
AI to learn from daily life experiences around the world—
seeing what we see and hearing what we hear—while our
benchmark suite provides solid footing for innovations in
video understanding that are critical for augmented reality,
robotics, and many other domains. We look forward to the
research that will build on Ego4D in the years ahead.
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A. Data Collection

This section overviews the collection procedures and sce-
narios per site.

International Institute of Information Technology
(IIIT), Hyderabad, India: At IIIT, Hyderabad, we fol-
lowed a protocol of distributed data collection with a cen-
tralized team doing coordination and verification. We first
identified local coordinators in different parts of the country
and explained the data collection plans, goals and process.
They then helped in collecting data in their own local regions
from natural settings with informed participants. Participants
were recruited locally considering the range of activities, and
also the guidelines and restrictions of COVID-19. The cen-
tral team could not travel to all these locations for training
the coordinators or collecting the data. We shipped multiple
cameras to the local coordinators and remotely guided them
on data collection following the COVID protocols. The col-
lected data and consent forms were then shipped back to
the university, where manual verification, de-identification
(wherever applicable), and sharing with the consortium took
place.

At IIIT Hyderabad, we recorded 660.5 hours of data with
the help of 138 subjects. The videos were collected in 5
different states in India, geographically well apart. We cover
36 different scenarios, such as making bricks using hands,
knitting, making egg cartons, and hairstyling. The age of
subjects ranged from 18-84 years with 10 distinct profes-
sional backgrounds (teachers, students, farmers, blacksmiths,
homemakers, etc.). Out of all the subjects, 94 were males,
and 44 were females. We use GoPro Hero 6 and GoPro
Hero 7 for recording the videos. The GoPro’s were shipped

to the participants in different parts of the country. Videos
were shared back either in external hard disks or over the
cloud storage. Each video was manually inspected for any
sensitive content before sharing.

Primary contributors: Raghava Modhugu - data collection
pipeline, design of the setup and workflow. Siddhant Bansal
- IRB application, consent forms and de-identification. C.
V. Jawahar - lead contributor for data collection. We also
acknowledge the contributions of Aradhana Vinod (coordi-
nation and communication), Ram Sharma (local data man-
agement and verification), and Varun Bhargavan (systems
and resources).

University of Tokyo, Japan: We recruited 81 Japanese par-
ticipants (41 male, 40 female) living around Tokyo, Japan
through a temporary employment agency. The participant’s
gender and age (from the 20s to 60s) were balanced to collect
diverse behavior patterns. We focused on two single-actor
activities: cooking (40 participants, 90 hours) and handcraft
(41 participants, 51 hours). In the cooking scenario, partici-
pants were asked to record unscripted videos of cooking at
their homes. In the handcraft scenario, participants visited
our laboratory and performed various handcraft activities
(e.g., origami, woodworking, plastic model, cutout picture).
We collected data using GoPro HERO 7 Black camera for
cooking and Weeview SID 3D stereo camera for handcraft.
Our data collection protocol was reviewed and approved by
University of Tokyo ethical review board.

Primary contributors: Yoichi Sato – lead coordinator for
data collection, Takuma Yagi and Takumi Nishiyasu – con-
tributed to participant recruiting, protocol design, data collec-
tion and inspection, and IRB submission, Yifei Huang and
Zhenqiang Li – contributed to data inspection and transfer,
Yusuke Sugano – contributed to selecting video recording
scenarios, protocol design and IRB submission.

University of Bristol, UK: Participants were recruited
through adverts on social media and university internal com-
munication channels. These participants then spread the
word to their acquaintances and some participants joined the
project through word-of-mouth recommendations of previ-
ous participants. Data was collected between Jan and Dec
2020, from 82 participants. With the pandemic taking over in
March, the project shifted to online operation where cameras
were posted, and training took place over Zoom meetings.
Participants first expressed interest by sending an email and
they were provided with an information sheet. This was fol-
lowed by a preliminary Zoom meeting with a researcher to
brief participants about the procedure, answer any questions
and agree on the scenarios to be recorded.

We set a limit to the total number of minutes per scenario,
to increase diversity of recordings. For example, driving
cannot be longer than 30 minutes while cooking can be up
to 1.5 hours. Each participant was instructed to record a
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minimum of 2 hours across 4 scenarios. Importantly, partic-
ipants were encouraged to collect activities they naturally
do. For example if one regularly cycles or practices mu-
sic, they were asked to record these scenarios. Additionally,
paired scenarios (people cooking together or playing games)
were encouraged and multiple (2-3) cameras were posted for
participants sharing a household. All participants signed a
consent form before a camera was posted to their residence.
Cameras were posted to 9 UK cities in England, Wales and
Scotland including one participant in the Isle of North Uist.

Upon receipt of the camera, a second Zoom meeting was
scheduled to train the participant on the equipment and detail
how footage is reviewed and uploaded. Participants were
given 2 weeks to record, with an additional week of exten-
sion upon request. Once recording is completed, footage is
uploaded by the participant and reviewed for good lighting,
correct setting and viewpoint. Participants were reimbursed
for their participation in the project.

Scenarios recorded in the UK covered: commuting (driv-
ing, walking, cycling, taking the bus, hiking, jogging), en-
tertainment (card games, board games, video games, lego,
reading, practising a musical instrument, listening to music,
watching TV), jobs (lab work, carpentry), sports (football,
basketball, climbing, golf, yoga, workouts) and home-based
daily activities (cooking, cleaning, laundry, painting, car-
ing for pets, tidying, watering the plants), DIY (fixing, gar-
dening, woodwork) and crafts (colouring, crafting, crochet,
drawing, knitting, sewing). Footage was captured using
GoPro Hero-7, Hero-8 and Vuzix.

Footage was then reviewed by researchers to identify any
PII. 36% of all videos required de-identification. We used
Primloc’s Secure Redact software suite, with integrated tools
and user interfaces for manual tracking and adjusting detec-
tions. Redacted recordings were reviewed manually, then
encoded and uploaded to the AWS bucket. During encoding,
IMU meta data was separately extracted. Integrated audio
and video using native 50fps recordings are available.

In total, 262 hours were recorded by 82 participants. On
average, each participant recorded 3.0 hours (σ = 0.7 hours)
The data is published under General Data Protection Regula-
tion (GDPR) compliance.

Primary contributors: Michael Wray - data collection,
consent forms and information sheets; Jonathan Munro -
data collection and ethics application; Adriano Fragomeni -
data collection and de-identification oversight; Will Price -
data ingestion, encoding and metadata; Dima Damen - sce-
narios, procedures, data collection oversight and participant
communication. We acknowledge the efforts of Christianne
Fernee in manually reviewing all data.

Georgia Tech, Atlanta, GA, USA: Participant groups
from the Atlanta, Georgia, USA metro area were recruited
via online posts and advertisements on sites such as Face-
book, Reddit, and Instagram. Each group of participants

was comprised of friends or family members who knew each
other prior to participating in the study. Participants were
required to be aged 18-64, to not be considered high risk for
COVID-19, and to be able to play social deduction games in
English. Our study protocol was reviewed and approved by
the Georgia Tech Institutional Review Board (IRB). In total,
approximately 43 hours of egocentric video were collected
from 19 participants (per participant disclosure - 10 male,
7 female, 1 non-binary, 1 not reported). Participants had a
mean age of 31.6 years with 7 participants aged 20-29 years,
10 participants aged 30-39 years, and 2 participants aged
40-49 years.

Participants wore an egocentric head-worn camera and
on-ear binaural microphones. Some participants wore the
ORDRO EP6 camera while others wore the Pupil Invisible
cameras. The audio was recorded using a Tascam DR-22WL
and Sound Professionals MS-EHB-2 Ear-hook binaural mi-
crophones. A third-person video was also captured via a
Logitech C930e Webcam. Participants wore the provided
recording devices while eating, drinking, and playing social
deduction games such as One Night Ultimate Werewolf and
The Resistance: Avalon in their own home. This at-home
game-night setting elicited a wide range of spontaneous and
naturalistic social behaviors and interactions. In addition,
eating and drinking behaviors were captured from both the
egocentric and third-person cameras.

In addition to participating in the recorded session, partic-
ipants completed a survey that captured their demographic
information. All data was screened and censored by study
personnel to remove any identifying information including
visible personal information on their phone screens or the
exterior of the home. Participants also had the opportunity
to review the videos and request additional censoring.

Primary contributors: Fiona Ryan - lead coordinator for
data collection, including synchronization, de-identification,
and ingestion; Audrey Southerland - lead coordinator for
IRB development and recruiting; Miao Liu - contributed to
data collection and ingestion; James M. Rehg - contributed
to protocol design and data collection.

Indiana University, Bloomington, IN, USA: Participants
in the Bloomington, Indiana, USA area were recruited
through advertisements on social media, online classifieds
boards, and email lists. We also used snowball sampling by
asking participants to share our ads with their friends. We re-
cruited participants who were willing to perform interactive
small group activities such as playing sports, playing board
or card games, playing musical instruments, assembling puz-
zles, etc. The health of participants and study personnel
was safeguarded by collecting data either outdoors (where
people can more safely interact without wearing masks), or
indoors in the homes of the participants. In either case, we
initially required that all participants in a social group be
part of the same household to minimize the risk of spreading
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disease between households, but later we allowed groups of
people who were comfortable interacting with one another
(e.g., because they are vaccinated for COVID-19). Group
sizes ranged from 1 to 6 people, with groups of 2 or 3 being
the most common.

We collected data with four different devices: zShade
1080p camera glasses, iVue Rincon 1080 camera glasses,
ORDRO EP-6, and Pupil Labs Invisible camera and gaze
tracking glasses. We used multiple devices because each has
various advantages and disadvantages; zShade has a large
horizontal field of view, for example, while iVue has an ad-
justable vertical field of view, ORDRO sits by the ear and is
mounted on a headband which works well for people wear-
ing prescription glasses, and Invisible offers gaze tracking
but is very expensive. We asked as many participants as
possible in the group to wear cameras. We primarily used
our two Pupil Labs Invisibles whenever possible, because
of their ease of use and ability to collect gaze data, but we
also used the ORDRO EP-6 when there were larger groups
or when participants wore prescription glasses.

Our protocol was reviewed and approved by the Indi-
ana University Institutional Review Board (IRB). We first
conducted an online meeting with potential participants to
describe the study, explain the use of the cameras, agree on
an activity for them to perform, and answer their questions.
We ask participants to try to limit capture of potentially
privacy-sensitive content by choosing a place within their
home that did not have personally identifiable information,
by avoiding recording people other than those participating
in the study, and by avoiding saying last names or other
sensitive audio.

We then arrange a time to meet them, typically outside
their home or in an outdoor public place. We set up the
cameras, help the participants put them on, give them our
contact information in case they have any problems, and
then we leave while they perform the activity. We then re-
turn after about one hour to pick up the cameras. Within
a few days, we send each participant a copy of the video
taken by their camera, and ask them to review the footage
and identify any privacy-sensitive content (video or audio)
that they would prefer to be blurred or removed. We manu-
ally edit out any such content (using Adobe Premiere Pro).
We also review all video for faces of non-participants and
personally-identifying information such as house numbers
or license plates, and blurred these accordingly. We use
Pupil Labs software to synchronize eye gaze with the video
for each participant, and then used Adobe Premiere Pro to
temporally synchronize video across different participants
using audio track comparison.

In total, approximately 103 hours of video were collected
from 66 participants (42 female, 23 male, 1 non-binary; for
age, 46 were 20-29 years old, 14 were 30-39 years old, 1
was 40-49, 2 were 50-59, 1 was 60-69, and 2 were 70-79).

Primary contributors: David Crandall - lead coordinator
for data collection; Yuchen Wang - contributed to protocol
design, participant recruiting, and data collection; Weslie
Khoo - developed multi-camera synchronization and de-
identification pipelines.

University of Minnesota, Twin Cities, MN, USA: Partic-
ipants in the Minneapolis and St. Paul, Minnesota, USA
area were recruited through advertisements on social media
and university bulletins such as Facebook AD, Craiglist, and
Redhat. A total of approximately 313 hours of data was
collected from 45 participants (22 males and 23 females).
Age groups include 5 teenagers, 20 people in their twenties,
11 people in their thirties, 8 people in their forties, and 1
person in their fifties. We recruited participants as multiple
groups and encouraged them to engage in unstructured nat-
ural social interactions. Such interactions included playing
card games, talking in the kitchen while cooking, playing
basketball, and building a tent at a camp site. In all cases,
we required that all participants in a social group be part of
the same household to minimize the COVID-19 risk. Group
sizes ranged from 1 to 6 people, with groups of 2 or 3 being
the most common.

We collected data with the zShade 1080p camera glasses
that have a large field of view. Our protocol was reviewed
and approved by the University of Minnesota Institutional
Review Board (IRB). We first conducted an online meet-
ing with potential participants to describe the study, explain
the use of the cameras, agree on an activity for them to
perform, and answer their questions. We then arranged a
time for them to receive the cameras and provided them
with a postage-paid box for camera return. A few days later,
participants shipped the cameras to our designated return
address. We downloaded the data after sanitizing cameras
and equipment. After the data capture was complete, we
visually inspected every second of video in order to exclude
any privacy-sensitive information (e.g. license plates, smart
phone screens, and credit card numbers), and to assess the
duration of non-social activities. For incidental participants
(i.e. bystanders) appearing in data collected by the camera
wearer in public settings (e.g., shopping, concert, at a park,
etc.), data collection consists only of recording publicly ob-
servable behavior with no manipulation or direct interaction
with the participants, and this university’s IRB allows an
assumed waiver of consent for those participants.

Primary contributors: Hyun Soo Park - lead coordinator
for data collection; Jayant Sharma - contributed to participant
recruiting, data collection, IRB submission, analysis, and
data ingestion.

National University of Singapore, Singapore: Partici-
pants were recruited from Singapore through advertisements
on social media, via flyers and surveys, as well as from
sourcing by the project coordinator. Residents of Singapore
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aged 21 to 70 who could wear a camera while participating
in social sessions were eligible for inclusion in our study.
During the recording session, the participants were required
to attend social events such as family gatherings, exercising
with a trainer, hairdressing, getting manicure, attending a
session for teaching assistants, attending a group meeting,
etc. The devices used for data collection were GoPro Hero 8,
GoPro Hero 9, and AR glasses. GoPro cameras have binau-
ral microphones while the AR glasses can only record mono
audio. In total, 51 hours of videos were collected from 40
participants (25 males and 15 females). Age groups include
31 twenties, 5 thirties, 3 fifties, and 1 sixties.

Primary contributors: Mike Zheng Shou - lead coordina-
tor for data collection; Eric Zhongcong Xu - contributed to
data collection; Ruijie Tao - contributed to data collection.

Facebook Reality Labs (FRL), Redmond, WA, USA:
Participants were recruited from the Seattle area through
a FRL-hired vendor company. In total, there were 400 hours
collected from 206 unique participants in 6 scenes staged
in FRL’s research labs in 2019. The ethnic groups include
50.8% Caucasian, 28.2% African, 11.9% Asian and 9%
Hispanic. The staged environments include four types of
apartments, a clothing store, and a grocery store. During
the recording sessions, the participants were asked to wear
Vuzix glasses to go through the following everyday scenarios
as naturally as possible: grocery shopping, buying clothes,
watching TV, playing video games, listening to music, danc-
ing, weight lifting, stretching, reading email, paying bills,
online gaming, cooking, talking with other people, meetings,
whiteboarding, and video calling. The emails and bills were
always mock data, not personal emails or bills of the par-
ticipants. The video calls took place between participants
only.

Three out of four apartments have corresponding 3D
scans. We use the state-of-the-art dense reconstruction sys-
tem [209] to obtain the 3D photo-realistic reconstruction of
those apartments. Volumetric representations are obtained
from a customized capture rig and dense 3D meshes are
extracted by the Marching Cubes algorithm with textures.
We further annotate the dense meshes by labeling object
categories over the mesh polygons; 35 object categories plus
a background class label are used in annotation.

Primary contributors: Mingfei Yan, Richard Newcombe,
Kiran Somasundaram, Chao Li.

Universidad de los Andes, Colombia: We gather 302.5
hours across 20 scenarios from 77 unique participants. We
record videos using GoPro Hero 9 cameras between July and
August 2021. We recruit volunteer participants from within
the Uniandes community and their families and friends. The
ethnic groups include 89.9% Hispanic, 1.4% African, and
5.8%Caucasian. The gender distribution follows 41.6% male
and 58.4% female with ages ranging from 18 to 65 (6 teens,

44 twenties, 3 thirties, 2 forties, 6 fifties, and 1 sixties).
Our data collection focuses mainly on simultaneous video
recording in groups of camera wearers within a common
setting. Thus, these data capture a single scene and social
interactions from different points of view. We include both
outdoor and indoor scenarios in Colombia. Outdoor scenar-
ios include Bogotá and Cartagena’s historical and colonial
centers, as urban settings, and a Natural National Park and
a stream, as rural settings. Indoor locations include profes-
sional activities such as laboratory workers and hair stylers.
Furthermore, we include sports events such as salsa and
urban dance rehearsals and rock climbing.

Primary contributors: Cristina González and Paola Ruiz
Puentes.

Carnegie Mellon University, Pittsburgh, PA, USA and
Kigali, Rwanda: Carnegie Mellon University (CMU) Pitts-
burgh gathered a large portion of its data from skilled work-
ers such as carpenters, construction workers, landscapers,
mechanics, arborists, painters, and artists. This portion of
the dataset does not include any graduate students with the
explicit goal of capturing a diverse range of real-world occu-
pational activities. Over 500 hours of video were captured
in the Pittsburgh area. The data was mostly recorded using
a GoPro camera and a small portion was collected using
WeeView, a wearable stereo camera.

Carnegie Mellon University Africa gathered data from
hobbyist craftspeople and daily workers working in Kigali,
Rwanda. An effort was made to collect data most represen-
tative of how tasks are carried out in Rwanda (such as doing
laundry manually as opposed to with a washing machine).
Over 150 hours of video were captured, and a portion of
those hours are available in the current release. All of the
data was collected using a GoPro camera.

Primary contributors: Kris Kitani - project coordinator
for both CMU Pittsburgh and CMU Africa video collection.
Sean Crane - lead coordinator of CMU Pittsburgh data col-
lection (over 500 hours), main lead of CMU IRB review.
Abrham Gebreselasie - lead coordinator of CMU Africa data
collection. Qichen Fu and Xindi Wu - development of video
de-identification pipeline, manual video de-identification
annotation of CMU Pittsburgh data. Vivek Roy - main archi-
tecture of the license signing web server, coordinating with
America Web Developers.

University of Catania, Italy: More than 359 hours of video
have been recorded from 57 different subjects recruited
through word of mouth, starting from family members,
friends and acquaintances of students and faculty members
of the research group. Videos are related to 25 scenarios. We
chose the participants to cover a wide variety of professional
backgrounds (24 backgrounds including carpenters, bakers,
employees, housewives, artists, and students) and ages (sub-
jects were aged from 20 to 77, with an average age of 36.42).
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Baker > 9.5 hrs of videos Carpenter > 7 hrs of videos Scooter Mechanic > 9.5 hrs of videosBike Mechanic > 5.5 hrs of videos Bike Mechanic > 17.5 hrs of videosCrafting > 12 hrs of videos Car Mechanic > 3.5 hrs of videos

Figure 11. Matterport3D scans (top) related to seven different locations coupled with some videos (bottom).

21 of the participants were female, while the remaining 36
were male. Female participants collected about 137 hours
of video, whereas males collected 222 hours of video. The
average number of hours of videos acquired by each partic-
ipant is 6h:18m:23s, with a minimum number of hours of
06m:34s, and a maximum number of hours of 15h:40m:42s.

To prepare participants to record videos, we demonstrated
to them the operations of the camera and how to wear it. We
provided examples of valid recording and invalid recordings
before they started the acquisition session. The recording
procedure was described in a document left to the partici-
pants to help them remember the device usage and how to
perform a good acquisition. Acquisition of videos has been
performed using different models of GoPro cameras (GoPro
4, GoPro7, GoPro8, and GoPro Hero Max), which were
handed over to the participants who typically acquired their
videos autonomously over a period of a few days or weeks.
3D scans for 7 locations using the Matterport 3D scanner
have been also collected (Figure 11).

Primary contributors: Giovanni Maria Farinella and An-
tonino Furnari - scenarios, procedures, data collection over-
sight, data formatting, encoding, metadata and ingestion.
Irene D’Ambra - data collection, consent forms and informa-
tion sheets, manual data review, de-identification oversight.

King Abdullah University of Science and Technology
(KAUST), Saudi Arabia: A total of 453 hours of videos
have been collected from 66 unique participants in 80 differ-
ent scenarios with GoPro Hero 7. All the participants were
KAUST community members, who are from various coun-
tries and have various occupations. All recordings took place
in the KAUST university compound, which is 3600 hectares
in area with diversified facilities (e.g., sports courts, super-
markets, a 9-hole golf course, and 2 beaches) and scenes
(e.g., buildings, gardens, the red sea, and the desert). There-
fore, the team was able to collect videos of various scenarios
such as snorkeling, golfing, cycling, and driving.

The participants were recruited from multiple sources,
such as friends and families, individuals referred to us by
earlier participants, as well as people who were interested

in our Facebook advertisements or posters in campus restau-
rants and supermarkets. Each candidate participant was
required to register through an online form, which contained
an introduction to and requirements of the recording task,
and collected his/her basic demographic information. The
participants’ ages range from 22 to 53. They come from
20 different countries, and about half are females. Many
participants were graduate students and researchers, while
others had various kinds of occupations such as chefs, facil-
ity managers, and teachers.

In order to prepare the participants for the recording pro-
cess, the team described in documents and demonstrated to
them the operations of the camera. The team also provided
examples of what constitute valid and invalid recordings
before they started. Each participant was provided a GoPro
mountable camera with 2 batteries and a 512/256 GB SD
card. Each participant needed to choose at least 2 differ-
ent activities from our scenario list and record 1-10 hours
of video within 2 days. The university team went through
the recordings after the participants returned the camera to
check their quality as well as to make sure the videos meet
the university’s IRB requirements.

Primary contributors: Chen Zhao, Merey Ramazanova,
Mengmeng Xu, and Bernard Ghanem.
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B. De-identification Process

The dataset has two types of video. The first includes
videos recorded indoors where informed consent for cap-
turing identities is explicitly collected from all participants
in the scene, including faces and voice. Only video of this
type is used in our Audio-Visual Diarization and Social
Interaction benchmark studies. All 400 hours of data col-
lected by Facebook Reality Labs falls in that category. The
second category, which forms the majority of our videos,
requires de-identification as consent for capturing identities
is not given—including footage captured outdoors in public
spaces.4 Only video collected by the universities falls into
this second category. See Appendix A for details about the
per-site collection approaches.

B.1 De-identification overview

All videos in the second category were manually screened
to address any de-identification needs, and are further di-
vided into two groups. Group1: videos that do not contain
any personally identifiable information (PII).5 This is when
the video is recorded indoors with one person wearing the
camera performing tasks such as cleaning or knitting for
example, and no PII is present in the video. These videos
did not require de-identification. Group2: videos where PII
is captured. These include indoor settings with multiple
participants present, PII captured accidentally such as an
address on an envelope or a reflection of the wearer’s face on
a mirror or a surface, as well as videos recorded outdoors in a
public space where bystanders or cars appear in the footage.
Videos in Group2 were marked for de-identification, deploy-
ing advanced video redaction software, open source tools,
and hours of human reviews to redact visible PIIs. University
partners undertook this de-identification effort for their own
data. We summarize the approach below.

Videos marked for redaction were processed through
de-identification software that removes specific identifiers
at scale. We used two commercial softwares: brighter.ai6

and Primloc’s Secure Redact7 that enabled detecting faces
and number plates automatically. We carefully reviewed
all outputs from automated blurring, identifying both in-
stances of false positives (blurring that mistakenly occurred
on non-privacy related items) or false negatives (inaccu-
rate or insufficient automated blurring of faces and num-
ber plates). Additionally, other PII data such as written
names/addresses, phone screens/passwords or tattoos had to

4The exception is data from University of Minnesota, whose IRB per-
mitted recording of incidental participants in public spaces having no ma-
nipulation or direct interaction with study personnel.

5We use the abbreviation PII to capture data protected under various
data protection regimes including the General Data Protection Regulation
(GDPR) where the term “personal data” is used.

6http://brighter.ai
7http://secureredact.co.uk

Figure 12. CMU’s de-identification pipeline

be manually identified and blurred per-frame. For this part
of our de-identification process, we used both commercial
tools within the above-mentioned commercial software and
open source software, including Computer Vision Annota-
tion Tool (CVAT)8, Anonymal9 and SiamMask10.

Time costs. The relative time costs with respect to the orig-
inal video length varied significantly for the different scenar-
ios. Videos captured outdoors could take 10x the length of
the video to carefully redact.

B.2 Sample pipeline

While partners followed varying pipelines, we offer a sam-
ple pipeline to showcase the process followed by Carnegie
Mellon University that uses brighter.ai as the commercial
software. This sample pipeline showcases the combination
of automated processes and human labor with relative speeds
of these steps.

This semi-automatic de-identification process was per-
formed in four sequential stages (Figure 12): (1) automatic
face and license plate detection, (2) false positive removal,
(3) negative detection handling, and (4) image blurring.

Sensitive object detection Given the collected videos (raw
data), a reviewer scans through videos and marks those con-
taining sensitive objects such as human faces, license plates,
credit cards, etc. Then de-identification software (brighter.ai)
was used to automatically detect sensitive information.

False positive removal To improve the quality of the de-
tection, false positives were removed. Reviewers manually
scanned through the bounding boxes detected by the de-
identification software, and rejected those bounding boxes
which did not contain sensitive information.

8https://github.com/openvinotoolkit/cvat
9https://github.com/ezelikman/anonymal

10https://github.com/foolwood/SiamMask
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False negative correction Additionally, reviewers studied
every video to search for false negatives and manually an-
notated them using a bounding box. To make the process
more efficient, an online object tracking algorithm [222]
was used to generate bounding box proposals across frames.
Reviewers verified that all tracked bounding boxes were
correct.

Image blurring Once all of the detections were modified
and corrected, a robust blurring process was used to de-
identify image regions defined by the bounding boxes.

Time costs The relative time costs with respect to the orig-
inal video length for each step are shown in Figure 12.
Though this number depends greatly on the scenario cap-
tured in the video, roughly speaking to de-identify 500 hours
of video data, it took 780 hours of manual labor. Review 1
of 500 hours of video required 250 hours of work, removal
of false positive over 115 hours of video took 115 hours
of work, Review 2 of 115 videos took 115 hours of work,
correcting false negatives in 35 hours of videos required 50
hours of work, and Review 3 of 500 hours of video took 250
hours of work (250+115+115+50+250 = 780 hrs).
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C. Demographics

We further provide self-declared information on ethnic
groups and/or country of birth by the participants. We report
these separately per state/country due to the differences in
granularity of ethnic groupings. All participants are residents
in the country specified per paragraph. This data is not
available for participants from Minnesota, US.

United Kingdom Residents Reporting demographics was
optional and thus 63% of participants (52/82) that reside in
the United Kingdom self-reported their ethnic group mem-
bership as follows:

White — English, Welsh, Scottish, Northern Irish or British 35
White — Any other White background 12
Mixed — White and Asian 1
Mixed — Any other Mixed or Multiple ethnic background 2
Arab 1
Prefer not to say 1

Italy Residents 100% of participants that reside in Italy
self-reported their country of birth as follows:

Italy 53
Germany 1
Russia 1
Portugal 1
Poland 1

India Residents 100% of participants that reside in India
self-reported their ethnic group membership as follows:

Eastern India 10
Northern India 15
Southern India 108
Western India 5

Pennsylvania, USA, Residents 100% of participants that
reside in Pennsylvania, USA, self-reported their ethnic group
membership as follows:

White 42
Asian 4
Mixed — White and Black African 2
Black, African, Caribbean 1

Washington, US, Residents 100% of participants that re-
side in Washington, USA, self-reported their ethnic group
membership as follows:

Caucasian 101
Black or African American 58
American Indian (Native American) 24
Hispanic 19
Indian (South Asian) 4

Indiana, US, Residents 95% of participants that reside in
Indiana, US, self-reported their country of birth as follows:

US 39
China 10
India 10
Bangladesh 2
Vietnam 2

Georgia, USA, Residents 100% of participants that reside
in Georgia, USA, self-reported their ethnic group member-
ship as follows:

White / Caucasian 16
Black / African American 1
Asian / Indian & White / Caucasian 1
Other / Taiwanese 1

Japan Residents 100% of participants that reside in Japan
self-reported their ethnic group membership as follows:

Asian (Japanese) 81

Kingdom of Saudi Arabia Residents 100% of participants
that reside in KSA self-reported their country of birth as
follows:

China 12
Russia 9
Colombia 8
Mexico 5
Kazakhstan 4
India 4
US 4
Saudi Arabia 3
Kyrgyzstan 2
New Zealand 2
Greece 2
Ukraine 2
Italy 2
Lebanon 1
Jordan 1
Egypt 1
Kashmir 1
Portugal 1
South African 1
Thailand 1

Singapore Residents 100% of participants that reside
in Singapore self-reported their nationalities as follows:

Chinese 26
Singaporean 12
Indian 1
Malayan 1

Colombia Residents 90% of participants that reside in
Colombia self-reported their ethnic group membership as
follows:

Hispanic/Latin 62
White/Caucasian 4
Black, African or Caribbean 1
Mixed - White an African 1
Prefer not to say 1
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Rwanda Residents 100% of participants that reside in
Rwanda self-reported their ethnic group membership as fol-
lows:

Black, African or Caribbean 14
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D. Narrations

The goal of the narrations is to obtain a dense temporally-
aligned textual description of what happens in the video,
particularly in terms of the activities and object interactions
by the camera wearer. The Ego4D narration data is itself a
new resource for learning about language grounded in visual
perception. In addition, as described in the main paper, we
leverage the narrations as a form of “pre-annotation” to index
the videos by semantic terms. Specifically, the narrations are
used to construct action and object taxonomies to support
various benchmarks, to identify videos that are relevant to
each benchmark, and to select regions within the videos that
require annotation.

This section overviews how we instructed annotators to
narrate the videos, and how we transformed narration text
into taxonomies of objects and actions.

D.1 Narration instructions and content

We divide the dataset into clips of (max) 5 minutes long
when acquiring narrations. Each 5-minute clip is then passed
to two different annotators, to collect two independent sets
of narrations for every video clip in the dataset for better
coverage and to account for narration errors.11 Narrators are
instructed to watch the 5 minute video clip first, and then
asked to provide a short 1-3 sentence “summary” narration
for the entire clip that corresponds to the overall activity and
setting of the video clip (e.g., “the person does laundry in
the washing machine”). These summaries are marked with
the tag “#summary” in the released narrations.

Following this first screening, which is critical for the
overall understanding of the clip, the dense narrations are
collected as follows. Annotators re-watch the clip, pause and
mark the timepoint when something happens in the video,
then enter a short natural language description of the ongoing
action or interaction, before resuming watching the video.

Narrators are provided the following prompt: “Pretend as
you watch this video that you are also talking to a friend on
the phone, and you need to describe to your friend everything
that is happening in the video. Your friend cannot see the
video.” This prompt is intended to elicit detailed descriptions
that provide a play-by-play of the action. See Figure 13 for
an illustration of the narration tool interface. Each narration
thus corresponds to a single, atomic action or object inter-
action that the camera wearer performs (e.g., “#C opens the
washing-machine” or “#C picks up the detergent”, where the
tag #C denotes the camera wearer). Importantly, our narra-
tions also capture interactions between the camera-wearer
and others in the scene, denoted by other letter tags, e.g.
#X (e.g. “#C checks mobile while #X drives the car”, “#C
passes a card to #Y”). See Figure 14 for narration examples.

11We simply keep both independent narrations; they are not merged
because they do not serve as ground truth for any benchmark.

D.2 Narration analysis

We present some statistics on the collected narrations. Al-
together, we collected 3.85M sentences across the 3,670
hours of video. Figure 15 (left) shows the distribution of
frequency of narrations across all videos in the dataset. De-
pending on the activities depicted, videos are annotated at
varying frequencies. For example, a video of a person watch-
ing television is sparsely annotated as very few activities
occur (0.17 sentences/minute), while a video of a person
harvesting crops, performing repetitive actions is densely
annotated (63.6 sentences/minute). On average, there are an
13.2 sentences per minute of video.

Figure 15 (middle and right) show the distribution of
length of the collected narrations. The individual timepoint
narrations are short, highlight a single action or object in-
teraction, and have an average of 7.4 words. Though short,
these narrations cover a variety of activities ranging from ob-
ject interactions, tool use, camera wearer motions, activities
of other people etc. In contrast, the summary narrations are
longer (on average, 16.8 words) and describe activities at a
higher level. Table 2 shows a few text examples of each type
of narration in addition to the visual examples in Figure 14.

Finally, we study the diversity of the video dataset by
looking at the frequency of occurrence of words in the narra-
tions collected for videos of each scenario type. Figure 16
shows word clouds depicting objects that prominently fea-
ture in across various scenarios. The word clouds highlight
characteristic objects per scenario (e.g., bowl, spoon, plate
in “Cooking” videos; card, dice, pawn in “Playing board
games” videos) while also hinting at common objects across
all scenarios (e.g., hands, paper, phones). The diversity in
narrations collected highlights the diversity of video content
captured in the dataset.

D.3 Action and object taxonomy

In total the raw narrations describe the Ego4D video using
1,772 unique verbs and 4,336 unique nouns. The distribution
of the most frequently occurring verbs and nouns can be
seen in Figure 17.

Following ideas from [44], we leverage the narrations
data to construct a taxonomy over the actions and objects
that appear in the video, as follows. We use a part-of-speech
(POS) tagger and dependency parser to identify verbs and
nouns from each narrated action. We use an ensemble of
parser models from the Spacy [98] toolkit to do this. Given
a natural language narration, we first identify verbs using
their POS tag. Then using the dependency tree, we identify
all direct objects of the verb. To ensure verbs and nouns
are accurately parsed, we adopt several heuristics: Parsed
verbs are split into multiple senses (e.g., “turn” is split into
“turn-on”, “turn-off” and “turn-over”); compound nouns are
decomposed into a root noun coupled with a modifier to
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Figure 13. Narration tool interface. Narrators mark a timepoint where something happens in the video (bottom bar), and enter a text
description of the activity (left sidebar).

Object interaction Context objects Multi-person actions Manipulation actions
#c c flips the paper #c c taps a hand on the floor #o a man x moves the legs. #c c cuts a leaf from the plant with his left hand.
#c c lifts the t-shirt #c c holds the wheel with his left hand. #o a man y sits on a chair #c c pulls his hand off the chess piece
#c c drops the plate #c c puts the brush in the colours. #o a woman x steps forward. #c c holds the knitting needle with the other hand
#c c holds the piece of cloth #c c places plastic models kit on the table #o a person x hits the cricket ball #c c opens the screwdriver container with his hands
#c c fixes on the model craft #c c arranges the doughs on the tray #o a man y throws the ball towards man x #c c touches the piece of wood with the hand
Camera wearer motion Summary narrations
#c c raises hands c was in a room,fixed a wood model kit. #summary
#c c stands c tightened the motor on the head of the hoe of the lawn mower. c cut grasses on the field with the lawn mower. #summary
#c c stands up from the stairs c was in a kitchen, he cut sausages in to pieces with a knife, mixed the sausages and cooked them with a pan. #summary
#c c walks around a kitchen c was in the house and she studied #summary
#c c sits up c studied in a room. c went through a mobile phone and a mobile tablet while reading in the room. #summary

Table 2. Text examples of narrations. The collected narrations describe diverse aspects of human activity. Summary narrations capture
high level descriptions of activities in a 5 minute clip. See Figure 14 for visual examples.

ensure the noun taxonomy is unambiguous (e.g., modifier
“egg” and root noun “shell” in “egg shell”); collective nouns
are mapped to their main entity (e.g,. “piece of cheese”→
“cheese”). Finally, we manually cluster the verbs and nouns
to avoid redundancy in the taxonomy (e.g., “cut”, “chop”,
“slice” are all mapped to the verb cluster “cut”).

The resulting taxonomy consists of a set of 115 verbs (V)
and a set of 478 nouns (N ). Figure 39 shows the distribution
of verbs and nouns in a set of video data annotated with the
taxonomy. See Section J.2 for details on how the taxonomy
is used in the context of the benchmark tasks.

D.4 Narrations for annotation prioritization

All videos in Ego4D are narrated, and subsets of them are
manually labeled for each benchmark. Rather than randomly
label instances for a given benchmark, we aim to target those
that are most relevant to the task. For example, videos likely
to contain multi-person conversation are most interesting for
the AV Diarization benchmark, whereas videos with ample
hand-object interaction are most interesting for Hands and
Objects. To that end, we use the narrations and summaries
as a tool to automatically prioritize certain videos to label
per benchmark. The benchmark appendices below provide
details.
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Figure 14. Example narrations at keyframes of video. #C refers to the camera-wearer. The last row shows narrations that include other
people that participate in activities with the camera-wearer (denoted by other letter tags, e.g., #O, #X).

D.5 Contributions statement

Tushar Nagarajan developed the taxonomy, helped develop
narration instructions, and performed the narration analysis
presented in the paper. Kristen Grauman developed narration
instructions, helped coordinate pilots and annotation work,
and contributed to taxonomy formation. Michael Wray co-
developed the taxonomy.
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Figure 15. Collected narration statistics. Left: Distribution of frequency of narrations collected. Middle and right: The distribution of
length of the collected narrations and summaries. Summaries are naturally longer, and describe activities at a higher level compared to
individual action narrations. See text for discussion.

Figure 16. Distribution of objects in narrations of videos from eight common scenarios. The variety of objects covered across scenarios
showcases the diversity of activities in the video collected.
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Figure 17. Narration verb/noun distribution. Distribution of automatically extracted verbs (top) and nouns (bottom) from narrations. Top
150 most frequently occurring of each is shown for clarity.
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Num hours Num clips Avg clip length
EM VQ-2D 432.9 5,831 6.1 min
EM VQ-3D 13 159 4.9 min

EM Moments 328.7 2,522 7.9 min
EM NLQ 227.1 1,659 8.2 min

Hands+Obj. 196.2 88,585 8.0 sec
Forecasting 110.5 1,498 4.4 min

AVD 47.7 572 5 min
Social 47.7 572 5 min

Table 3. Amount of annotated data for each benchmark. EM refers
to Episodic Memory and AVD refers to Audio-Visual Diarization.
All 3,670 hours of video have narrations and features.

E. Benchmark Data Splits

For each benchmark task, certain portions of the Ego4D
video repository are labeled. Table 3 shows the breakdown
of the amount of data annotated for each. Note that there
are 764 total hours of video relevant to the AVD and Social
tasks (i.e., have audio, conversation, and unblurred faces),
including the annotated set of 47.7 hours above. For other
benchmarks, the relevance has a softer dependency on the
specific video content (e.g., a memory query can apply to any
of the 3,670 hours). The following appendices will explain
how we sampled data to be annotated for each benchmark.

For the public Ego4D benchmark challenge, we ensure
that the splits are consistent within a family of related tasks.
For instance, all the Forecasting and Hands+Objects tasks
share the same splits and ensure training videos in one do not
occur as validation videos in another. Similarly, the Episodic
Memory tasks share the same splits. However, it is harder
to ensure this across very different tasks, since the videos
selected for annotations are different. For example, the So-
cial benchmark considers multi-person interactions which
may not have many hand-object interactions; hence the set
of videos labeled for Social and Hands+Objects have little
overlap and the train/val/test splits are naturally different.

Since we plan to use the test set for the public challenge,
we are withholding all the test annotations and making them
accessible only through a submission server. We are also
withholding the narrations that overlap with any of the test
sets.
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F. Episodic Memory Benchmark

This section details the Episodic Memory benchmark task
definitions, annotations, baseline models, and results.

F.1 Formal task definitions

As presented in the main paper, there are three kinds of
Episodic Memory queries—visual, natural language, and
moments—each of which requires localizing the response in
the video. Their formal definitions are as follows.

Visual queries (VQ) This task aims to query an egocentric
video based on a static image crop of an object. Specifically,
it asks the question ‘Where was object X last seen in the
video?’, where X is a single ‘canonical’ image crop in which
the object is clearly visible and human-identifiable. A po-
tential use case for visual queries is where a user teaches
the system a new object by showing a photo (“these are my
keys”) and then later queries for it among past video. By
enabling visual queries, as opposed to categorical queries,
this is a form of open-world object localization.

We formulate the problem as follows. Given an egocentric
video V , a query object o specified via a static visual crop
v, and a query frame q, the goal is to identify when the
object o was last seen in the video before the query frame q.
The response is specified as a ‘response track’ r which is a
temporally contiguous set of bounding boxes surrounding
the object o in each frame:

r = {rs, rs+1, · · · , re−1, re}, (1)

where s is the frame where the object o (at least partially)
enters the camera-wearer’s field of view, e is the frame where
the object exits the camera-wearer’s field of view, and ri is a
bounding box (x, y, w, h) in frame i. If the object appears
multiple times in the video, the response only refers to the
‘most recent occurrence’ of the object in the past, i.e., the
response track which minimizes q − re with q > re.

When a 3D scan of the environment associated with the
video is available, the response additionally includes a 3D
displacement vector ∆d = (∆x,∆y,∆z) between the 3D
location where the query was made (i.e., at query frame q),
and the 3D location in the environment where the object was
last seen (i.e., at the end of the response track re).

Natural language queries (NLQ) The motivation behind
the NLQ task is to enable searching through an egocentric
video using a natural language query. The system responds
to a query by providing a temporal window localized in the
video, from which the answer to the query can be deduced.
These queries can be related to objects, places, people, and
activities that appeared in the episodic memory of the user.
Note that we only consider episodic queries, i.e., queries
that can be answered/deduced from the egocentric videos,

and not factual queries, i.e., queries that require an external
knowledge base to answer.

NLQ is a challenging multimodal task requiring visual
and linguistic understanding and reasoning. Consider the
query “What did I pick up before leaving the party?” In
order to fulfill this request, the system needs to: (a) break
down and understand the language query as a search for an
object (what) with which the user interacted (pick up) before
an event (leaving the party), (b) go through the egocentric
video and identify the desired event of “leaving the party”,
(c) visually search for the object with which the user inter-
acted prior to this event. This example demonstrates the
complexity of NLQ from both visual (recognizing events,
objects, places, etc.) and linguistic (breaking down reason-
ing, understanding relations, etc.) perspective. In addition,
the diverse set of queries within NLQ, while facilitating a
flexible search and retrieval through an intuitive interface of
language, also increases the complexity of the task.

Concretely, NLQ is formulated as follows: Given an
egocentric video V and a natural language query Q, the goal
is again to identify a ‘response track’ r, such that the answer
to Q can be deduced from r. The response track should
be a set of temporally contiguous frames within V . Given
the episodic nature of our task, r should be sufficient to
answer Q, without the additional need for V or any external
knowledge bases.

Moments queries (MQ) This task aims to query an ego-
centric video based on a category of actions. Specifically, it
poses the following request ‘Retrieve all the moments that I
do X in the video.’, where ‘X’ comes from a pre-defined tax-
onomy of action categories, such as ‘interact with someone’
or ‘use phone’. Compared to the natural language queries,
the moment queries focus on daily-life actions or activities.
One moment query can correspond to multiple response in-
stances (temporal windows) in the video. This task provides
the user a fast and convenient way to retrieve multiple action
moments at a time, where the user does not need to come up
with a sentence to describe what he/she wants, but instead
can directly choose among the pre-defined categories.

The moment queries task is related to the task of temporal
action detection [141, 229, 237], which aims to identify and
localize all instances of all action categories that take place
in a video. Both tasks have a list of action categories pre-
defined, and both aim to predict multiple action instances
with their temporal boundaries. The difference is that 1)
our moment queries task is a retrieval task where action
categories are provided as queries, meaning it does not need
to produce instances of categories that are not among the
queries; and 2) our moments taxonomy is specific to first-
person activity. We aim for moments that are activities at
a medium level of granularity—coarser than the actions in
Forecasting, and finer than the “scenario” labels shown in
Figure 3 of the main paper.
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Navigation verbs for entropy-based video selection

appear ascend bend bring carry catch
climb close come descend dig dispose
drag dribble drop enter fall fetch
find fly gather get give grab
hang jog jump kick lean leave
lift lower move navigate open propel

raise return ride rise run shut
steer step turn vaccum walk

Table 4. We prioritize videos to annotate for visual queries based
on the entropy of these navigation-related verbs in the narrations.

The MQ task is also related to temporal language ground-
ing in videos [236], which aims to retrieve a segment from
a video, as queried by a natural language sentence. Both
tasks have a query and aim to predict corresponding tempo-
ral segments. The difference is that MQ uses pre-defined
query categories rather than natural language sentences, and
one query can correspond to multiple instances rather than a
unique one.

We formulate the problem as follows. Given an egocen-
tric video V , and a query action category c, the goal is to
retrieve all the instances of this action category in the video,
assuming that the query is made at the end of the video.
The response is a set of action instances of the category c
Φc = {φn = (tn,s, tn,e, sn)}Nn=1, where n is the number
of instances for this category, tn,s and tn,e are start time
and end time of the nth instance respectively, and sn is its
prediction confidence.

F.2 Selecting clips for annotation

For all benchmarks we sample video clips to annotate based
on criteria for geographic diversity and scenario diversity.
For Episodic Memory we impose additional sampling crite-
ria meant to highlight data most interesting for the task, as
follows.

Visual queries Video clips to annotate for visual queries
(VQ) are selected based on the frequency of object occur-
rences and amount of navigation in the video. To have
interesting visual queries in a video, there must be several
‘interesting’ objects that can be queried about. An object
is ‘interesting’ in the context of visual queries if there is a
sufficiently high separation in space and time between any
two occurrences of the object. This typically happens when
the camera-wearer visits the location near the object briefly,
and then navigates elsewhere before revisiting the object
again. For example, consider a person who finishes cleaning
a living room, visits the kitchen for some period of time
before revisiting the living room again. Most objects in the
living room are interesting to query about when the person
is in the kitchen.

To select videos based on these considerations, we use
a two-step process. First, we filter out videos based on the
associated ‘scenario‘ labels (see Figure 3) that provide high-
level information about the content and activities in videos
(e.g., cooking, cleaning, golfing, etc.). We manually preview
randomly sampled videos from each scenario to identify
interesting scenarios such as cooking, indoor navigation,
farmer, cleaning, and grocery shopping. We then sort videos
within each scenario based on a scoring function using the
narrations for the video. Specifically, we extract the list of
verbs in the narrations (along with their frequencies). We
then measure the entropy of the distribution of manually
curated navigation verbs (See Tab. 4). The video is more
likely to allow challenging visual queries if its navigation
entropy is higher. For videos with near-zero entropy, we
observe that the camera-wearer is usually staying static in
a single location without any movement. Finally, a limited
number of 3D scans were available for the 3D localization
task. Videos associated with these scans were prioritized,
regardless of their navigation entropy, in support of the 3D
response version of the VQ task.

Natural language queries For NLQ we apply similar sam-
pling criteria as above for VQ, but augment it to avoid
repetitive actions (e.g., sewing while sitting on the couch).
First, we manually select amenable scenarios (see Figure 3).
Among those, we prioritize clips with high entropy computed
over navigational terms as above. Finally, we prioritize non-
repetitive actions by computing the ratio of the number of
unique verbs in a clip’s narration vs. the total number of
verbs in that same narration—higher is better.

Moments queries To select clips for moments queries, we
compute the overlap of verbs/nouns with the moments tax-
onomy. We calculate a similar entropy-based score and sort
videos according to this score. In addition, we restrict videos
to a fixed set of categories present in our taxonomy to avoid
labeling videos that do not contain relevant activities.

F.3 Annotation

Next we describe the annotation procedures and outputs for
Episodic Memory.

Visual queries For annotating visual queries, we first sam-
ple contiguous clips of varying lengths (5 mins, 8 mins, and
16 mins) from the set of interesting videos. The annotators
are instructed to create and annotate 3 visual queries for
each clip. A visual query consists of the query frame q,
the visual crop v of the query object o, the response track
r = {rs, rs+1, · · · , re−1, re}, and a textual name for the
object (eg. cup, hammer, broomstick, etc). The annotators
performed the following steps to annotate a given clip:

1. Identify three interesting query objects in the clip. An
object is interesting if it occurs in at least two different
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parts of the video.

2. For a given object, enter a textual name. While our
current task queries with the image crop, not the name,
this annotation will allow future variants that do query
for the object by name.

3. Select one of the object occurrences in the video and
mark a visual crop v = (xv, yv, wv, hv). The visual
crop must be a good representative view of the object,
and it must have good lighting, large-enough size, and
must not be blurred.

4. Mark a different occurrence of the object as the re-
sponse track r = {rs, · · · , re}. The response track
starts from the frame when the object is first visible
and ends when the object leaves the field-of-view. The
response track must also be contiguous in time and the
bounding boxes must accurately mark the position and
size of the object.

5. The query frame q is sampled some time after the re-
sponse track r. The object o must not appear anywhere
between the response track r and the query frame q,
so that the ground truth is well-defined and unique for
“when did I last see...?”.

For each annotation, we apply automated and manual
quality checks to ensure correctness. In case the quality falls
below a certain threshold, the clip is reannotated.

For visual queries associated with 3D scans, we also
collect 3D annotations in the form of 3D bounding boxes
capturing where the object was last seen. We then use those
bounding boxes to establish the ground truth displacement
vector from the query frame to the object, which is the target
of the task. Each annotation aq is collected in the scan
coordinate system s:

Ts = [Rs|ts], (2)

where q ∈ {1, . . . ,Q}, Q the total number of queries, and
where Ts ∈ R4 is the transformation matrix of the bounding
box. Rs and ts are the corresponding rotation and translation
for annotation aq .

The annotation procedure is defined as follows: A query
consists of a video clip, a visual crop, and a response track.
For each query, the goal is to retrieve in the scan the location
of the object defined in the video. Once the location is
found, we draw a 3D bounding box at this position with the
appropriate scale and orientation. It is important to note that
3D scans and videos have been recorded at different times.
Therefore, it is likely that an object at a certain location in
the video will not be present at that same location in the 3D
scan. In such cases, we ask the annotator to hallucinate a
3D bounding box in the 3D scan at the position of the target
object defined in the video.

In order to validate an annotation we collect two 3D
bounding boxes per query from two different annotators.
Leveraging the two boxes we compute the following valida-
tion metrics:

dnorm =
‖c1 − c2‖2
mdiag

(3)

Vnorm =
Vglobal
Vunion

, (4)

where c1 and c2 are the centroids of the two boxes, mdiag is
the average diagonal length of the two boxes, Vglobal is the
volume of the 3D convex hull of the two boxes, and Vunion
is the volume of the union of the two boxes. These met-
rics measure the agreement level betwen the two annotators.
When the two annotations are perfectly aligned, the metrics
are equal to dnorm = 0 and Vnorm = 1.0. The assumption
is that if the two annotators agree on the position, scale, and
orientation of the bounding box then it is likely to be correct.
If the two annotations are far from each other we will discard
the query. There are a couple of reasons that can explain
such case: (1) one annotator mislabeled the query, (2) the
query is hard to annotate. Some queries require a significant
amount of hallucination to retrieve the object location in
the scan which clearly leads to subjective annotations. We
empirically defined two thresholds of 1.5 over dnorm and
15 over Vnorm to filter out poor annotations. Any query
that has either one of the two metrics above the threshold of
acceptance is rejected.

Natural language queries To collect NLQ annotations, we
sample contiguous clips of length 8 minutes and 20 min-
utes. The annotators are instructed to watch these clips and
generate natural language queries, focused on retrieving in-
formation about objects, places, and people in the egocentric
video clips. To reduce the cognitive overload on the anno-
tators, and focus their efforts on memory-relevant queries,
we also provide a list of 13 query templates (see Table 5),
corresponding to queries a user might ask to augment their
memory. Note that these templates are provided only to
guide their choice of query, and does not limit the linguistic
variability since the annotators are instructed to paraphrase
the template without copying them as is.

To elaborate, the annotators performed the following
steps:

1. Watch the entire video clip V in order to understand the
high-level context (optionally in 2× fast-forward),

2. Pick a query template from the available list and para-
phrase/reword the query to obtain Q, e.g., template

‘Where was object X before/after event Y?’ can be para-
phrased as ‘Where was the blue bucket prior to my dog
exiting the living room?’
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Category Template

Objects

Where is object X before / after event Y?
Where is object X?
What did I put in X?
How many X’s? (quantity question)
What X did I Y?
In what location did I see object X ?
What X is Y?
State of an object
Where is my object X?

Place Where did I put X?

People
Who did I interact with when I did activity X?
Who did I talk to in location X?
When did I interact with person with role X?

Table 5. The NLQ templates capture a diverse set of queries that
humans can ask to augment their memory and recollect objects,
places, and people in their everyday experience.

3. Find the temporal window where the response to the
natural language query can be deduced visually, and
annotate it as r.

During our data collection, we also requested the annota-
tors to mark the slot values and corresponding verbs, for the
selected language query templates. While we do not use this
information for our task, it may be useful for other future
research.

The desiderata for the collected queries are as follows.
They should: (a) reflect the underlying motivation of aug-
menting human memory, (b) be rich and diverse in terms of
language and the objects, places, people, and events, and, (c)
be challenging enough for an intelligent system but not too
complicated or convoluted to reduce the naturalness of the
queries. For instance, though a query like ‘What was playing
on the television when I was folding my seventh T-shirt after
my dog exited the room?’ is challenging from a learning
perspective, it is not natural from an application standpoint.
In order to ensure the above qualities for NLQ, we enforce
the following constraints:

• All paraphrased language queries must be in past tense,
and must be posed as questions asked at the end of
the entire video clip. This resembles the real-life sce-
nario of querying about episodic memory (past) of the
user, and resolves ambiguity when there are multiple
occurrences of an object to the the last relevant one.

• To account for momentary shifts of view for the egocen-
tric video, we allow small interruptions (< 3 seconds)
between the truly relevant frames for a given query. In
other words, frames where the object/person/place of
interest goes out of view for less than 3 seconds as a

result of momentary gaze shift are still considered to be
contiguous.

• For a given query, if there are multiple non-contiguous
temporal windows (separated by more than 3 seconds)
as independently valid answers, we instruct the anno-
tators to either discard the query and create a different
one, or add more details to the wording to make it more
specific. Similarly, queries that require multiple tem-
poral windows (separated by more than 3 seconds) to
deduce the answer are also disallowed. For example,

‘How many shirts did I pack in my suitcase?” is invalid
if packing happens across multiple temporal windows,
separated by more than 3 seconds (e.g., the user pauses
to make coffee, and then returns to packing).

• We encourage diversity by instructing that the query
responses not be concentrated at one part of the video
clip, or around few objects/places/people. In addition,
we also disallow the query response window to be more
than 50% of the total clip length.

• Finally, queries that require reasoning and knowledge
on top of visual evidence are invalid. For instance,

‘What country‘s flag was hanging on the wall?” is in-
valid while ‘Where was the flag that was hanging on
the wall?” is valid. Similarly, queries that guess the mo-
tivation or intentions of the user or people in the video
clip are also not allowed. As an example, ‘Why did
the person at the door leave a package on the porch?’
is disallowed while ‘What did the person leave on the
porch?’ is accepted.

After the annotation process, we apply both automatic
and manual quality checks, including the diversity of lan-
guage queries and temporal window locations, to score the
annotations. If the overall quality score is below a threshold,
the clip is re-annotated.

Moments queries To annotate moments queries, we sam-
ple contiguous clips of 8 minutes from the set of interesting
moments videos. The annotators are instructed to mark
instances of activities with a temporal window and the activ-
ity’s name from a fixed taxonomy of activities. We have each
instance labeled by three independent annotators. By assum-
ing each annotator is reliable, we take the union of moments
across annotators to ensure completeness of annotations.

The taxonomy was created semi-automatically from the
narrations. Specifically, we use the summary narrations col-
lected for five-minute clip segments, as they capture higher-
level events and activities that are suitable for the moments
retrieval task. This is in contrast to the verb-noun taxonomy
that is sourced from individual narrations for each atomic
action, which are used in the Forecasting and Hands and
Objects benchmarks (see Appendices G and J).
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The taxonomy was created as follows. First, each sum-
mary narration was encoded into a feature vector using a
pre-trained BERT [51] language model, and then concate-
nated with the word embeddings for the main verb and noun
extracted from the summary. These summaries were then
clustered into groups, and then labels were manually as-
signed to groups based on the coherent activities they de-
scribed.

Note that this process was done independently for a set
of scenarios that we selected based on how frequently they
occur in the dataset, the diversity of activities they represent,
and how likely they contain high-level, event-like activities.
For example videos that primary involve a single activity
like “driving” are not interesting categories in this context,
whereas “household cleaning” contains several different ac-
tivities that are shared across other indoor tasks, making it an
appropriate scenario. In total, we select videos from 5 sce-
narios to create our moments taxonomy: Cooking, Cleaning,
Shopping, Handyman, Farmer/Gardener. Each annotation is
in the format of (start time, end time, label).

F.4 Data Analysis

We now overview the statistics of the annotations per query
type.

Visual queries The VQ annotations consist of samples from
a diverse set of scenarios and universities (see Figure 20
and 21). In total, 433 hours of videos are annotated with
22, 602 visual queries. These videos are sampled from 10
universities and consist of 54 scenarios. The statistics over
the train/val/test splits are provided in Table 6. We ensured
that the splits contain a disjoint set of videos. To look for
possible biases in the data, we plot the distribution over three
measures.
1) Query to response separation is the temporal distance
(in frames) between the query frame and the end of the
response track. This measures how far back in time an algo-
rithm needs to search in order to find the query object.
2) Response track size measures the temporal length of the
response track.
3) Response bbox position is the spatial start and end (x, y)
coordinates for each bounding box in the response track. We
normalize the coordinates by the image width and height
to account for varying image sizes in the data. Each pixel
within the bounding box contributes to an image heatmap
that shows the frequency of each pixel belonging to a re-
sponse track bounding box.

The analyses are shown in Figure 22. The query to re-
sponse separation distances are fairly spread between 1 to
200 frames with a mode of ∼ 30 frames (see Figure 22,
left). The response track sizes are well distributed between
1 to 40 frames with a mode of ∼ 8 frames (see Figure 22,
center). The bounding boxes are near-uniformly distributed

Split Train Val Test

# video hours 262 (19) 87 (5) 84 (9)
# clips 3.6k (164) 1.2k (44) 1.1k (69)
# queries 13.6k (604) 4.5k (164) 4.4k (264)

Table 6. Visual queries dataset statistics. The numbers in the
parantheses correspond to the subset of data used for 3D localiza-
tion, where we focus on videos for which we have Matterport3D
scans.

Split Train Val Test

# video hours 136 45 46
# clips 1.0k 0.3k 0.3k

# queries 11.3k 3.9k 4.0k

Table 7. NLQ dataset statistics across the train/val/test splits.

throughout the image, with very few bounding boxes anno-
tated at the top 10% of the image (see Figure 22, right). Our
analyses indicate that there may be a potential bias in the
first two measures, while the bounding boxes positions are
largely unbiased.

For the 3D localization task, we annotate a subset of 1,043
visual queries with 3D annotations. These comprise of 13
video hours associated with 4 scans from the University of
Catania (UNICT).

Natural language queries As outlined in Table 7, the NLQ
annotations are from 227 hours of video, with a total of
19.2K queries spanning the selected 13 query templates.
The associated video clips come from 10 different universi-
ties with a total of 34 scenarios (with at least 1 hour of video
annotated). Similar to other tasks within the episodic mem-
ory, we ensure that the train/val/test splits (60%, 20%, 20%)
contain a disjoint set of video clips. We further analyze
the data through: (a) Distribution over template queries,
shown in Figure 24. The challenging ‘Where is object X be-
fore/after event Y?’ is the most popular template with around
3K queries, with a reasonable distribution over other tem-
plates. Overall, the queries in NLQ have 8.3 ± 2.1 words
in them. (b) Distribution of the response window length is
shown in Figure 25. Typically, the windows are 9.3± 21.5
seconds long.

Most response windows are quite short compared to the
full video clip, making the task a challenging “needle in the
haystack” search problem. (c) Distribution of query words
is shown in Figure 19. The branching off evidences the
richness and diversity of the queries in NLQ.

Moments queries For MQ, similar to other tasks in
episodic memory, we maintain a ratio of 6:2:2 among the
train/val/test splits, which contains disjoint sets of video
clips. To make sure there are enough samples in each cate-
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Figure 18. Distribution of moments labels. The figure shows the number of instances per category across 5 scenarios and 300 hours of
data. All 110 categories are shown, sorted by frequency. The distribution is long tailed, with the smallest classes containing at least 50
instances. Note that these are only the Moments for Episodic Memory with temporal window annotations in the current release; Ego4D has
many other scenarios and activities not reflected in this distribution.

Figure 19. Distribution of query words in NLQ.

gory, we only keep categories that have at least 50 instances
from the annotations and have instances in all train/val/test
splits.

Consequently, the MQ dataset has 110 categories, spans
a total 326.4 hours of videos, 2,488 video clips and 22.2k ac-
tion instances. We summarize the statistics across the three
splits in Table 8. We further explore the data through the
following aspects. (a) The distribution of action duration is
shown in Fig 26. We can see that most moments have very
short duration. The majority of moments last less than 1
minute, and 22.4% actions have duration less than 3 seconds.
Note that there is also a peak (2.6% instances) at the largest
duration bin, where the actions almost cover the whole video

Split Train Val Test Total

Video hours 194.9 68.5 62.9 326.4
# Video clips 1, 486 521 481 2, 488
# Instances 13.6k 4.3k 4.3k 22.2k

Table 8. MQ dataset statistics across the train/val/test splits.

clip. The average duration each instance is 45.2 seconds. (b)
The distribution of different categories is shown in Fig 18.
We notice that this is a long-tailed distribution, some cate-
gories (e.g., ‘use phone’, ‘converse/interact with someone’)
with over 1000 instances and some categories with less than
100 instances. Each category has 205 instances on average.
(c) The distribution of instance numbers in a video clip is
shown in Fig 27. The majority of video clips have 1-20
moment instances, whereas very few can have as many as
over 80 instances.

F.5 Evaluation measures

Next we detail the evaluation metrics for all three query
types.

Visual queries We define the following localization metrics
for the 2D localization task with top-1 retrieval.
Temporal AP (tAP) measures how closely the temporal
extent of the prediction matches with the ground-truth re-
sponse track. It is calculated as the average-precision of the
predicted response track’s temporal extent, and is based on
the ActivityNet mAP metric [61]. We evaluate the tAP at 4
different tIoU thresholds {0.25, 0.50, 0.75, 0.95}, as well as
their average value.
Spatio-temporal AP (stAP) measures how closely the
spatio-temporal extent of the prediction matches the ground-
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Figure 20. Distribution over scenarios for visual queries. The dataset contains a long-tail of scenarios. The plot title indicates the number
of scenarios and the total video hours included in the dataset.

Figure 21. Distribution over universities for visual queries. The
dataset contains annotations corresponding to videos from 10 uni-
versities. The plot title indicates the number of universities and the
total video hours included in the dataset.

truth response track. It is calculated as the average-precision
of the predicted spatial-tube, and is based on the video-AP
metric from [88]. We evaluate the stAP at 4 different stIoU
thresholds {0.25, 0.50, 0.75, 0.95}, as well as their average
value.
Success (Succ) measures whether the prediction has any
overlap with the ground truth at all. It is calculated as the
percentage of samples where the predicted response track
has atleast 0.05 spatio-temporal IoU with the ground truth.
Recovery% (rec%) measures how much of the ground-
truth response track is accurately recovered by the prediction.
It is calculated as the % of frames in the response track where
the predicted bounding box has at least 0.5 IoU with the
ground truth. This is motivated by the tracking robustness
metric from the VOT challenge [121].
Search efficiency (sEff) measures the efficiency of the algo-

rithm searching for the query object. It is calculated as

sEff = 1− n

N
(5)

where n is the number of video frames previewed by an
algorithm to predict the response track, and N is the total
number of frames in the video before the query was made
(i.e., the search window). An algorithm that accesses ev-
ery frame in the search window before localizing the query
object gets 0.0 search efficiency. This “timeliness” metric
is designed to encourage research on methods performing
intelligent contextual-search.

We evaluate performance on the 3D VQ localization task
using the root mean square error (RMSE) and the angular
error metrics:

RMSE = ‖ts − t̂s‖2 (6)

angular error = acos(
vTQ
‖vQ‖2

.
v̂Q
‖v̂Q‖2

) (7)

where ts and t̂s are the ground-truth and predicted object
position in the scan coordinate system. vQ and v̂Q are the
ground-truth and predicted 3D displacement vector in the
query frame Q coordinate system. We also define a success
metric leveraging the two annotations per query:

succ = ‖cm − t̂s‖2 < 6× (‖c1 − c2‖2 + δ) (8)

With c1 and c2 the centroids of the two bounding box
annotations, cm the mid-centroid between c1 and c2 and
δ = exp−mdiag , with mdiag the average diagonal length of
the two boxes.

Natural language queries Evaluation for NLQ is similar
to existing video-language grounding problems. Following
prior work [236], we use recall@k, IoU=m, where we select
k = {1, 5} and m = {0.3, 0.5}. This metric computes
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Distribution of response track lengthsDistribution of query to response 
separation distances

Distribution of response bbox positions

Figure 22. Visual queries bias analysis. We analyze the full VQ dataset for potential biases. Left: The plot shows the distribution of query
to response separation distances in the VQ dataset. While the mode of the distribution is ∼ 30 frames, we can see that separation distances
are fairly spread between 1 to 200 frames. Center: The plot shows the distribution of response track sizes in the VQ dataset. While the
mode of the distribution is ∼ 8 frames, we can see that the response track sizes are well distributed between 1 to 40 frames. Right: The
heatmap shows the normalized frequency of each pixel belonging to a response track bounding box. The bounding boxes near-uniformly
distributed across most of the image.
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Figure 23. Distribution over scenarios for the NLQ annotations, indicating a long tail over scenarios. Note that the scenario labels are
approximate and a single video can contain multiple scenario labels. For this plot, we equally divide the time across all the labelled scenarios.

the percentage of times at least one of the top k predicted
candidates have an intersection-over-union (IoU) of at least
m. Note that we lean towards lower threshold values (m) as
the average length of the window (∼10s) is much smaller
than that of the video clip (500s), about 2% of the clip length.

Moments queries Considering that the moment queries
task is related to the tasks of temporal action detection [61,
141, 229, 237] and video grounding [236], we adapt their
respective metrics to moment queries.
Average Precision (AP) is a commonly adopted metric in
temporal action detection. It measures how closely the tem-
poral extent of the predictions matches the ground-truth ac-
tion instances for each action category [61, 141, 229, 237] in
terms of both precision and recall. The temporal intersection
over union (tIoU) between a prediction and a ground-truth
action instance is used to measure their distance. If the tIoU
is higher than a threshold, the prediction is considered as
true positive; otherwise, false positive. In representative

temporal action detection datasets, such as ActivityNet [61],
the mean AP (mAP) over all categories is computed given a
tIoU threshold. Multiple tIoU thresholds are adopted, and
the average mAP over all these tIoU thresholds is computed.
For moment queries, we evaluate mAP at 5 different tIoU
thresholds {0.1, 0.2, 0.3, 0.4, 0.5}, as well as their average
value.
Recall@kx, tIoU=m, is a metric adapted from the metric
recall@k, tIoU=m, used for NLQ. The metric recall@k,
tIoU=m measures the percentage of the query sentences that
have at least one prediction with a tIoU larger than the thresh-
old m in the top-k results. In our moment queries case, since
we might have more than one instance corresponding to a
query moment category, we need to measure the percentage
of all the correctly predicted instances that have at least one
prediction with a tIoU larger than the threshold m in the top-
k results of this instance. Considering that predictions are
usually made based on a category not a specific instance, we
modify the metric to be the following recall@kx, tIoU=m,

32



W
he

re
 is

 o
bj

ec
t X

be
fo

re
/a

fte
r e

ve
nt

 Y
?

W
he

re
 d

id
 I 

pu
t X

?

 W
he

re
 is

 o
bj

ec
t X

?

 W
ha

t d
id

 I 
pu

t i
n 

X?

Ho
w 

m
an

y 
X

s?
 

(q
ua

nt
ity

 q
ue

st
io

n)

 W
ha

t X
 d

id
 I 

Y?

In
 w

ha
t l

oc
at

io
n 

di
d 

I
se

e 
ob

je
ct

 X
 ?

 W
ha

t X
 is

 Y
?

 S
ta

te
 o

f a
n 

ob
je

ct

W
ho

 d
id

 I 
in

te
ra

ct
 

wi
th

 w
he

n 
I d

id
ac

tiv
ity

 X
?

 W
he

re
 is

 m
y 

ob
je

ct
 X

?

W
ho

 d
id

 I 
ta

lk
 to

 in
lo

ca
tio

n 
X?

W
he

n 
di

d 
I t

al
k 

to
 o

r
in

te
ra

ct
 w

ith
 p

er
so

n
wi

th
 ro

le
 X

?

Templates

0

500

1000

1500

2000

2500

3000

# 
vi

de
o 

ho
ur

s

Figure 24. Distribution of queries over the corresponding templates
across objects, place, and people categories (Tab.5). See text for
more details.
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Figure 25. Distribution of response window length for NLQ. For
the sake of brevity, we use the last bin to represent all windows
longer than a minute. See text for more details.
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Figure 26. Distribution of moment duration.

where x stands for the number of instances for a query cat-
egory in one video. This metric measures the percentage
of all the correctly predicted instances that have at least
one prediction with a tIoU larger than the threshold m in
the top-kx results of the action category. This metric has
a similar idea to the multi-label metric proposed in [240]
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Figure 27. Distribution of instance numbers in one video clip.

when dealing with multiple instances for a query. We use
k = 1, 2, 3 and m = 0.3, 0.5, 0.7 in the metric. Compared
to average precision, this metric only evaluates the recall for
the query categories, and does not penalize for false posi-
tive predictions given a category that has no instances in the
video.

F.6 Baselines

We developed baseline models for each task. We designed
these models to address our tasks, using state-of-the-art com-
ponents where relevant. They represent a starting point upon
which future work can build.

Visual queries 2D localization baseline

We treat visual queries with 2D localization (VQ2D) as a
detection + tracking problem (see Figure 28). At a high
level, our approach consists of three steps. First, we perform
frame-level detection over the input video where we detect
the presence of the query object in each frame using an
object detection model (Figure 28 top). For each frame,
we get the bounding box that is most similar to the visual
crop and a score indicating its visual similarity. Second, we
consider the sequence of per-frame similarity scores over the
entire video and identify the most recent peak in these scores
(Figure 28 bottom-left). Finally, we initialize a tracker at the
video-frame corresponding to the peak detection, and track
the query object on both forward and backward directions
to recover the complete response track (Figure 28 bottom-
right).

Step 1: Frame-level detection We propose Siam-RCNN,
a Faster-RCNN [189] based approach to detect the query
object in a given image. See Figure 28 top. Given
a video frame at time t, a pre-trained Region Proposal
Network (RPN) [189] with a Feature Pyramid Network
(FPN) [142] backbone is used to generate bounding box
proposals {b1, · · · , bN}. The RoI-Align operation [94] is
then used to extract visual features for each bounding box
{F(b1), · · · ,F(bN )}. We use the same FPN backbone to
extract features for the visual crop v. To detect the presence
of the query object in frame t, each proposal feature F(bi) is
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Step 1: Frame-level detection with Siam-RCNN
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Figure 28. Visual queries 2D localization baseline. Our approach consists of three steps. Step 1: We perform frame-level detection for the
entire input video to detect the presence of the query object (specified via the visual crop v). For each frame t, we extract the region proposals
{b1, · · · , bN} using a region proposal network (RPN), and extract features for each proposal {F(b1), · · · ,F(bN )}. Each proposal feature
is compared with the visual crop feature F(v) using a Siamese head S, and the most similar proposal bt is retrieved along with its score
st. This process is repeated for all frames. Step 2: We treat the similarity scores s = {s1, · · · , sq−1} as a temporal signal and perform
temporal detection to obtain the ‘most recent occurrence’ of the query object. We detect the peaks (local maxima) in the signal and recover
the peak p nearest to the query frame. Step 3: Given the detected peak p and its corresponding proposal bp, we initialize two trackers with
bp and run them along the forward and backward directions to recover a contiguous track of the object, i.e., the response track prediction.

compared with the visual crop feature F(v) using a Siamese
head S that predicts a 0-1 similarity score

si = S(F(bi),F(v)) (9)

The Siamese network projects each proposal / visual-crop
feature to a 1024-D feature vector using a convolutional
projection module P ,

pb = P(F(bi)); pv = P(F(v)) (10)

and predicts a 0 - 1 similarity score using a bilinear opera-
tion:

si = σ(pTbWpv + b) (11)

where σ is a sigmoid non-linearity. After computing the
similarities to each bounding box proposal, the proposal

bt with the highest similarity score st for frame t can be
obtained as follows:

bt = arg max
b∈{b1,··· ,bN}

{s1, · · · , sN} (12)

st = max{s1, · · · , sN} (13)

After repeating the above steps for all the video
frames, we can obtain the final per-frame predictions as
[(b1, s1), · · · , (bq−1, sq−1)].

Step 2: Temporal detection So far, we used Siam-RCNN
to get the most similar proposals and their similarity scores
for every frame in the video. Next, the goal is to temporally
detect the ‘most recent occurrence‘ of the object in the video
(see Figure 28 bottom-left). This is a challenging problem
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since our goal is not to identify the best detection of the
object, but instead the most recent one, even if the similarity
is not as high. To tackle this problem, we treat the per-frame
similarity scores s = {s1, · · · , sq−1} as a temporal signal,
and use a signal peak detection approach to identify the
salient peaks (a.k.a. local maxima) in s. To avoid spurious
peaks, we first smooth s using a median filter with a window
size of 5.

s̄ = median filter(s) (14)
p1, · · · , pk = find peaks(s̄) (15)

Depending on the video, the algorithm may return multiple
peaks spread throughout the video (see signal peaks in Fig-
ure 28 bottom-right). Since our goal is to detect the most
recent occurrence of the object, we select the peak p that is
temporally nearest to the query frame.

Step 3: Tracking After temporal detection, we have identi-
fied a peak-frame p in the video which is estimated to have
the most recent occurrence of the object. For this frame
p, we can obtain the highest-scoring bounding box bp from
the per-frame detections in step 1. Note that this only rep-
resents one frame where the object most recently occurred.
However, the task objective is to obtain the response track,
i.e., the contiguous set of all frames, starting from when the
object first entered the field-of-view until the object exits the
field-of-view. See Figure 28 bottom-right. To compute the
rest of the response track, we use bp as a starting point, and
run a single-object tracker forward and backward until the
tracking fails (i.e., the object exits the field-of-view).

For both directions, we initialize the apperance model of
the tracker using the proposal bp. For the forward tracking,
we run the tracker starting from frame p+1 to q−1 and obtain
the tracked regions: bf = [b̄p+1, · · · , b̄e]. For the backward
tracking, we run the tracking starting from frame p − 1
to 0 and obtain the tracked regions: bb = [b̄s, · · · , b̄p−1].
We then concatenate bb, bp, and bf to obtain the complete
response track prediction. We use the KYS tracker [22],
which was shown to achieve state-of-the-art results for single-
object tracking.

VQ2D baseline training setup We now discuss the train-
ing procedure for the VQ2D baseline. Each datapoint for the
VQ2D task (defined on Ego4D videos) consists of the fol-
lowing: video V , visual crop image v, query frame number
q, and response track boxes r = {rs, rs+1, · · · , re}, where
s and e are the start and end frames of r, and ri is a bounding
box defined on frame i of video V .

As a high-level overview, we initialize and freeze the
backboneF and RPN using weights from an MS-COCO pre-
trained Mask-RCNN model. We use the VQ2D annotations
to train the SiamHead (S). We initialize and freeze the
KYS tracker using weights pre-trained on GOT-10k [99],
LaSOT [62], and TrackingNet [162] datasets.

We next detail the training procedure for the SiamHead
(S). We use a similarity retrieval approach were the model
is trained to predict high visual similarity between the vi-
sual crop v and positives, and low visual similarity be-
tween v and negatives. The loss function for S is a bi-
nary cross entropy loss defined over each (v,Dp, Dn) tu-
ple (see Eqn. 16), where Dp = {pi}|Dp|

i=1 are positive
detections, Dn = {nj}|Dn|

j=1 are negative detections, and
sx,v = S(F(x),F(v)):

LS = − 1

|Dp ∪Dn|

( ∑
p∈Dp

log(sp,v)+
∑
n∈Dn

log(1−sn,v)
)

(16)
Both positives and negatives are defined based on propos-

als generated by the RPN. Given a visual crop v, a proposal
pi for i ∈ (s, e) is a positive if the IoU(pi, ri) ≥ 0.5, where
ri is the response track box in frame i. We remove all ri
which are too small, or have significantly different aspect
ratios from the largest box in r since these typically corre-
spond to obstructed views of the object. A proposal pj is a
negative if it satisfies any of the following two conditions:

1. j ∈ (s, e) and IoU(pj , rj) < 0.5

2. pj is sampled from another video.

We also found it beneficial to use hard-negative mining,
where we initially sample a large number of negatives and
then select the top-K negatives with the highest loss value.

We employ a few different augmentation strategies to
artificially expand the dataset. First, we augment each data
sample by replacing the visual crop v by a bounding box ri
from the response track. This works because the response
track and the visual crop correspond to the same object.
Next, we augment the visual crop v by applying random
rotations between −120◦ to 120◦. This exploits the fact
that objects can have significant viewpoint variations in ego-
centric videos (unlike internet photos). Finally, we apply a
random brightness augmentation to the video frames and the
visual crop to simulate differing lighting.

Implementation details We train the SiamHead S using
the Detectron2 library [225]. We use the default configura-
tion file and make the following changes for our experiments.
For each experiment, we use 8 GPUs, 64 visual crops per
batch, and train for 300, 000 iterations with an initial learn-
ing rate of 0.02 followed by a 0.1× decay after 200, 000
iterations. We extract backbone features from the “p3” layer
of FPN. Based on validation performance, we use 6 pos-
itives and 64 negatives for each visual crop. Specifically,
we sample 58 negatives per video frame which results in
58× 64 = 3712 negatives per batch. For each visual crop,
we sample the 64 hardest negatives out of 3712.
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In the SiamHead S architecture, the projection module P
consists of four residual blocks followed by average pooling,
and a 2-layer multi-layer perceptron (MLP) with a hidden
size of 1024-D and ReLU activation.

For signal peak detection, we utilize the find peaks

function from the scipy library12 with the following hyper-
parameters selected through validation: distance = 25, width
= 3, and prominence = 0.2.

Experimental results We evaluate the performance of mul-
tiple baselines on the VQ2D task in Tab. 9. The first column
in the table shows the detection and tracking methods, and
the second column shows the SiamHead projection architec-
ture P . In addition to the KYS tracker, we also experiment
with a simple particle filter tracker (denoted ‘PF’) to assess
the impact of the tracking quality. As an ablation of SiamR-
CNN, we replace the 4 residual blocks in the SiamHead
projection module with a simple 3-layer CNN which has
lower capacity with no residual connections (indicated by
‘Simple’).

We make several observations. When we use a simple
projection model with a particle filter tracker, we already
observe a good validation performance of 32.4% success,
and 0.14 tAP25. These can be attributed to using a strong
proposal generator (RPN pre-trained on MS-COCO) and
a learned siamese comparison model. Upon replacing the
particle filter tracker with a SoTA KYS tracker [22], while
the validation success rate remains similar at 33.0%, we ob-
serve significant gains (absolute) in all other metrics: 2%
tAP, 2% stAP25, and 14.3% recovery. This suggests that
a good tracker is necessary to accurately capture the full
response track after localizing a single frame within it. Fi-
nally, upon replacing the ‘Simple’ siamese projection with
4 residual blocks, we observe a significant gains of 6.8% in
success, 5% in tAP25, 4% in stAP25, and 5% in recovery
%. This suggests that using a higher capacity model for the
SiamHead is helpful for improving the per-frame detection
performance for the VQ2D task. We observe similar trends
on the test set. Please see Fig. 29 for qualitative examples of
the model’s predictions.

In all cases from Tab. 9, the search efficiency is 0% since
the detectors are used on every frame in the search window.
In Fig. 30 we experiment with two simple techniques for im-
proving the search efficiency. The first approach uniformly
subsamples k% of the frames in the search window (denoted
as ‘SS’). The second approach searches over only k% of the
most recent frames in the search window, i.e., frames that are
nearest to the query (denoted as ‘N’). We consider 3 values
of k in both cases: 10%, 25%, and 50%. Consider the results
in Fig. 30. In both strategies, the search efficiency improves
as we reduce k. The performance drops drastically for the
1st strategy where we subsample the search window, while

12Peak detection: https://docs.scipy.org/doc/scipy/

reference/generated/scipy.signal.find_peaks.html

it remains relatively stable for the second strategy where we
preview a fraction of frames closest to the query. For exam-
ple, we can achieve a search efficiency of 48.0% with only a
6− 16% relative drop in performance with k = 50% in the
2nd strategy. However, the performance drops significantly
if we reduce k further. For example, we observe a reduction
of 38− 60% for k = 10% with the 2nd strategy. This sug-
gests that more intelligent methods that perform contextual
search are needed to improve the search efficiency for VQ2D
while maintaining good performance.

Visual queries 3D localization baseline

Next we describe the baseline for the visual query with 3D
localization task. Recall the task definition: given a video, a
query frame, and a visual crop of a target object, the goal is
to output a 3D displacement vector from the camera center
of the query frame to the center of the target object in 3D.
The 3D position of the target object is defined at its most
recent appearance in the video. Figure 31 shows a sample of
the task.

Our baseline strategy has three steps. We first estimate
the camera poses of the video. Then we retrieve the most
recent instance of the target object in the video. Lastly, we
estimate the depth of the detected object and retrieve its 3D
position from the query frame.

Camera pose estimation The camera poses are estimated
using a keypoint matching strategy along with a Perspective-
n-Point (PnP) resolution approach. At a high level our ap-
proach consists of the following four steps. First we estimate
the camera intrinsic parameters using Structure-from-Motion
(SfM). Secondly, we extract and match keypoints from each
frame in the video to keypoints extracted from the Matter-
port3D panoramas. Then, using the matched keypoints we
set up and solve a PnP problem for each frame in the video
to estimate the corresponding camera pose. Lastly, we refine
the poses using temporal constraints.

Step 1: Camera intrinsics estimation We start by ex-
tracting a set of contiguous non-blurry frames from the video.
In order to select non-blurry frames we compute the variance
of the Laplacian on each image and select the ones with a
value higher than a 100 threshold. We then select the largest
contiguous set of non-blurry images. We cap the number
of selected frames to 10 to limit the computational time of
the SfM module. Once we have selected the images we
run the automatic reconstruction module of COLMAP [196]
to estimate the camera instrinsic parameters with a radial
fisheye camera model.

Step 2: Keypoint extraction and matching We use Su-
perGlue [195] to extract and match keypoints. We first
extract keypoints from the scan panoramas {k{p,n}, p ∈
P, n ∈ N} where P is the number of panoramas and N
is the number of keypoints. The scan panoramas are gen-

36

https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.find_peaks.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.find_peaks.html


Validation set Test set
Detector + Tracker P Succ tAP tAP25 stAP stAP25 rec% Succ tAP tAP25 stAP stAP25 rec%

Siam-RCNN + PF Simple 32.4 0.06 0.14 0.02 0.06 13.2 32.7 0.06 0.14 0.02 0.06 12.9
Siam-RCNN + KYS Simple 33.0 0.08 0.15 0.03 0.08 27.2 33.4 0.09 0.16 0.03 0.08 26.9
Siam-RCNN + KYS Residual 39.8 0.12 0.20 0.04 0.12 32.2 41.6 0.12 0.21 0.05 0.13 34.0

Table 9. Visual queries 2D localization results. We compare the performance of various baselines on the VQ2D validation and test datasets.
Column 1 indicates the detector and tracker. Column 2 indicates the projection architecture used in case of the Siam-RCNN model.

. . . . . .

Query: When did I last see
this object?

Predicted response track

. . . . . .

Query: When did I last see
this object?

Predicted response track

Figure 29. Qualitative examples for visual queries 2D localization. On each row, we show the visual crop of the query object on the right
and the predicted response track in the center (3 uniformly samples images). The model was able to correctly localize the most recent
occurrence of the object and accurately track it throughout the occurrence.
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Figure 30. Search efficiency for visual queries 2D localization.
We evaluate simple techniques for improving the search efficiency,
and plot the corresponding VQ2D performance. The blue data point
is the SiamRCNN performance when we preview the entire search
window. The red data points are the SiamRCNN performance when
we search over k% of the frames uniformly subsampled (SS) from
the search window. The yellow data points are the SiamRCNN
performance when we search over k% of the frames nearest (N) to
the query (without any subsampling). The value of k is indicated
above each data point.

erated using the Matterport SDK.13 We render RGB and
depth images at each scan position and sweep over pitch

13Matterport-SDK: https://matterport.github.io/

showcase-sdk/sdk_intersection_inspector.html

View from the response track

View from the query frame

Figure 31. Visual queries 3D localization task demo. The top view
is the view from the last frame of the response track with the target
object annotated with a 2D red bounding box. The bottom view
is the view from the query frame. The target object is annotated
with a 3D red bounding box at the top right of the figure. The
figure shows the ground-truth (green) and the predicted (red) 3D
displacement vectors.

values ∈ [−30, 30] with a step size of 5 deg. and yaw val-
ues ∈ [−180, 180] with a step size of 15 deg. We generate
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on average 7K images per scan. Note that while we are
not releasing the panoramas because of data anonymiza-
tion concerns, we are providing the precomputed keypoints.
Similarily, we extract keypoints from the video frames
{k{i,m}, i ∈ I,m ∈ M} where I is the number of im-
ages in the video andM is the number of keypoints. Once
the keypoints are extracted we loop through each frame
i ∈ I in the video and match the extracted frame key-
points {k{i,m},m ∈ M} to all the panoramas keypoints
{k{p,n}, p ∈ P, n ∈ N}. We use the pretained models
available14 of SuperPoint [50] for keypoints and descriptors
extraction and SuperGlue [195] for matching.

Step 3: PnP resolution We compute the camera pose for
the video frames having at least 20 matched keypoints. We
empirically find that a threshold of 20 provides a good trade-
off between the number of overall pose estimates and the
quality of the estimations. The positions of the 3D keypoints
are computed from a pinhole camera model of the Matterport
camera using the rendered panorama depth, camera intrin-
sics, and camera pose. The positions of the 2D keypoints are
directly extracted from the video frames pixels. We then use
the OpenCV library to solve the PnP setup and estimate the
camera pose from the matched pairs of 3D and 2D points and
using the estimated camera intrinsic parameters. Using this
method we can estimate the camera pose of roughly 2% of
the total number of frames in the video. Next we incorporate
temporal constraints to increase this number.

Step 4: Temporal constraints and final pose estima-
tion To increase the number of estimates we refine the pose
estimation pipeline by incorporating temporal constraints in
an iterative procedure. We start by extracting and matching
2D keypoints from localized frames to non-localized ones in
the video. This step is similar to the above Step 2; we use
the same SuperGlue [195]. Using the matched keypoints and
current estimated poses we triangulate new 3D keypoints
for the non-localized images. We then solve a new PnP
setup with the new keypoints. We apply this procedure it-
eratively until convergence. After refinement we achieve a
performance of 15% of pose estimates of the total number
of frames accross all video clips.

Camera pose estimation quality and sources of error
We qualitatively evaluate the camera pose estimation pipeline
by rendering the views in the 3D scans. Recall that the scans
and videos have been recorded at different times and thus
the scenes can contain large differences. Figure 32 shows
camera poses estimates where left is the frame from the
video, middle is the view from the scan, and right is the
superposition. We see that even with large scene differences
between the scan and video (e.g., the wheel in the middle
example) the algorithm is capable of producing good pose
estimates.

14SuperGlue weights: https://github.com/magicleap/

SuperGluePretrainedNetwork

Video frame View from the scan Superposition

Figure 32. Samples of camera pose estimation. Left shows the
frame from the egocentric video, middle has the view rendered from
the estimated viewpoint in the scan and right is the superposition of
both. We observe that even with big scene differences between the
video and the scan (e.g., the wheel in the second row), the algorithm
is able to accurately retrieve the camera pose.

The remaining unlocalized frames are due to abrupt mo-
tion (lost track) and when the view is too close-up to the
scene (not enough keypoints matched).

Target object retrieval We build our solution on top of the
visual queries 2D localization baseline. The 2D localization
baseline outputs a response track with 2D detections of the
target object. Our baseline combines these 2D detections
along with depth estimation and camera pose estimation to
retrieve the 3D position of the object.

Depth estimation We estimate the depth of the most re-
cent frame of the response track for which we have a pose
estimate. We use the DPT network [185] with pretrained
weights on NYU v2 [202]. Figure 33 shows depth estima-
tion results where left is the frame from the video, middle
is the estimated depth, and right is the depth from the scan
rendered at the estimated viewpoint (not available to the
baseline model). Note that due to scene differences between
the video and the scan, the two depths frames will differ
in some region of the image. We then compute the depth
value of the target centroid as the median of a square region
centered at the 2D detection.

3D displacement vector reconstruction Given the esti-
mated depth d of the object centroid c in frame f of the
response track and the estimated camera instrisics K, we
construct the 3D vector displacement v̂f in the current frame
f coordinate system using a pinhole camera model:

v̂f =

xy
z

 = dK−1c = dK−1

uv
1

 (17)
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Video frame Depth from DPT Depth from the scan

Figure 33. Samples of depth estimation. Left shows the frame
from the egocentric video, middle has the estimated depth from
DPT [185] and right has the depth from the scan rendered at the
estimated viewpoint.

where u, v are the pixel indices of the centroid c in frame f .
We then estimate the object centroid position t̂s in the scan
coordinate system:

t̂s = P sf v̂f (18)

where P sf is the camera pose for the frame f . We further
retrieve the displacement vector v̂Q in the query frame Q
coordinate system:

v̂Q = P sQ
−1t̂s (19)

where P sQ is the camera pose of the query frame.

Experiments and results We compare the performance of
multiple baselines along with ablation studies. We present
the results in Table 10. Numbers are computed on the valida-
tion set (164 queries) of the VQ3D task. We report the query
ratio QwP, for which we have camera pose estimates for the
response track and query frame. Additionally, we report the
success rate Succ∗ which is the success metric computed
only for queries with associated pose estimates.

Overall, we notice a low QwP ratio leading to a low suc-
cess rate. These low metrics are due to a small number of
camera pose estimates (15% overall). Nonetheless, we ob-
serve that the best VQ2D baseline method combined with the
pretrained DPT [185] depth estimator yields the best perfor-
mances in terms of L2 and success. These numbers tell that
there are opportunities for enhancement in designing better
camera pose estimators. Additionally, we perform ablation
studies using the ground-truth response tracks and different
depth estimators (random, from the scan, using DPT). For
the random experiment we uniformly sample a depth value
between 0.1 and 10 meters. From the ablation experiments
we note that rendering the depth from the scan at the esti-
mated viewpoint increases the performances compared to

RT depth L2 angle Succ∗% Succ% QwP%

ground-truth random 7.93 1.99 0.00 0.00 1.83
ground-truth scan 2.92 1.10 76.47 1.22 1.83
ground-truth DPT 3.33 1.15 76.47 1.22 1.83

Siam-RCNN + PF DPT 6.53 1.64 25.00 0.61 0.61
Siam-RCNN + KYS (sim.) DPT 5.78 0.48 36.36 0.61 0.61
Siam-RCNN + KYS (res.) DPT 5.98 1.60 30.77 1.22 1.83

Table 10. Visual queries 3D localization results. We compare the
performance of various baselines on the val set of the VQ3D task.
Column 1 indicates the VQ2D network used to predict the response
track (RT). The last metric QwP measures the query ratio for which
we have pose estimation for the response track and the query frame.
The L2 metric is expressed in meters and angles are in radians. The
first three rows are ablation studies using the ground-truth response
tracks and with depth estimated randomly, using the scan and via
the DPT [185] network.

using DPT (lines 2 and 3). This suggests that there is also
room for improvement in designing better depth estimators.

Natural language query baselines

Since the natural language queries can be seen as a language-
grounding problem in a video, we adopt two prior methods
in order to implement the baselines for this task.

(a) 2D Temporal Adjacent Networks (2D-TAN) [236]:
We apply 2D-TAN with a sliding window method to im-
plement the natural language query baseline. The goal of
2D-TAN is to answer where the semantically corresponding
video moment is, given a language query in an untrimmed
video. The language query stems from one of the 13 tem-
plate questions. The core idea of 2D-TAN is to consider
adjacent moment candidates as the temporal context on a
two-dimensional temporal map and retrieve the most rele-
vant moment from the candidates. More concretely, 2D-TAN
takes each moment candidate as one element in the 2D tem-
poral map such that the adjacent moment candidates on the
map can have much-overlapped content or share the same
start or end time slot. It applies a convolutional neural net-
work on the 2D map to predict the Intersection over Union
of each moment candidate and the ground-truth moment.
Please see [236] for more details.

Since the 2D-TAN enumerates all the possible combi-
nations of start-end pairs, the O(N2) space complexity of
the 2D map leads to a heavy model, especially when we
require a precise moment boundary. To make 2D-TAN more
appropriate to our problem, we further use a sliding window
method on top of 2D-TAN. We break down the clip into a
number of overlapping windows, where a window presents a
small portion of the clip. The windows are taken as the input
of the 2D-TAN model in both training and testing phases.

During the training of the 2D-TAN model, we use
Ego4D’s provided pre-extracted features for both the video
clip and language query. The clip feature is from a Slow-
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Figure 34. Baseline model architectures: moment queries. Its takes a video sequence and generates detected actions with start/end time,
their categories, and confidence scores. It has two components: graph pyramid network (GPN), and scoring and localization (SoL).
GPN is composed of multi-level encoder and decoder pyramids. The encoder aggregates features in different levels via a stack of graph
networks (GN) (yellow trapezoid area; the decoder restores the temporal resolution and generates multi-level features for detection. SoL
(blue dashed box) contains four modules, the top two predicting action scores and boundaries, the bottom two producing supplementary
scores and adjusting boundaries. Figure is adapted from [237].

Fast [71] network pretrained on Kinetics 400 dataset, and
the language feature is a based on the BERT model [52].
The window duration is 40s, and stride is 20s in the sliding
window method. Notably, we only use windows that contain
or are next to a ground-truth moment in training, but we
use all the windows in testing. We keep all the other hyper-
parameters in 2D-TAN the same as its default except for tIoU
threshold and learning rate. We decreased the tIoU threshold
from 0.5 to 0.3 to enable more positive samples during train-
ing and empirically set the learning rate to 0.001. We train
the model for 100 epochs and report the test set performance
on the best checkpoint on the validation set. 2D-TAN gives
top-1 and top-5 recalls of 5.80% and 13.90% at IoU=0.3,
respectively. In addition, we also ablate the model to obtain
performance by randomizing the video features (−visual)
and textual features (−text) for NLQ in Tab. 11.

(b) Span-based Localization Network (VSLNet) [235]:
Unlike traditional approaches in video natural language lo-
calization works, VSLNet treats the input untrimmed video
as a text passage, and uses a span-based approach to identify
the relevant sections semantically related to the given natural
language query. At its core, VSLNet first encodes the natural
language query and video features using a common, shared
Transformer [215] network. Next, it uses the encoded query
to then attend to the relevant parts of the video clip (akin to
a text paragraph). The attended sections are further refined
using a query-guided highlighting (QGH) strategy by extend-
ing the selection foreground of the video by a hyperparamter
to capture more visual context. Please refer to [235] for more

Baseline IoU=0.3 (%) IoU=0.5 (%)
r@1 r@5 r@1 r@5

V
al { 2D-TAN [236] 5.04 12.89 2.02 5.88

VSLNet [235] 5.45 10.74 3.12 6.63

Te
st



2D-TAN [236] 5.80 13.90 2.34 5.96
−visual 2.29 6.77 1.32 3.46
−text 3.46 10.13 1.78 4.38

VSLNet [235] 5.47 11.21 2.80 6.57
−visual 1.80 5.44 0.90 2.45
−text 3.05 7.39 1.45 4.12

Table 11. Performance of the NLQ baselines on val and test splits.

details on the motivation and architecture.
For our experiments, we maintain consistency with the

other NLQ baselines and use pre-extracted features for both
the video clip (SlowFast network [70]) and natural language
query (BERT [52]). We use the implementation provided
by the authors15 with the following changes: (a) Set the
video features size to 2304 dimensions to accommodate the
features extracted from the SlowFast network, (b) Replace
the text encoder to a frozen, pretrained BERT [52] model,
(c) Set the internal dimension of the multimodal network to
128, and project the pre-trained BERT features from 768 to
128. We train the model for 200 epochs and pick the model
with the best performance on val split. The corresponding

15https://github.com/IsaacChanghau/VSLNet
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test performance of this VSLNet model is reported in Tab.
11, along with visual and textual ablations.

Moments queries baseline

We formulate a moment queries baseline as a temporal ac-
tion detection method [141, 229, 237], plus simple post-
processing.

The MQ task only expects predictions for the query cat-
egories, whereas the temporal action detection task returns
the predictions for all categories. Therefore, we can first
use a temporal action detection method to predict for all
categories, and only output the results corresponding to the
query categories.

To predict all categories, we adopt a recent method
VSGN [237], which was designed for temporal action detec-
tion in third-person videos. We use VSGN without the VSS
component. Figure 34 illustrates the architecture. It takes
a video V as input, extracts features for each snippet in the
video using a network such as SlowFast [70], and feeds these
features into a graph pyramid network. The graph pyramid
network contains a encoder and a decoder, where the en-
coder is comprised of multiple levels of graph convolutional
networks, and the decoder is comprised of multiple levels
of de-convolutional networks. It is an anchor-based method
that pre-defines temporal segments for each feature level as
prediction reference. It predicts the scores and refines the
locations of the anchors in two stages. In the first stage, it
uses a region proposal network (RPN) from the decoder to
predict class labels and regress boundaries for each anchor;
in the second stage, it applies a boundary adjustment module
to refine the boundary offsets based on the updated anchors
from the first stage. It also has startness/endness predictions
to provide auxiliary supervision and supplement scores for
each predicted segment. Its output predictions are formu-
lated as Φ = {φm = (tm,s, tm,e, cm, sm)}Mm=1, where m
is the number of predictions, tm,s and tm,e are start time
and end time of the mth prediction respectively, cm is the
predicted category, and sm is the confidence score. For more
details, please refer to [237].

Given a query category c, the retrieval results for the
moment queries task are obtained as follows

Φc = {φm = (tm,s, tm,e, cm, sm) |cm = c, 1 ≤ m ≤M)} .
(20)

Implementation details For feature extraction, we use
Ego4D’s provided pre-extracted features using a Slow-
Fast [70] network pre-trained on Kinects400 [108] at 1.87
features per second. The feature dimension is 2304.

Considering that the maximum clip length is 8 minutes,
which has 897 features, we make the input length of our
network 928 frames to cover the longest video clip. We have

Table 12. Moment queries results on the validation set and the
test set, measured by mAP (%) at different tIoU thresholds.

tIoU threshold 0.1 0.2 0.3 0.4 0.5 Average
Validation set 9.10 7.16 5.76 4.62 3.41 6.03
Test set 8.61 6.52 5.43 4.30 3.57 5.68

5 levels in the graph pyramid network, each with temporal
length 232, 116, 58, 29, and 14 respectively. We pre-define
two base anchors of sizes 4 and 12 for Level 1 and increase
the sizes by 2 for each deeper layer. We train for 30 epochs
with a batch size 32 and learning rate 0.0001. In inference,
we only apply per-category NMS with a confidence threshold
0.0005.

Experiments and results We show our baseline perfor-
mance in terms of mAP in Table 12 and recall @ kx, tIoU=m
in Table 13.

We provide further analysis on the average precision re-
sults using DETAD [9]. In Fig 35, we illustrate the propor-
tion of each error type for the false positive predictions. It
shows that both localization and classification are respon-
sible for the false positive, improving either can increase
the overall performance by a nontrivial amount. In Fig 36,
we demonstrate the performance of different groups of mo-
ment instances based on moment duration and number of
instances belonging to the same category per video clip. We
notice that short moments tend to have low performance
even though they are large in number. When there are 2-3
instances in one video, they are easiest to detect.
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Figure 35. Moment queries results: false positive analysis. The
error types are determined by the tIoU between ground-truth and
predicted moments, as well as the correctness of the predicted
labels, according to [9]. Background error: tIoU < 1e−5; confu-
sion error: 1e−5 < tIoU < α, label is wrong; wrong label error:
tIoU >= α, label is wrong; localization error: 1e−5 < tIoU < α,
label is correct, where α refers to the tIoU thresholds {0.1, 0.2, 0.3,
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Table 13. Moment queries results on the validation set and the test set, measured by recall (R) @ kx, tIoU=m (%).

m 0.3 0.5 0.7

k 1 3 5 1 3 5 1 3 5

Validation Set 33.45 51.26 58.43 25.16 39.46 46.18 15.36 22.67 25.81
Test Set 33.56 52.23 59.79 24.25 39.22 46.22 14.83 23.15 26.28
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Distribution of instance per action characteristic: length; # in-
stances. Bottom: average mAPN (%) [9] in each characteristic
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buckets based on the moments duration in seconds: XS (0, 10], S
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Discussion

Visual queries presents a novel and challenging task for
object localization in egocentric videos. While our proposed
baseline achieves a reasonable success rate of 42.9%, it only
achieves a localization performance of 0.13 tAP and 0.06
stAP. Furthermore, the best performance is achieved with
0% search efficiency, and naı̈ve techniques to improve the
search efficiency lead to drastic performance reductions. We
hope that this task will spur future research into accurate and
efficient techniques for object search.

Natural language queries is a challenging multimodal
task that has wide applications in helping users search and
retrieve relevant pieces of their episodic memory, thanks
to the flexibility of the queries. The performance of the
existing state-of-the-art video localization models highlights
the needle-in-a-haystack nature of the task, due to shorter
response windows of about 10s in a large video clip of 8
minutes. We hope that the NLQ dataset opens the door to
future research that specializes in identifying and retrieving
a large diversity of language queries in longer egocentric

video clips, moving a step closer to augmenting a user’s
episodic memory.

Moment queries in egocentric videos is a challenging task
due to the long-tailed distribution of categories and the large
variation in moment duration. Our baseline achieves a rea-
sonable result according to the metric recall @kx, tIoU=m,
which evaluates the performance of each query category and
does not require correct classification of all categories. In
contrast, its average mAP score of 5.96% is low when all
categories are evaluated. According to the false positive anal-
ysis in Fig 36, errors caused by wrong labels are significant.
A more sophisticated classifier for all candidate moments
can be explored in future work. In addition, as shown in
Fig 36, the performance of short moments, which occupy
a large proportion in the dataset, is not as good as that of
long moments. Therefore, improving short moments will
significantly improve the overall performance.
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43



G. Hands and Objects Benchmark

This section details the Hands and Objects benchmark in-
cluding definitions, annotations, baseline models and results.

G.1 Motivation

In a video of a human operating and manipulating an object
with their hands, there may exist an object state change,
i.e., the point where the state of the objects being operated
changes, either temporarily or permanently in a way that
cannot be easily reversed. Examples of temporary state
change include turning on a machine, while examples of
permanent state changes include physical changes such as
chopping a tomato into pieces and chemical changes such as
mixing water and cement powder together to create a new
composition of cement. Some examples are illustrated in
Figure 37.

The concept of an object state change has been explored
only in a limited manner in the video literature [8, 45, 69]
and the characterization of state changes has depended on
many brittle vision-based component technologies, making it
difficult to analyze state changes at scale. Fortunately, in the
last decade we have seen tremendous advances in computer
vision algorithms for understanding both objects and hands.
As a result, we believe that now it is time to investigate the
idea of characterizing state changes at scale and in depth.

Why is recognizing the impact of agents on objects and
environments so critical? We believe that understanding,
recognizing, and replicating object state changes are an es-
sential aspect of creating artificial intelligence (AI) systems.
While current AI systems have the ability to replicate certain
types of human actions such as assembling furniture [116] or
cutting tomatoes [200], most systems do not possess a gen-
eral understanding of how the environment and the objects
can be transformed as a result of interaction. Understanding
the impact of interactions on objects and the environment is
an important aspect of reasoning and can help AI systems
perform more advanced tasks. For example, understanding
the impact of interactions on the environment can help AI
systems relate multiple ways to achieve the same change,
discover efficient methods for achieving goal states, recog-
nize the completion/incompletion of goals [58, 97], recover
from failure, and learn from mistakes.

In egocentric videos specifically, the object state changes
offer rich and important information that are related to many
other problems. For example, the object undergoing state
change in an egocentric video can imply human-centric in-
formation such as human activity and intention. Moreover,
the state change of an object shown provides cues about
human-specific affordance and actionable information of an
object or tool, which cannot be easily inferred from static
images. Additionally, a joint understanding of human hands
and the objects undergoing state change can benefit applica-

(a)

(b)

(c)

Figure 37. Examples of object state change. (a) State change
through construction: attaching to two metal plates results in a
new object. (b) State change through physical change: cutting a
piece of wood results in two smaller pieces of wood. (c) State
change through chemical reaction: combining two objects, water
and cement powder, results in a new object, cement.

tions that require rich human demonstrations, such as robotic
manipulation.

Defining Object State Changes: This benchmark fo-
cuses on identifying and localizing the state change of an
object in an egocentric video. Specifically, a object state
change can be represented by the three aspects in the video:
temporal, spatial, and semantic.

Temporal: An object state change can be represented by
three distinct temporal points in the video. (1) Point-of-
no-return: The point-of-no-return (PNR) is the frame Ipnr
in a video that identifies the beginning of an object state
change that cannot be easily reversed. (2) Pre-condition:
The pre-condition is defined as some frame Ipre that marks a
moment prior to the state-change in which the related objects
were visible within the field of view of the camera. (3) Post-
condition: The post-condition is some frame Ipost at which
the completion of the state change is visible after the point-
of-no-return. These three frames mark the distinct temporal
stages of the object state change: before and after the change,
respectively. This proposal matches the Rubicon Boundaries
proposed in [160].

Spatial: An object state change can be represented by the
bounding box of the object at the PNR, pre-condition and
post-condition, along with any tools involved in performing
the state change. Tools offer extended capabilities of the
actor’s hand, such as using an electric saw to cut a piece of
wood in half. These bounding boxes represent the spatial
dimensions of hands, tools and the objects undergoing the
state change.
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Semantic: We represent an object state change through the
human action (verb), the object identity (noun) and the type
of state change applied. The same state change can be per-
formed on different objects using different tools. For exam-
ple, cutting a piece of wood with electric saw and cutting a
piece of paper with scissors are different interactions with
different objects and different tools but they both result in
the same object state change of being cut.

G.2 Related Work

Object State Changes: Existing approaches for modeling
object states and/or their changes can be categorized into
two research lines. The first deals with collections of im-
ages. A representative dataset for this purpose is the MIT
States dataset [103]. By considering object states as ob-
ject attributes (e.g. burnt, sliced), this line of work studies
attribute-object composition, e.g. composition with con-
text [158], modeling attributes as operators [164], and an
architecture for compositional reasoning [182].

The second research line deals with video and views an
action as a state transformation over time. One direction is
the discovery of object states and/or manipulating actions,
e.g. in egocentric [45, 69] and instructional videos [8]. Fathi
et al. [69] explore object state detection in video using a
weakly supervised approach. Another direction is the mod-
eling of state transitions. Zhou et al. [244] study temporal
transformations of a single object state in time-lapse videos.
Wang et al. [223] propose to model state transformations in
a high-level feature space with Siamese networks. Doughty
et al. [55] leverage natural language and treat adverbs as
modifiers for state transformations. In terms of applications,
Chang et al. [30] show state transformations can be utilized
for procedure planning.

Human Hand Action Datasets: Several video datasets
have been proposed for human hand action recognition. The
Yale human grasping dataset [25] focuses on human grasping
behavior and consists of 27.7 hours of annotated videos. The
Something-Something dataset [90] consists of 220,847 short
videos annotated with 174 categories of general hand-object
interactions. The Jester dataset [214] provides 148,092 short
videos in 27 hand gesture types. Wang et al. [220] con-
struct a synthetic video dataset of human-object interaction
through rendering hand and object CAD models. The recent
Human Hands dataset [198] annotates 100K single frames
from web-based videos, focusing on hand interactions and
the offset between the hand and the interacting object during
interaction.

Several egocentric video datasets capture daily living
activities by people [43, 130, 136, 180, 201, 210]. In the Ac-
tivities of Daily Living Dataset (ADL), subjects wear chest-
mounted cameras and perform unscripted activities at home,
with a total of 10 hours of video from 20 participants; the tar-

get task is activity recognition [180]. In the UT-Egocentric
dataset (UT-Ego), subjects wear a head-mounted camera and
perform long unscripted activities inside and outside of the
home, with a total of 17 hours from 4 subjects (4-5 hours of
continuous capture for each person); the target task is video
summarization [130]. The UT Egocentric Engagement (UT
EE) dataset consists of 14 hours of head-mounted camera
video captured in public spaces like museums, malls, and
grocery stores, and is annotated for moments of engagement
by the camera wearer with the environment. In the EGTEA+
dataset, 32 subjects wearing head-mounted cameras in a sin-
gle kitchen environment capture 28 hours of video; the task
is to recognize 44 meal preparation activities [136]. The
EPIC-KITCHENS dataset consists of 100 hours of kitchen
activities recorded in 45 unique environments, with a total of
89,977 different object interactions across 97 verb and 330
noun classes; the task is to recognize objects and activities
and anticipate interactions in the next moment of video [43].
The Charades-Ego dataset consists of 34 hours of video
from 71 participants, with both first- and third-person paired
instances labeled for 156 actions [201].

G.3 Benchmark Definitions

We now define the three tasks that comprise the Hands and
Objects benchmark. The three tasks correspond to the three
aspects of object state changes described above, namely, the
temporal, spatial and semantic aspects of a state change.

(1) PNR Temporal Localization. The goal of Point-of-
no-return (PNR) Temporal Localization is to predict Ipnr.
One possible formulation is to view this problem as a per-
frame classification problem, predicting the Point-of-no-
return frame within a short video clip. The performance
is evaluated only on the videos that contain object state
change, and is measured by the absolute temporal error of
Ipnr prediction in seconds.

The PNR was first discussed by P. Gollwitzer in his well-
cited handbook of behavior [89]. Specifically, the book
proposes the Rubicon Model of Action Phases, focusing
on hand-object interaction. Action phases are delimited by
three transition points: initiation of prior motion, PNR, and
goal achievement. This was later experimentally assessed by
our previous work [160], where PNR annotations were ac-
quired for three egocentric datasets, demonstrating increased
accuracy of annotations (see Fig. 10 in [160]) and improved
robustness in training models (see Sec. 5 in [160]). Below,
we find PNR closely aligns with the narration timestamps
that we independently collected, suggesting PNR is a natural
time point for human understanding (and thus narration) of
the interaction.

(2) State Change Object Detection. We define a State
Change Object as the object that is manipulated by a person
and undergoes a change in its state. The goal of this task is

45



to predict the 2D bounding boxes of the State Change Object
in Point-of-no-return frame Ipnr given three frames: Pre-
condition Ipre, Point-of-no-return Ipnr, and Post-condition
Ipost. We expect that a good solution to this task would
incorporate the visual information before and after state
change to detect the State Change Object. The detection
performance is evaluated on the bounding boxes estimated in
the Point-of-no-return frame Ipnr and measured by Average
Precision (AP).

(3) Object State Change Classification. The task of Ob-
ject State Change Classification classifies a short video clip
to a state change type. With N object state change types
defined, object state change classification is essentially an
(N+1)-way classification problem, where the one additional
category is “without state change.” Object State Change
Classification is evaluated by classification accuracy.

G.4 Data Selection

Next we describe our data selection procedure and annotation
pipeline, and we present the analysis of the data for the
object state change benchmark. We begin by describing our
procedure for selecting the subset of data to annotate for this
benchmark.

We start with a large pool of videos annotated with high-
level scenario labels (e.g., gardening, cooking, landscaping,
etc.) and narrations. We assess each scenario on the scale
of 0 to 3 based on how likely it is to contain hand-object
interactions (e.g., 0 for “watching tv”, 3 for “carpentery”,
etc.). We then sample data to annotate following the resulting
scenario distribution. Given a scenario and a target number
of hours, we sample clips randomly in a hierarchical fashion:
we first sample a participant, then a video, and finally a 5
minute clip from the video. If the video is shorter than 5 min
we take the whole video. For each scenario, we balance the
data across universities to maximize geographic diversity.
The resulting scenario and university distributions are shown
in Figure 38. In total, our dataset has 120 hours representing
53 scenarios, 7 universities, and 406 participants.

G.5 Data Annotation

We annotate hand-object interactions corresponding to each
narration within the selected 5 minute clips. We use the
taxonomy from Section D.3 for semantic verb and noun
labeling. The annotation pipeline consists of three sequential
stages: critical frame labeling, pre-period labeling, and post-
period labeling.

Critical frames. Given a narration, we create an 8 second
video snippet centered at the narration time point and present
it to the annotators. We ask the annotators to first read the
narration and select a corresponding verb from the taxon-
omy. The annotators can then play the video back and forth

to select three critical frames in time: PNR, PRE, and POST.
We ask the annotators to start with the PNR frame that iden-
tifies the beginning of the state change. This frame is less
ambiguous and helps provide the context for the interaction.
We then ask the annotators to label a frame prior to the state
change (PRE) and a frame after the completion of the state
change (POST). Note that the PRE and POST frames are not
uniquely defined. We let the annotators pick any, as long as
the relevant objects are fully visible within the field of view
of the camera.

Pre period. Next, we label bounding boxes for the hands,
tools, and objects, as well as the category names for the
tools and objects. We do this in two steps. First we label
the frames in the pre period, starting at PNR and going
backward to the pre frame. The video frames are reversed
and the annotators can play the video. We find that it is easier
to start from the PNR frame since the hands and objects are
clearly visible. To speed up hand box labeling, we initialize
the hand boxes with a pre-trained object detector [198] and
ask the annotators to correct these.

Post period. Finally, we ask the annotators to label spatial
annotations and categories for the post frame. As before, we
first present the annotators with the PNR frame. Note that
in this case the PNR frame is already labeled which helps
identify the hands and objects to label in the post frame.

G.6 Data Analysis

Finally, we present the analysis of our annotations.

Critical frames. In Figure 40 we show the temporal dis-
tribution of critical frames within the 8 second hand-object
interaction snippets. First, we observe that the PNR frame
distribution is centered around the middle of the 8 second
snippet. Interestingly, this closely aligns with the narration
point (4s mark). Next, we see that most of the pre and post
frames come shortly before and after the PNR frame, respec-
tively, highlighting the quick nature of these state changes,
and thus the challenge in this benchmark. We also notice two
additional modes for pre and post frames that come at the
start and the end of the 8s interval, respectively. These corre-
spond to long repetitive actions that start before or continue
past the video snippet (e.g., knitting).

Hands and objects. Our benchmark contains a large num-
ber of hands and objects annotated with bounding boxes. In
total, we have ∼825K bounding boxes, including ∼245K
for left hand, ∼260K for right hand, ∼280K for objects, and
∼40K for tools. In Figure 41 and Figure 42, we show the
distributions of box sizes and locations, respectively. We
observe that our data contains hands and objects at a variety
of sizes and locations.

Actions. One of the features of our benchmark is the diver-
sity of interactions. We focus on low-level atomic actions
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(a) Scenarios (b) Universities

Figure 38. Number of hours. We show the distribution of the number of hours across scenarios (left) and universities (right)

Figure 39. Labeled actions. Distribution of verbs (left) and nouns (right) in annotated action instances. Top 45 verbs and nouns are shown
for clarity. See Section D.3 for more details.

Figure 40. Critical frames. Distribution of critical frame times.
Shown relative to the 8s hand-object interaction snippet.

Figure 41. Hand and object sizes. Distribution of bounding box
sizes. Shown in terms of the square root of the box areas.

rather than high-level actions. We show the distribution of
verbs (Figure 39, left) and nouns (Figure 39, right). We see
that we have a large number of verbs corresponding to com-
mon manipulation actions (e.g., put, take) and a natural long
tail. The object distribution follows the same general trend.

Figure 42. Hand and object locations. Distribution of bounding
box centers. Shown in normalized image coordinates.

We note that our objects are common daily objects that are
not typically present in object detection datasets (e.g., 442
out of our 478 object categories cover categories beyond the
80 COCO [143] categories).

G.7 Baselines: Object State Change Classification and
PNR Temporal Localization

We present the implementation of several baseline methods
for the Object State Change Classification and PNR Tem-
poral Localization tasks. Among the implemented baseline
models, in general there are one or two types of output net-
work heads: a classification head for the video clip used for
state change classification, and/or a per-frame classification
head for temporal localization. One can choose to train two
models separately, or use the same backbone model but two
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network output heads and train the joint model with a multi-
task loss function. The following baseline methods includes
both types of model designs:

I3D ResNet-50. We use I3D [29] with ResNet-50 [95] as
backbone architecture of the model for both the Object State
Change Classification and the PNR Temporal Localization
tasks. The ResNet backbone is followed by two network
output heads: a state change classification head and a PNR
temporal localization head. The state change classification
head is produced by global average pooling on the entire
spatiotemporal feature tensor followed by a classification
layer. The PNR temporal localization head is produced by
per-frame average pooling followed by a classification layer.
The overall training loss of the model is the combination of
the loss of two heads which are both cross-entropy loss for
classification.

Boundary Matching Network (BMN). We use BMN
[140] as a baseline for the PNR Temporal Localization task.
BMN is a temporal segment detection method based on con-
fidence prediction of dense temporal segment proposals. We
view the start of the video as the start of the temporal seg-
ment and Point-of-no-return Ipnr as the end of the temporal
segment, so we can convert the problem of localizing Point-
of-no-return Ipnr to the problem of detecting the temporal
segment. In our implementation, BMN uses ResNet as the
backbone model. Furthermore, BMN is only used for the
PNR temporal localization task.

SlowFast + Perceiver. We implement a baseline model
whose architecture consists of SlowFast [70] and Perceiver
[105] for both object state change classification and PNR
temporal localization. SlowFast acts as the video deep fea-
ture extractor. The features are then passed to a Perceiver
model. Similar to the previous BMN model, the SlowFast
+ Perciever model is only trained for temporal localization
task. The training loss of the model is the cross-entropy loss
for per-frame classification.

Bi-directional LSTM. We implement a Bi-directional
LSTM model [91] for both the object state change classifica-
tion and PNR temporal localization. We first pass individ-
ual frames to a ResNet model [95] to extract deep features.
The sequence of per-frame features is then passed to the
Bi-directional LSTM as input, with the output sent to both
the per-frame classification head and the whole-sequence
classification head. The overall training loss of the model
is the combination of the loss of two heads which are both
cross-entropy loss for classification.

For the object state change classification tasks, in the cur-
rent version we focus on the two-way classification problem
of whether there is a object state change in the egocentric
video. In Table 14, we illustrate the number of positive video
clips that contains an object state change and the number of
negative video clips that do not contain object state change
in the train/val/test splits. In all three splits, the positive and

Table 14. Number of positive and negative video clips of object
state change in train, validation and test splits.

Split Positive Negative Total
Train 20,041 21,044 41,085
Val 13,628 14,720 28,348
Test 13,561 14,870 28,431

Table 15. Results of State Change Classification accuracy (%).

Baseline Val Test
Always Positive 48.1 47.7
Bi-directional LSTM [91] 65.3 63.8
I3D ResNet-50 [29] 68.7 67.6

negative clips are balanced in number.

Besides the above learnable baselines, for object state
change classification, we also present the result of the naive
baseline of always predicting the positive category as the
prediction. For the PNR temporal localization task, we ad-
ditionally present the result of the naive baseline of always
selecting the center frame of the trimmed video as the PNR
frame, given the possible centre bias of the data.

The results for object state change classification task are
illustrated in Table 15. The naive baseline of always positive
prediction yields state change classification accuracy of close
to 50%. All the learnable baselines outperform the naive
baseline and achieve accuracy of more than 60% while Bi-
directional LSTM baseline achieves the best performance.
This shows that the learnable baselines can learn meaningful
information about object state change, though there is clearly
still space for improvement. One challenge in this task is
that there is very large variance in term of the types of object
state changes and objects contained in the videos.

The results for the PNR temporal localization task are
illustrated in Table 16. The naive baseline of always predict-
ing the center frame yields a temporal localization error of
around 1.1 seconds. Other learnable baselines can achieve
better temporal localization error of around 0.85 seconds or
less which shows the baseline models can learn meaningful
information for temporal localization of object state change.
Note that the SlowFast + Perceiver model achieves the best
temporal localization performance of 0.425 seconds on vali-
dation set and 0.489 seconds on test set, which highlights the
necessity of using attention-based mechanism to model the
change of object state. One challenge for this task is that in
some actions, e.g., cutting a piece of paper with scissors, the
state change of an object does not necessarily cause signifi-
cant change of visual appearance and therefore it is difficult
to localize the PNR.
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Table 16. Results of Point-of-no-return temporal localization error
(seconds).

Baseline Val Test
Always Center Frame 1.032 1.056
BMN [140] 0.780 0.805
I3D ResNet-50 [29] 0.739 0.755
Bi-directional LSTM [91] 0.790 0.759
SlowFast [70] + Perceiver [105] 0.804 0.828

G.8 Baselines: State Change Object Detection

While we expect that new methods developed for the tasks
of state change object detection will utilize all three input
frames (pre, PNR, post), in this initial stage of the bench-
mark, we only evaluate single-frame detection baselines,
where only the PNR frame Ipnr is used as input. We limited
our input as many methods for object detection are primarily
designed to work with a single image.

We present the implementation of several baseline meth-
ods for the state change object detection task. In general,
the baseline models for the task can be categorized into
two types: (1) directly detecting the bounding box of the
state change object including Faster-RCNN [190], Center-
Net [241], and DETR [27], and (2) detecting hand bounding
boxes first then predict state change object bounding boxes
given the hands such as the 100DOH model [199]. Specifi-
cally, the baseline methods are the following:

Faster-RCNN [190] is a two-stage anchor-based 2D ob-
ject detector on a single RGB image. In its classification
head, the state change object is the only positive category.
We train Faster-RCNN on our benchmark and use it to di-
rectly detect the bounding boxes of state change objects in
PNR frames.

CenterNet [241] is another object detection method on
a single RGB image. It estimates object keypoints to find
object center points and regresses all other object properties,
such as size, 3D location, and orientation. We train Center-
Net to directly detect the bounding boxes of state change
objects.

DETR [27] is an object detection model on a single RGB
image based on Transformer [216]. It views object detection
as a direct set prediction problem and uses a transformer
encoder-decoder architecture to produce a set of object pre-
dictions including bounding box information as well as other
information such as category. We train DETR to directly
detect the bounding boxes of state change objects.

100DOH Model [199] first detects the bounding boxes
of the human hand and objects as well as the relational
vectors that links from each hand bounding box center to
an object bounding box center. The final prediction of the
objects are decided as the object predictions that satisfies the
both the predictions of hand and relational vectors. We used

Table 17. Number of State Change Object and hand bounding
boxes in train, validation and test splits.

Split State Change Object Hand
Train 19,347 33,254
Val 12,912 22,098
Test 13,118 22,576

Table 18. Results of single-frame State Change Object Detection.
The performance is measured in Average Precision (AP).

Baseline Backbone AP AP50 AP75
Faster-RCNN [190] ResNet-101 [95] 13.4 25.6 12.5
DETR [27] ResNet-50 [95] 15.5 32.8 13.0
CenterNet [241] DLA-34 [233] 6.4 11.7 6.1
100DOH Model [199] ResNet-101 [95] 10.7 20.6 10.1

the 100DOH model pre-trained on 100DOH dataset [199]
to first detect hand bounding boxes and then predict state
change object bounding boxes given the hands.

We show the number of state change objects and hand
bounding boxes contained in our dataset in Table 17. The
results of single-frame State Change Object Detection are
illustrated in Table 18. All baselines struggle in detecting
the State Change Objects with only one frame as input as
an AP of 8-14%. There are several challenges in this task.
First, the bounding box sizes of state change objects have
large variance. For example, the size of state change objects
can be as large as half of image in the action of “painting the
wall” and as small as a few pixels in the action of “igniting
the match.” Second, when only using one frame as input,
the detection models did not consider the change of object
appearance across different frames. As future work, we
hope the researchers will investigate using models that take
multiple frames as input and perhaps develop frameworks
that incorporate tracking or association.

G.9 Discussion

This novel benchmark explores three aspects of objects un-
dergoing state changes as a result of hand manipulation: the
when (i.e. temporal localization of state change), where (i.e.,
spatial localization of objects that undergo change) and
what (i.e., semantic notion of action and object transfor-
mation). As a first step, we have explored these indepen-
dently using readily available localization and classification
methods. However, approaches that aim to tackle this chal-
lenge should focus on jointly understanding the manipu-
lation with its spatio-temporal impact on objects as these
are transformed. For example, knowing an object is being
split should offer a strong prior to the PNR localisation and
detect two or more bounding boxes after the point-of-no-
return. Such methods that tackle the dependencies between
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the tasks are yet to be developed. We hope this benchmark
will spur innovative approaches that bridge the gap between
action perception and the impact of actions on objects and
environments.

G.10 Contributions statement

Kris Kitani helped formulate and write the object state
change benchmark, designed the annotations and tasks for
the HO benchmark. Dima Damen helped with the formu-
lation and writing of the object state change benchmark,
designed the annotations for the Hands and Objects (HO),
and Forecasting benchmarks. Ilija Radosavovic coordinated
HO data annotation, annotation analysis, and contributed
to the definition and writing of the HO benchmarks. Ro-
hit Girdhar helped coordinate the HO data annotation and
annotation analysis. Abrham Gebreselasie adapted the Slow-
Fast+Perceiver model for PNR temporal localization. Qichen
Fu implemented all of the state change object detection base-
lines. Raghava Modhugu implemented the BMN baseline
for PNR temporal localization. Kristen Grauman contributed
to the formulation and writing of object state change bench-
mark. Siddhant Bansal helped with the processing of HO
data, development of HO data loader for PNR temporal lo-
calization and implemented the I3D ResNet-50 baselines.
Xingyu Liu was the lead coordinator and mentor of the HO
benchmark baseline implementations, and also contributed
to the definition and writing of HO benchmarks. Xuhua
Huang developed of the initial SlowFast+Perceiver model.
Yifei Huang implemented the Bi-directional LSTM baseline
for the PNR temporal localization and state change classifi-
cation.
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H. Audio-Visual Diarization Benchmark

This section details the Audio-Visual Diarization (AVD)
benchmark task definitions, annotations, baseline models,
and results. As noted in Appendix B, the AVD benchmark
uses only video where informed consent for capturing iden-
tities is explicitly collected from all participants in the scene,
including faces and voice.

H.1 Motivation

Egocentric human perception is driven by inferring useful
information from all the primary senses. While visuals cap-
tured by the eyes are one of the main information chan-
nels, sounds as captured by the ears are equally relevant.
In particular, for understanding humans’ interaction with
the environment from the first-person perspective, detect-
ing, localizing, tracking (both in 3D space and time) and
understanding sounds by combining the necessary acoustic
information with visual signals becomes even more critical.
Several psychophysical studies have proven that humans are
remarkably good at locating where a sound came from in 3D
space with respect to their head position [156]. Sensitivity of
humans to moving sounds in horizontal and vertical planes
is also well documented [117, 178].

For a long time, the computer vision community has
studyied the problem of precise localization of objects and
people, robustly tracking and segmenting them using im-
ages. In this effort, we aim to bring audio (human speech
in particular) into the mix. Truly audio-visual systems not
only enable richer capture and analysis of the environment
(and a user’s interaction with it), but they also help build
technologies for visually or acoustically impaired users (e.g.,
hearing aids, augmented reality).

The goal of this benchmark is to help advance the state
of the art in audio-visual understanding from the egocentric
viewpoint. Specifically, from a conversational perspective,
the benchmark aims to understand who is talking when, and
about what. From a visual perspective, we are also interested
in where the speaker is located. Given an egocentric video,
the proposed tasks require extracting the spatial location of
the speakers, their voice activity across the length of the
video, and the content of their speech.

Egocentric data presents several unique attributes to this
problem. Firstly, sound sources may be visible within all,
some, or none of the visual frames, depending on their move-
ment within the scene and the movement of the camera
wearer. Secondly, although the camera wearer is never visi-
ble (due the head mounted camera device) they are clearly
audible and in fact often amplified compared to the other
conversation participants due to the closeness to the micro-
phone that captures the video. Third, natural dynamics in
the scene (camera wearer walking, running, rapid changes
in head movement etc.) add significant blur and distortion to

the visual stream—some such noise is structured and rele-
vant for understanding the context and semantic content in
the scene.

H.2 Related Audio Visual Learning Work

There is a recent resurgence of work on audio-visual analysis
within and beyond the computer vision community. These
works tackle various aspects of audio-visual understanding,
including source localization, cross-modal feature learning,
audio spatialization, and audio source separation, as we
briefly review next.

On audio-visual detection and tracking, recent works
on multimodal learning explore ways to localize sounds
in a given video frame [14, 197, 212] and infer spatialized
sound from video [80, 161]. Capturing and processing multi-
channel audio is being studied in audio and microphone array
signal processing communities, specifically from a user’s
perspective to understand a given scene [101, 169]. Building
upon these, it is reasonable to expect that human-centric
audio has information content that can directly improve vi-
sual object categorization and recognition. Indeed, this is
observed in some recent work where audio disambiguates
certain visually ambiguous actions [110, 226]. For actions
and activity, audio events can also be directly used to per-
form summarization [13]. In particular, capturing ego-driven
actions and activity and separating them from general back-
ground actions and activity in the scene is critical.

Alternatively, visual information has been used to disam-
biguate certain audio tasks like speech transcription. Specifi-
cally, audio-visual speech recognition has received a lot of
attention in the last decade with multiple studies suggest-
ing that automatic speech recognition (ASR) could benefit
from visuals of the scene, or other non-acoustic informa-
tion [5, 104]. As shown in here, it is reasonable to expect
that lip reading from a first person point of view would also
benefit ASR systems.

In addition, audio-visual cross-modal learning may pro-
vide insight and solutions to one of the oldest problems in
egocentric human communication ecology, referred to as
cocktail party problem (CPP). The essence of CPP is “How
do we recognize what one person is saying when others are
speaking at the same time?” Human listeners must perceptu-
ally integrate the simultaneous sounds originating from one
person’s voice (e.g., harmonics and speech formants) and
segregate these from the concurrent sounds of other talkers.
In such situations, humans leverage visual information such
as from lip movements to better understand, while their au-
ditory system helps with focusing on a particular speaker
characteristic while ignoring other speech/noise. Recent
work on audio-visual diarization [83] and multimodal source
separation from video show that CPP and its variations can
benefit from visual signals [6, 57, 79, 81, 82, 171, 238].
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Furthermore, humans are pretty good in understanding
the context of a conversation even when words are incom-
prehensible. They are able to fill in the missing details using
their context knowledge. This can be extended to sound
sources that are non-humans as well. For a more detailed
account of CPP please refer to [17]. Fully addressing CPP
requires not only identifying and separating the different
sound sources in the scene, but also understanding the audi-
tory attention of the camera wearer—in other words, which
sound source is the user attending to at the moment, or which
one may the user want to attend to in the near future.

H.3 Related Datasets and Benchmarks

EPIC-Kitchens: [42, 44] EPIC-Kitchens is among the most
widely known ego-centric dataset with first-person view
events and annotations. The dataset comprises of multi-
faceted, audio-visual, non-scripted recordings in native en-
vironments, i.e. the wearers’ homes, capturing all daily
activities in the kitchen over multiple days. The dataset is
100 hours, 20M frames, 90K actions in 700 variable-length
videos, capturing long-term unscripted activities in 45 en-
vironments using head-mounted cameras. Annotations are
collected using a Pause-and-Talk narration interface. The
dataset is widely used in action recognition, action detec-
tion, action anticipation, cross-modal retrieval, as well as
unsupervised domain adaptation for action recognition.

VoxCeleb: [40, 165] VoxCeleb 1 and 2 comprise record-
ings of more than 6K speakers spanning a wide range of
different ethnicities, accents, professions, and ages. The data
is non-egocentric and is annotated for active speaker face
bounding boxes, face tracks, and anonymous person IDs.
VoxCeleb 2 in particular is defined for boosting research in
speaker recognition, and it contains over a million utterances.
Videos included in the dataset are shot in a large number
of challenging visual and auditory environments. These
include interviews from red carpets, outdoor stadiums and
quiet indoor studios, speeches given to large audiences, ex-
cerpts from professionally shot multimedia, and even crude
videos shot on hand-held devices. Audio segments present in
the dataset are degraded with background chatter, laughter,
overlapping speech and varying room acoustics.

VoxConverse: [39] VoxConverse is a related audio-visual
diarization dataset consisting of over 50 hours of multi-
speaker clips of human speech, extracted from YouTube
videos. Similar to VoxCeleb, this data is also non-egocentric.
This dataset was proposed to boost research in speaker di-
arization for audio-visual inputs. A bulk of the data instances
are from political debates and news anchors so as to capture
conversational scenarios with overlapping and interrupting
speech.

AVA: [31,192] The AVA spoken activity datasets are AVA
speech and AVA active speaker. AVA speech is a densely

annotated audio-based speech activity collection of AVA
1.0 third-person videos, and explicitly labels 3 background
noise conditions, resulting in approximately 46, 000 labeled
segments spanning 45 hours of data. AVA active speaker
associates speaking activity with a visible face, resulting in
3.65 million frames labeled across approximately 39, 000
face tracks.

AVDIAR: [84] The closest egocentric dataset for audio-
visual diarization is AVDIAR. It consists of 23 staged se-
quences, with each sequence duration ranging from ten sec-
onds to three minutes (a total of 27 minutes of video). Each
sequence comprises of 1-4 speakers some standing and some
walking around in the visual FOV and having a conversation.
The capture is done via a head mounted capture on a dummy
head.

EASYCOM: [53] EASYCOM is a recent dataset open
sourced for the purpose of boosting egocentric audio-visual
learning research with a focus on multi-channel data and
CPP. The dataset corresponds to 5 hours of conversational
content with 3 − 5 participants in a closed room setting.
The content involves playing games, ordering food from
a menu, and a general discussion on a prespecified list of
topics. During the recording of the conversations, restaurant-
like noise was played on loudspeakers in the room to mimic
a real restaurant scene. The EASYCOM capture device use
glasses with 6 mics attached to the frame. Although rich in
terms of multi-channel egocentric acoustic content, the setup
is constrained in terms of realism, the data is not in the wild,
and most importantly the dataset is small.

Existing audio-visual datasets vs. Ego4D: Of these ex-
isting datasets, EPIC-Kitchens, AVDIAR and EASYCOM
are egocentric. However, EPIC-Kitchens focuses on solitary
activity by the camera wearer, and neither the video nor
annotations accommodate audio-visual conversation tasks
requiring multiple people. Although EASYCOM contains
audio-visual conversation, it is a small dataset containing
partly scripted conversations that are not in-the-wild. The
participants in the sessions also do not move around. AV-
DIAR does include some participants who move around, but
the camera wearer is a dummy head and, similar to EASY-
COM, the data is not in-the-wild (sessions all are done in
the same environment/scene). Ego4D accounts for all these
aspects. Lastly, in contrast to VoxCeleb, VoxConverse and
AVA, Ego4D offers first-person video and its conversation
videos take place in casual daily-life environments with mul-
tiple speakers.

H.4 Tasks: Definition and Annotations

Here we detail the task definitions, the corresponding annota-
tions, and the evaluation metrics. We propose a suite of tasks
for the Audio-Visual Diarization (AVD) benchmark. These
tasks are abbreviated as: Localization & Tracking, Active
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Speaker Detection, Diarization and Transcription. These
tasks jointly capture who is talking when, to whom, and
about what in a given egocentric conversational scene. Ob-
serve that these tasks are implicitly tied to each other; each
subsequent task is driven in some form by a previous task
(as further clarified in the task descriptions below).16

Task 1: Localization & Tracking: Where is the person
in the visual field of view? This first task in AVD captures
the spatial position of all the probable speakers in the scene,
from the point of view of the camera wearer. The goal of the
task is to compute bounding boxes for them. Unlike classical
face detection benchmarks, this task is challenging in the
sense that the dynamics of the camera wearer’s head (coming
from natural conversations) leads to significant movement in
a speaker’s apparent spatial location.

Annotations: For each speaker present in the 5 min clip
a bounding box is provided. Each frame of the video is
annotated for the task. We first utilized a face detection and
tracking model to estimate these bounding boxes, and then
a team of human annotators validated and corrected these
machine-generated boxes to improve annotation quality. A
bounding box is considered a valid human annotation if it
captures 80% of the speaker’s face; we peform a quality
check steup to ensure this. Sideways looking faces are also
annotated. Note that speakers who are very far from the
camera wearer (oftentimes several meters away in the scene)
and who do not come into conversational contact with the
wearer are not annotated.

Evaluation: Recall that the goal of the task is to localize
as well as track the speakers in the scene. Hence the evalua-
tion metrics proposed account for the accuracy of trajectory
of detected bounding boxes. We follow the standard multiple
object tracking (MOT) metrics to quantify the speaker track-
ing results. There are many different MOT metrics, in which
we are most interested in the MOTA in the CLEARMOT
metrics [19], and IDF1, IDP, IDR in the Identity metrics [18].
MOTA, the multiple obtect tracking accuracy, is a combined
metric of false alarms, false positives and identity switches.
MOTA is based on matching the tracking results with the
ground truth at frame level, while the IDP (ID precision),
IDR (ID Recall) and IDF1 (ID F1 score) are based on the
tracking result to ground truth matching at the trajectory
level. ID metrics give a tracker’s performance on maintain-
ing correct identification for each target.

Task 2: Active Speaker Detection: Who is speaking?
The next task in AVD is to detect the active speaker in the
scene. This task is in principle similar to active speaker
detection—where the goal is to detect which of the visible

16Note that although speech transcription and source localization are
distinct from audio-only speaker diarization— all of which are well defined
research paradigms in mainstream audio, speech and vision community—
we cumulatively refer to all these together under the umbrella of audio-
visual diarization for Ego4D.

people in the scene are speaking at a given time [192]. It
builds on top of the previous localization and tracking task to
recognize each of the speakers whose face bounding boxes
are detected. Hence, this task does not take into account
speakers who are not visible in the camera’s FOV. Note
that active speaker detection is also an important aspect of
speaker diarization (which is the next task in the benchmark).

Annotations: We provide an anonymous speaker label
(e.g., speaker 1, 2 etc.) for each speaker visible in the clip.
The camera wearer is assigned the label C. This is done
by utilizing the face bounding box tracks annotations and
labeling each track one at a time. Hence, each face track
gets assigned one unique label, and multiple tracks within a
single clip may share the same label (corresponding to the
same speaker). However, the labels are clip-specific, i.e., a
speaker who may be present across multiple clips does not
get assigned a shared unique label across the clips. Again,
speakers who are never in the visual FoV are not assigned a
label.

Evaluation: We use the object detection mAP to quantify
the active speaker detection result. This is a frame-wise
metric. In a video frame, if the intersection over union (IoU)
between a detected face bounding box and the ground truth
face bounding box exceeds a predefined threshold, i.e. 0.5,
we have a positive face detection. Each detection has an
associated class to indicate whether it corresponds to an
active speaker. Active speaker detection methods give a
confidence score of the active speaker class for each detected
face bounding box [211].

Camera Wearer’s Voice Activity Detection: Note that the
camera wearer’s face is never visible in the camera’s field
of view, and so they do not have any face tracks associated
with them. However, in many cases, they are the dominant
speakers. This is mainly because they are driving the inter-
actions in many cases, and since their mouths are the closest
to the microphones, their voice is in general amplified in the
audio stream compared to other speakers. We propose to
also consider them as active speakers and detect their voice.
We use the object classification mAP to quantify the result
of the camera wearer’s voice activity detection.

Task 3: Diarization: Who spoke when? This next task
further expands on the temporal aspect of active speaker
detection (from the previous task). Given the set of speakers
and their spatial localization in the visual field of view, this
task aims to capture the voice activity of the speakers. It
is identical to speaker diarization, a well studied research
problem in the speech and audio domains [10, 177] and
answers the question, “who spoke when”. While speech
from speakers that overlap with each other is one of the
biggest issues to solve in this task, the egocentric perspective
adds more complexity in terms of head motions and other
dynamics associated with natural conversations. Note that
the outputs of active speaker detection (the earlier task in the
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benchmark) also drive this task.
Annotations: For every active speaker label (where the

annotations are from the previous Active Speaker Detection
task), a human annotator marks the start and end time of
that person speaking. We account for overlapping speech
segments where multiple speakers talk over each other, but
we ignore speech not relevant to the conversation such as
background speech from a TV or speech further away from
the camera wearer. Note that speech segments from the
camera wearer are also annotated. The annotators rely both
on the audio and the visual stream for creating these labels.

Evaluation: Diarization error rate (DER) is the de facto
evaluation metric for speaker diarization [11], and it is well
studied in the audio and speech processing community. DER
measures the fraction of total time (in a given clip) that is
not attributed correctly to a speaker or to non-speech. It is
defined as follows:

DER (%) = (Emiss + Efa + Espk)× 100, (21)

where Emiss denotes the fraction of time that has been pre-
dicted to be non-speech while that segment is attributed to
a speaker in the reference. Efa denotes the fraction of time
that has been predicted to be associated with a speaker, but
is actually labelled as non-speech in the reference, and Espk
denotes the fraction of time where speech is associated with
the wrong speaker. All errors are computed as a fraction of
the total amount of speech.

Task 4: Transcription: What did the speaker say? The
final task of AVD is to transcribe the speech of each speaker,
i.e., performing ASR. Similar to the diarization task, some of
the challenges associated with the transcription task include
overlapping speech and environmental noise. In addition,
the camera wearer’s head movement results in a significant
change of the audio volume of the speech recorded from
others.

Annotations: Since the clips contain multiple speakers
with overlapping speech segments and with different vol-
umes, the final transcriptions are obtained in multiple passes.
In the first pass, initial human annotations based on voice
segments are merged with automatic annotations for regions
with low volume. In a subsequent pass, human annotators
had to correct and assign segments of transcriptions to the
corresponding voice activity segments per speaker while
also annotating overlapping speech. Note that annotators
had both the audio and video available for annotation and,
besides spoken words, the occurrence of other artifacts such
as unintelligible speech or incomplete words have also been
annotated. The final transcription annotations for a clip con-
sist of a sequence of segments labeled with begin time, end
time, transcript and speaker ID within the clip. In evalua-
tions, we applied ASR to these segments individually and
computed the performance over all of these segments. Please
note that the time segments associated with the transcripts

are not the same as the ones used in diarization because we
separately annotated the overlapping regions here to reduce
transcription errors and account for speakers talking in low
volume. This allows us to also distinguish voice activity
from speech activity. In addition, the use of time-segmented
transcriptions is also slightly different from standard ASR
datasets in speech community which mainly have text and
no timestamps.

Evaluation: We utilize the Word Error Rate (WER), a
standard ASR metric, for evaluating this task [114]. First, the
minimum edit or Levenshtein distance is computed between
the reference and hypothesized transcription. WER then
measures the ratio of the number of word substitutions (S),
deletions (D) and insertions (I), i.e. the total number of edits
necessary to convert the hypothesized transcription into the
reference relative to the total number of words (Nw) in the
reference:

WER (%) =
S +D + I

Nw
× 100. (22)

H.5 Data Statistics

From across the 3,670 hours of video in Ego4D, approxi-
mately 764 hours of data contains conversational content,
and are directly relevant for the AVD and Social benchmarks.
Please refer to Section I.5 for a complete description of the
experimental design and scenarios used in these sessions.
From this set, a randomly chosen subset of 572 clips (each 5
minutes long) are annotated for this first version release. Of
these 572 clips, 389 clips are marked for training, 50 clips
for validation, and the remainder is the testing set.

Table 19 and Figure 43 summarize statistics about the
speaker content from across these clips. Observe the long
tails of mean and maximum number of speakers in the
dataset. We note that in the first version of the data release,
due to the fact that the total number of clips is relatively
small, the test and/or validation batches may be biased in
terms of changes in speakers’ accents, changes in vocabulary
usage (since the participants are from different cultural back-
grounds from across the world), and in general changes in
nature of interactiveness between speakers in a scene. There
is marginal distributional shift among the training, testing
and validation splits. This is mainly because of the smaller
number of annotations in this version of AVD for Ego4D.
We expect these distributional shifts to be less significant in
future releases and as more data will be annotated.

H.6 Baseline Modeling Framework

Recall that the 4-part tasks in this benchmark are tied to each
other, in the sense that representations learned from one task
may be relevant for the others. To that end, we propose a
baseline learning framework that addresses each task in a
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Figure 43. AV Diarization data statistics. Mean and maximum number speakers in FOV, and number speakers per clip.

Figure 44. AV Diarization benchmark annotations summary. The four tasks are annotated in a sequential fashion, starting with localization
and tracking of speakers, active speaker detection labels, diarization time stamps, and finally transcriptions. The figure shows the face
detections (highlighted by bounding boxes), speaker detection (shown by the anonymous person IDs 1, 2, etc.), active speaker (highlighted in
green) and voice activity (shown below in green highlighted time segments). Speakers in the visual FOV who are not talking are highlighted
in dotted red boxes. The clips used for AVD (and Social Interaction) have consent from participants to leave their faces unblurred.

Statistic (Avg.) Value
Speakers per clip 4.71
Speakers per frame 0.74
Speaking time in clip 219.81 sec
Speaking time per person in clip 43.29 sec
Camera wearer speaking time 77.64 sec

Table 19. AVD Data Statistics.

sequential fashion. The framework includes the following
steps:

• We first detect people’s heads and do short term track-
ing in the video. The short term tracker follows each
detected head by expanding a set of trajectories based
on their positions, sizes and the appearance of the per-
son. The trajectories may end when occlusion happens
or when the tracked person goes out of the field of view.
New trajectories can also be added to the trajectory set.

• The short term tracker’s trajectory for each person is
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Figure 45. Example annotations showing the face detections (highlighted by bounding boxes), speaker detection (shown by the anonymous
person IDs 1, 2, etc.), active speaker (highlighted in red) and voice activity (shown below in blue highlighted time segments). As illustrated
here, the data for AVD includes people walking around and talking, sitting and playing games etc. The clips used for AVD have consent
from participants to leave their faces unblurred.

often fragmented into multiple parts. Hence, we then
optimize the grouping of the tracklets in step one so that
the trajectories of each person can be linked together.
We formulate the problem as a constrained combina-
torial optimization problem. Integer programming can
be used to solve the problem directly but it has expo-
nential complexity. For efficiency, we develop a greedy
approach which is much faster and still gives strong
results.

• We then classify each person/head in each video frame
as an active speaker or not. Based on the classifica-
tion result and the corresponding detected long-term
trajectories, we further associate the audio/speech to
each person in the video. We use this preliminary list of
audio feature embeddings to further extract and match
un-associated audio segments to speaker labels.

• We then use two methods to detect the camera wearer’s
voice activity. The first method uses high energy audio
segment in the clip (under the assumption that their
voice has natural amplification compared to the remain-
ing speakers). The second method is a deep classifier
that predicts whether the wearer is speaking.

• Lastly, we applied ASR to the speech regions based on
the ground truth segmentation and evaluated the WER

across all segments. Evaluating the system by using
another segmentation method is challenging especially
in the case of overlapping speech segments. Jointly
modeling time segments and transcriptions will be a
challenging problem (as we discuss in Section H.7).

We describe further details about each of these steps be-
low, and Tables 20–29 summarize the resulting performance
metrics for the tasks.

Audio Only Models for Speaker Diarization The prob-
lem of speaker diarization from audio has been studied to a
considerable extent in the field of speech processing [10,177].
For the audio-only baseline system, the VBx diarization
approach has been utilized [128] for having shown supe-
rior results on different types of datasets such as CALL-
HOME [3] (telephone conversations), AMI [28] (meetings)
and DIHARD II [59] (myriad of domains ranging from au-
diobooks to YouTube videos). This method requires speech
activity regions and these were obtained using the ASpIRE
model based on a time delay neural network (TDNN) with
statistics pooling, available with the Kaldi speech recogni-
tion toolkit [181]. We refer to this as kVAD (the Kaldi VAD
model). Although this kVAD has been trained on slightly
different data (telephone conversations), and thus does not
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provide the best possible results, it has been chosen for the
baseline system because of its general availability.

The speech activity regions are uniformly segmented to
obtain shorter segments and speaker embeddings (so-called
x-vectors [206]) are extracted one per subsegment. The x-
vectors are obtained with a ResNet101 extractor [96] trained
to produce speaker-discriminative embeddings. The input
to the network are log Mel-filter bank features every 10 ms,
and given a segment of speech, it computes a single 256
dimensional vector that represents the whole segment. The
information of the whole segment is aggregated with a sta-
tistical pooling layer which computes the mean and standard
deviation of activations over the time domain. A linear
transformation is then used to reduce the dimensionality to
256. The training data consisted of VoxCeleb1 [165], Vox-
Celeb2 [40] and CN-CELEB [64] together, totalling 2877
hours of speech from 8178 speakers.

The x-vectors are initially clustered to a few dozens of
classes using agglomerative hierarchical clustering. This
initial clustering is fed as initialization to a Bayesian hid-
den Markov model which estimates altogether the number
of speakers in the recording as well as the assignment of
x-vectors to the states. Each state in the model corresponds
to one speaker and the probability of observing a particular
x-vector in a particular state can be interpreted as the cor-
responding speaker producing the corresponding segment
of speech. The most relevant hyperparameters of the model
were fine-tuned to obtain the best DER performance on the
Ego4D validation set. The VBx implementation published
by Brno University of Technology is publicly available as
well as the training recipe published by Phonexia Research.

Short-term People Tracking The goal here is to track peo-
ple’s faces. However, our method can also be used to track
the whole body of each person. The short-term tracker main-
tains a set of trajectories. The trajectories include the at-
tributes such as the person-ID, the frames tracked, a life
counter, the appearance features and the positions of the
tracked bounding boxes. Throughout, we use the term
“person-ID” to refer to an anonmyous tag for a person in
the video (person 1, person 2, etc.); no actual identities are
available in the data, and the benchmark does not aim to
perform any person identification. There are two kinds of
trajectories. If a trajectory’s tracked frames are less than a
threshold, e.g. 5, it is in probation and is not counted as a real
trajectory even though we maintain all the information for
them. When a trajectory’s tracked frames are greater than the
threshold, it becomes a real trajectory. Each trajectory also
has a life span. The life of a new trajectory starts from a fixed
value. The life of a trajectory is restored to a fixed maximum
value, such as 10, if the trajectory is matched to a candidate
person head bounding boxes. Otherwise, the trajectory goes
into a maintenance mode and its life decreases by 1 each
time it fails to find a match. If the life of a trajectory goes to

0, it is removed from the trajectory set.
The key component of the short-term tracker is matching

trajectories to the candidate head bounding boxes in each
frame. This can be formulated as the following optimization
problem:

min
∑
(i,j)

ci,jxi,j (23)

s.t. xi,j forms a max-matching,
xi,j = 0, if (i, j) ∈ E,
xi,j = 0, 1,

where xi,j is 1 if trajectory i matches candidate head box j
and 0 otherwise. E is a set in which the pairs of trajectory
and candidate cannot match each other, examples include
cases such as the candidate is too far away, the size is too
different or the appearance does not match. ci,j is the cost of
matching trajectory i and candidate head detection j. This
cost of matching, ci,j , is computed as a linear combination
of the normalized bounding box distances and the difference
of the appearance features. The normalized bounding box
distance is defined as the ratio of the Euclidean distance
between the two corners of the last bounding box in the
trajectory and the detected head bounding box in the image
to the size of the detected bounding box. Each trajectory also
maintains a feature vector to characterize the most recent
appearance of the tracked person. This feature vector is
obtained from a feature embedding network trained on a
large person head dataset.

This optimization problem can be solved efficiently us-
ing the Hungarian algorithm or the primal dual algorithm.
Due to the imperfect features, the optimization may have
an identity switching problem if two targets cross paths.
To solve the problem, we enforce the longer trajectories to
have higher priority to match. We use a two-step matching
scheme. We first match all the trajectories that are longer
than a specific threshold chosen empirically. Once done, we
then match the shorter trajectories. This scheme naturally
gives higher priority to longer trajectories, thereby reducing
mismatches among them. This is more robust than a single
stage matching where all trajectories are handled together.

In our implementation, the person detector is a Yolo-V3
detector [187] which detects the head and person bounding
box simultaneously. The detector is trained on images from
the Google OpenImage dataset [123] and a fisheye image
dataset [73]. We use the detected head bounding boxes for
people tracking. The person head appearance’s feature is
extracted using the person embedding network, which is
trained on the VoxCeleb2 dataset using the triplet loss. The
network has the structure of a ResNet-18.

Long-term Tracking by Trajectory Matching The short
term tracker generates fragmented person trajectories. If a
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person is occluded or goes out of the field of view and reap-
pears, it will receive a new ID. The fragmented trajectories
are referred to as tracklets. We need to group the tracklets
throughout the whole video to generate the final trajectories
for each person. The grouping problem can be formulated
as follows:

min
∑
m,n

Dm,nym,n (24)

s.t. ym,n = yn,m,∀m,n,
ym,k + yk,n ≤ 1 + ym,n,∀m,n,
ym,n = 0, if m and n overlap in time or Dm,n > g,

ym,n is binary ,

where ym,n = 1 if tracklet m and n can be grouped together
and otherwise ym,n = 0. Dm,n is the appearance distance
between the trackelet m and n and g is a threshold. Here
Dm,n = min{i∈Tm,j∈Tn} ||fi − fj ||2, where Ti is the set of
person head boxes in tracklet i and fi is the corresponding
feature embedding. The constraints require the grouping to
be reflective: if tracklet m and n can be grouped together
so can n and m, transitive: if m and k can be grouped to-
gether and so can k and n, then m and n can be grouped
together. Two tracklets cannot be grouped together if they
have time overlap or their distance is greater than a threshold
g. The optimization can be solved using integer program-
ming. However, this method has exponential complexity.
We propose a fast greedy algorithm to solve the problem.

The greedy algorithm starts by treating each initial track-
let as a trajectory and progressively groups two trajecto-
ries with the closest D until no trajectories can be grouped
together. Since the distance between two trajectories can
be computed by finding the minimum of all the “element”
tracklet pair distances, the merging procedure is efficient if
we pre-compute and cache the element pair distance. This
greedy approach gives strong results while maintaining low
complexity.

The algorithm reduces to the minimum spanning tree
method if there is conflict between each pair of trajectories.
However, if there are time-conflicting tracklets, there is no
guarantee the greedy algorithm gives the globally optimal
solution. We illustrate the method through a simple example:
Assume there are trackelets {T1,T2,T3,T4}, T1 and T2 have
time conflict, and T3 and T4 have time conflict. D(T1,T3)
= 10, D(T2,T4) = 1, D(T1,T4) = 3 and D(T2,T3) = 4. We
assume g = 20. Using the proposed greedy method, the
solution P is {{T2,T4},{T1,T3}} whose overall cost is 11.
However, the optimal solution is {{T1,T4},{T2,T3}} whose
overall cost is 7. Even though the greedy method does
not guarantee the global optimal solution, empirically we
observe that the proposed method give strong results. In
fact, if the person embedding is accurate, these corner cases

Metric Valid Test
MOTA 74.52 71.94
MOTP 79.07 79.17
IDF1 84.92 80.07
IDR 80.40 73.52
IDP 89.97 87.90

Table 20. Localization and tracking baseline metrics on the valida-
tion and the test sets respectively.

would probably never occur and the greedy result would
approach the globally optimal solution.

Table 20 summarizes the tracking metrics MOTA, MOTP,
IDF1, IDR, and IDP on the validation and test sets.

Active Speaker Detection: We use two approaches for ac-
tive speaker detection. One approach is based on mouth
region classification, and the second method is a trans-
former based audio-visual method for active speaker de-
tection [211].
RegionCls: Our first approach is based on the classification
of mouth regions. It first computes the 3D head orientation
using a regression network. In our implementation, the z
direction is into the image; if the head 3D orientation z
coordinate on the unit sphere is greater than 0.3, we assume
the face is away from the camera. If the face is facing
away from the camera, we ignore the image and the active
speaker detection result is set to null. For faces looking at
the camera, our method first regresses the facial key points
using the image within the person’s head bounding box. We
use the mouth key points to crop out the mouth image. The
cropped mouth image is then sent to a classification network
to classify whether the speaker is talking or not.

Note that we also explored using multiple images,
wherein we stack a short sequence of cropped mouth im-
ages in a time interval for active speaker classification. Our
experiments show the multiple mouth images input do not
significantly improve the result. This is probably due to the
fast movement of the camera and sometimes difficult angles
of the face. This causes inaccurate cropped mouth regions.
TalkNet: [211] TalkNet is an end-to-end pipeline that takes
the cropped face video and corresponding audio as input,
and decides if the person is speaking in each video frame. It
consists of a feature representation frontend and a speaker
detection backend classifier, as illustrated in Figure 46. The
frontend contains an audio temporal encoder and a video
temporal encoder. They encode the frame-based input audio
and video signals into the time sequence of audio and video
embeddings, representing temporal context. The backend
classifier consists of an inter-modality cross-attention mech-
anism to dynamically align audio and visual content, and a
self-attention mechanism to observe speaking activities from
the temporal context at the utterance level.
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Algorithm 1 Greedy Tracklet Grouping

Initialize sets P={S1,S2, ..., SN}, where Si = {Ti}, Ti is the tracklet i and N is the number of tracklets.
for (m, n), m=1..N and n=1..N do

compute D(m,n)
end for
while True do

for (Sm, Sn), Sm ∈ P and Sn ∈ P , and (Sm, Sn) do not have time conflict do
compute F (Sm, Sn) = minTa∈Sn,Tb∈Sm D(a, b)

end for
(m∗, n∗) = argmin(F (Sm, Sn))
if (m∗, n∗) is empty or F (Sm∗ , Sn∗) > g then break
end if
Sm∗ = Sm∗ ∪ Sn∗ and P.pop(Sn∗ )

end while
P includes the grounded trajectories

Figure 46. TalkNet: An audio-visual temporal network for detecting and tracking the active speaker in a video [211]. Figure is from [211].

Tables 21, 22, 23 and 24 summarize the resulting per-
formance. For each of the two proposed baseline models,
we report performance summaries with pretraining based on
AVA and also models trained using only videos from the
Ego4D training dataset. Note that the video-only approach
can be combined with any voice activity detection to remove
false alarms. Here we use such an algorithm from [203], and
we refer to this as sVAD This can greatly improve the active
speaker detection results. The max-filtering has a window
size of 11. TalkNet also has a built-in smoothness filtering
to post-process the raw classification result.

Model mAP@0.5
RegCls w/o smoothing 29.68
RegCls + max-filtering 31.95
RegCls + max-filtering + sVAD 33.72
TalkNet 34.75
TalkNet + sVAD 34.56
Always Speak 24.46

Table 21. Active speaker detection baseline metrics on the test
set with pre-training using AVA. In Always Speak, all the detected
faces are classified as active speakers.

Model mAP@0.5
RegCls w/o smoothing 29.65
RegCls + max-filtering 32.77
RegCls + max-filtering + sVAD 34.35
TalkNet 50.90
TalkNet + sVAD 49.66

Table 22. Active speaker detection baseline metrics on the test set
using training videos in the Ego4D dataset.

Model mAP@0.5
RegCls w/o smoothing 22.09
RegCls + max-filtering 22.88
RegCls + max-filtering + sVAD 25.53
TalkNet 34.36
TalkNet + sVAD 34.65
Always Speak 20.94

Table 23. Active speaker detection baseline metrics on the valida-
tion set with models trained on AVA dataset. In Always Speak, all
the detected faces are classified as active speakers.

Matching Speakers Outside FoV: Based on the tracked
heads and the active speaker detection results, we can asso-
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Model mAP@0.5
RegCls w/o smoothing 20.33
RegCls + max-filtering 21.93
RegCls + max-filtering + sVAD 24.60
TalkNet 51.04
TalkNet + sVAD 50.58

Table 24. Active speaker detection baseline metrics on the valida-
tion set using training videos in the Ego4D dataset.

ciate the audio to the visible people in the scene. However,
this is still not complete because there are cases in which the
speaker is outside of the visual field of view. To solve this
problem, we first create an audio-signature for each visible
person in the video.

We extract one second of audio centered at each video
frame time instant. If the audio corresponds to a speaking
head in the image, we compute the audio embedding of
the one second audio and insert the feature into the audio
signature library of the person. The audio embeddings can be
obtained from any speech representation learning methods.
We explored several models including a modified ResNet18
which takes audio spectrogram logarithm magnitude in one-
second windows as the input and trained on the VoxCeleb2
dataset using triplet loss, and a version of wav2vec 2.0 [15]—
a self-supervised approach to speech representation learning.

We parse the video and find instants when a particular
person is not in the video frame and match the audio em-
bedding to the person’s audio signature library. We find
the minimum distance of this audio embedding to all the
signature audio embeddings in the library. If the distance is
less than a predefined threshold, we classify the person as
speaking and otherwise not. Note that the audio embedding
is used only within the same 5 minute video clip and never
across video clips. Person IDs are always anonymous tags
(person 1, 2, etc.).

We use this method to detect all the background audio of
the people of interest when they are not visible. This method
assumes that the active speaker is perfect. In reality, active
speaker gives noisy results. This would cause other people’s
voice feature to be included in a person’s signature library
and affect the final audio classification result.

Tracking Camera Wearer’s Audio: The camera wearer is
a special participant because their face is invisible in the
egocentric videos. The active speaker detection method thus
cannot be used to associate the wearer with their voice. We
use two methods to detect the camera wearer’s voice.

Method I: The first method uses energy filtering followed
by audio matching. This method does not need ground truth
labeling of the camera wearer’s voice activities. Since the
microphone of the camera is usually closer to the wearer’s
mouth than other subjects in the scene, the amplitude of the

wearer’s voice often has higher energy than other partici-
pant’s voices. We use this heuristic to extract candidates of
the wearer’s voice by choosing portions of audio with energy
higher than certain threshold. Since different recordings
have different levels of loudness, we normalize the audio
using the maximum energy and then choose the possible
wearer’s voice using a fixed percentage of the maximum
energy. This threshold percentage is set to be as high as
possible to avoid false alarms. Once the candidate audio is
selected, we use the same audio matching method described
in the previous section to find all the audio that belongs to
the camera wearer. This simple method works reasonably
well as summarized in Table 25. The approach fails when
the wearer never talks or talks in a very low voice, and in
general the baseline works better for near range microphones
than long range microphones.

Method II: In the second method, we directly classify
the audio at each time instant to two categories: wearer’s
voice or not wearer’s voice. The logarithm magnitude of the
spectrogram at 40ms window is the input. The network is a
modified ResNet. The network is trained on the Ego4d AV
training dataset using a standard cross-entropy loss.

We use classification mAP to quantify the wearer audio
activity detection result. We report the average mAP on
both the test videos and validation videos in Table 25.

Model Valid Test
Method I 43.95 50.61
Method II 72.00 74.29
Always Speak 21.30 26.09

Table 25. Camera wearer activity detection baseline metrics (mAP)
on the validation and test sets respectively. Always Speak assigns

that the wearer speaking in each video frame.

Speaker Diarization Tables 26 , 27 and 28 summarize the
speaker diarization DER metrics for the baseline models
proposed in the earlier sections. We report the results with
training only on Ego4d data as well as on with training on
existing diarization datasets. Note that the audio-only DER
is aggregated while the audio-visual DER is averaged. Also
note the impact of the VAD on the diarization performance
with the audio-only baseline. It should be noted that a model
more tailored to Ego4D-like data could be used to obtain
better performance. Nevertheless, this aspect still poses
challenges on the AVD benchmark.

Transcription To obtain baseline transcriptions, we used
the pre-trained Gigaspeech model provided in the ESPNet
model zoo [1]. This model is trained on the Gigaspeech
dataset [34] which contains 10000 hours of speech. Input
features to the model are logmel features augmented using
the SpecAugment method [173] and normalized by global
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Model trained sVAD DER [%]
on Ego4D

RegionCls no no 84.79
RegionCls no yes 83.88
TalkNet no no 86.68
TalkNet no yes 85.85
RegionCls yes, only no 80.52
RegionCls yes, only yes 80.17
TalkNet yes, only no 73.14
TalkNet yes, only yes 73.32
Always Speak - - >100
Never Talk - - 100

Table 26. Diarization Baseline Metrics showing DER on the test set.
In Always Speak, all the detected people are labeled as ”speaking”
in each video frame. In Never Talk, all the detected people are
labeled as ”not speaking” in each video frame.

Model trained sVAD DER [%]
on Ego4D

RegionCls no no 98.82
RegionCls no yes 90.98
TalkNet no no 99.73
TalkNet no yes 92.14
RegionCls yes, only no 81.66
RegionCls yes, only yes 79.97
TalkNet yes, only no 80.58
TalkNet yes, only yes 79.30
Always Speak - - >100
Never Talk - - 100

Table 27. Diarization baseline metrics showing DER on the val-
idation set. In Always Speak, all the detected people are labeled
as ”speaking” in each video frame. In Never Talk, all the detected
people are labeled as ”not speaking” in each video frame.

Type of VAD Valid Test

kVAD 67.24 65.28
Ref. Activity 36.56 39.99

Table 28. Diarization performance with audio-only models for
validation and test sets using kVAD and reference (ground truth)
voice activity annotations.

mean-variance normalization. The encoder of the acoustic
model is based on macaron-style conformer [93] with 12
blocks and 8 attention heads and the decoder is based on a
6-layer transformer [217] with 8 attention heads. In both the
encoder and decoder, linear layers have 2048 units and the
encoder output is 512 dimensional. The decoder output has
5000 sentencepiece [122] units. The model is trained using
a joint CTC and attention objective [112]. For decoding, no

language model is used. For decoding, we used CTC weight
of 0.3 and beam size 20 which we did not fine-tune on the
Ego4D dataset. The pre-trained model obtained from [1]
cannot support 5-min videos, hence, we used oracle segment
information from the transcription annotations to segment
the data and we decoded each segment separately. The final
WER is obtained by counting the total number of errors over
the whole validation or test set.

In Table 29, we summarize the WER results depending
on the VAD segmentation method on both validation and test
sets. To compute the final WER, we 1) removed punctuation
from both the reference and the ASR hypothesis, 2) allowed
soft-match on contractions such as (I will vs. I’ll) using the
English global mapping file from Kaldi repository [2], and 3)
used the NIST sclite tool [72]. As we can see from Table 29,
on both the test and validation sets, the WERs are quite high.
This shows that the dataset is challenging for an off-the-shelf
ASR model because of overlapping speech, noise, different
volume levels for different speakers, occasional foreign word
usage, etc.

Speech Segments Valid Test

Ground Truth 64.8 59.2

Table 29. ASR transcription WERs (%) on the validation and test
data using the reference speech segmentation.

H.7 Discussion

Although AV diarization presents a task suite composed of
reasonably well understood tasks from the vision, speech
and audio communities, our baseline results clearly suggest
that efficient speaker localization, tracking, diarization and
transcription is a rather complex problem in the egocentric
perspective and with in-the-wild data. This is specifically
evident from the performance of the joint audio and video
driven diarization and transcription baselines (with DER of
> 80% and WER of > 60%). Overlapping speech makes
both these tasks particularly difficult to annotate as well
as evaluate any proposed models. Performing some audio-
visual source separation prior to these tasks may improve the
efficacy, nevertheless sensitivity to changes and difference
in speech amplitudes of overlapping speakers would still be
challenging to address.

Novel cross-modal learning approaches that jointly model
audio and visual modalities while accounting for such at-
tributes (overlapping speakers, interruptions, noise in the
wild etc.) are needed to further improve these performances.
The baseline framework we utilized here also does not ac-
count for efficient information sharing across the four tasks
in the benchmark. Specifically, the relationship between ro-
bust localization and tracking with multi-speaker diarization
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is not studied, and this is also not well understood in the
literature. We expect this to be a challenging problem.

We also observed that subjective attributes in conversa-
tions, like speaker accents, changes in vocabulary usage
based on cultural differences etc., influence both the content
of the speech and the clarity with which it can be captured
in human annotations. The camera wearer’s head motion
adds significant blur to speakers’ faces. To account for such
aspects we performed quality checks on human annotations,
and we expect novel unsupervised and self-supervised learn-
ing will help further address such subjective attributes.

In future versions, we expect to increase the scope of
the task suite (i.e., proposing new tasks and annotations),
thereby opening new avenues for both core machine learning
in first person perspective, and also for robust multi-modal
representation learning. We could also investigate research
directions focused on spatial audio by creating 3D environ-
ments coupled with SoundSpaces [32]. This enables new
research and tasks in audio-visual sound source localiza-
tion, audio-visual direction-of-arrival estimation and related
immersive reality applications. We note that a small frac-
tion of our dataset does comprise of binaural audio captured
using in-ear microphones and an audio recorder (Tascam,
Appendix A).

H.8 Contributions statement

Vamsi Krishna Ithapu co-led the audio-visual diarization
benchmark workstream, the corresponding tasks definition,
data selection methodology, data annotation tooling and
guidelines and writing. Christian Fuegen co-lead the audio-
visual benchmark workstream, the diarization and transcrip-
tion tasks definition, the corresponding annotation guidelines
and paper writing. Hao Jiang worked on data annotation
tooling, tasks definition for localization and tracking, active
speaker detection and diarization; also worked on building
the baseline models for these tasks and writing. Federico
Landini and Jachym Kolar worked on baseline models for
audio-only voice activity detection and diarization, and writ-
ing. Leda Sari worked on transcription task definition, corre-
sponding annotation guidelines and baseline modeling. Eric
Zhongcong Xu worked on data selection methodology and
the baseline modeling of active speaker detection. Ruijie
Tao and Mike Zheng Shou worked on the modeling of active
speaker detection. Hanbyul Joo worked on data annotation
tooling and data selection methodology. Christoph Feicht-
enhofer worked on the task definition and metrics. Anurag
Kumar worked on active speaker detection and diarization
tasks definition, and on audio embeddings modeling for these
tasks. Morrie Doulaty worked on baseline models for voice
activity detection and diarization and data analysis of anno-
tations. Lorenzo Torresani worked on the tasks definition
and annotation guidelines. Kristen Grauman contributed to

the benchmark formulation and writing.
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I. Social Interaction Benchmark

This section details the Social Interaction benchmark task
definitions, annotations, baseline models, and results. We
also provide details on the video data collection process
for multi-person capture with participants who consented to
have their faces unblurred and conversation recorded (Ap-
pendix I.5). As noted in Appendix B, the social benchmark
videos were screened to remove any information (e.g. last
names or social media accounts) that could directly identify
participants. However, participants’ faces and voices are
present as per our informed consent.

I.1 Formal Task Definition

LAM and TTM are defined as follows: (1) LAM: y =
f(I,B); (2) TTM: y = f(I,A,B) where I = {It}T2

−T1
,

A = {At}T2

−T1
, and B = {Bt}T2

−T1
are time-synchronized

past sequences of video, audio, and bounding boxes, respec-
tively, where T1 and T2 are the length of the past and future
time horizon, respectively, and t = 0 is the center frame.
The bounding box indicates the target person to classify. y
is a binary classification label defined by:

y =

{
1 if target looks/talks at camera wearer
0 otherwise.

(25)

The LAM and TTM tasks are defined as a frame-level
prediction y, which stands in contrast to audio analysis tasks
where labels are often assigned at the level of audio frames
or segments. A desired model must be able to make a con-
solidated decision based on the video and audio cues over
the time course of an utterance. For example, if the speaker
turns their head to the side momentarily while speaking to
the camera-wearer, then a frame where the speaker is looking
away would have yLAM = 0 while yTTM = 1. Figure 47
gives some frame level visualization of annotations that il-
lustrate the task definitions.

I.2 Annotation Statistics

The social task annotations, LAM and TTM, build on the
same video clips used in the AV diarization tasks and de-
scribed in Appendix H.5. Fig 48 summarizes the statistics of
LAM and TTM annotations across these clips. We compute
the percentage of the frames with LAM or TTM annotations
in each clip and show the histograms in Fig 48 (a) and (b),
respectively. In many clips, these events happen rarely (10
% or lower), and the frames with LAM annotations are less
frequent than TTM cases. We also list the duration of each
LAM or TTM annotation (the duration between start and
end time) in Fig 48 (c) and (d), in order to illustrate the
significant variations in length. The most frequent case is

(a) Annotation tool

(b) Visualization of annotations.

Figure 47. (Top) The GUI of the annotation tool; (Bottom) Vi-
sualization of example annotations. Note that LAM (denoted by
magenta text) and TTM (denoted by cyan text) may not necessarily
occur together as shown in these examples.

short-duration LAM or TTM behaviors, lasting 1 or 2 sec-
onds. The data was organized as follows for baseline model
training in Section I.3: 389 clips were held out for training,
comprising 32.4 hours in total. An additional 50 clips (4.2
hours) and 133 clips (11.1 hours) were held out to form the
validation and testing sets, respectively.

I.3 Social Baseline Models and Results

LAM Our baseline model for LAM is a video-based model
using ResNet-18 and Bidirectional LSTM. Our model uses
the cropped face regions in video as input in order to focus
on cues about the head pose and social attention visible in
the face. The architecture of our baseline is similar to the
Gaze360 [111]. As illustrated in Fig 49(a), we input 7 con-
secutive frames (T1 = 3 and T2 = 3) from one face tracklet,
and each image is resized to 224×224. Each frame is then
processed by the ResNet-18 backbone independently to gen-
erate 256 dimensional face features. The feature sequence is
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Figure 48. Social task annotation statistics. (a) Histogram showing
the number of clips vs. the percentage of frames with look-at-me
annotations; (b) Histogram showing the number of clips vs. the
percentage of frames with talk-to-me annotations in each clip; (c)
Histogram showing the duration of look-at-me annotations; (d)
Histogram showing the duration of talk-to-me annotations.

encoded by a Bidirectional LSTM, which has two recurrent
layers with dimensionality 256. The output is fed into a
classification head to predict the binary LAM result for the
center frame at the t-th timestamp. The LAM task has a
class imbalance issue, and we use weighted cross-entropy
loss. Since the architecture is similar to Gaze360, we have
two options for the initialization: first, initializing the back-
bone from a pretrained Gaze360 model; second, initializing
the model randomly and training from scratch on Ego4D.
During training, we sample center frames with a stride of 3.
The network is optimized by Adam with a learning rate of
5× 10−4.

The results are shown in Table 30. Our baseline model
achieves an mAP of 66.07% on the test split when initialized
randomly, and the performance is higher at 78.07% when
initialized from Gaze360. These findings highlight the close
relationship between the LAM task and gaze estimation. The
random guess model achieves about 8% accuracy because
the negative samples account for 92% of the test split and
the model always predicts looking at me.

TTM The baseline model for TTM digests multi-modal in-
puts: each audio segment is paired with an associated face
crop. Since the audio segments vary substantially in duration,
we break the long utterances into short segments whose max-
imum duration is limited to 1.5s. If the segment is shorter
than 0.15s, we skip it in the training stage. The associated
faces are also resized to 224×224, and the video encoder is

val test
Acc mAP Acc mAP

Random Guess 8.57 51.19 7.98 50.96
Baseline (Gaze360) 91.78 79.90 87.97 78.07
Baseline (Random) 86.45 72.11 75.38 66.07

Table 30. Results of LAM. The baseline model was initialized
from Gaze360 [111] (2nd row) and at random (3rd row).

the same as LAM. However, sometimes the speakers leave
the field of view or become invisible due to the rapid motion.
In this case, we pad the face sequences with blank images.
The MFCC feature is extracted every 10ms with a 25ms win-
dow length. The feature is then fed into the audio backbone,
a ResNet-18 designed for audio tasks [38]. Following the
encoders, we concatenate the audio and visual embeddings
and pass them to the final classification head to get the TTM
result for the visible faces associated with the segment. To
train the model in parallel, we first sort the short segments
based on the length and group the segments into a batch if
they have the same duration. The batch size is restricted by
the GPU memory; we use a batch size of 400. The model is
also optimized using Adam with a learning rate of 5× 10−4.

Table 31 summarizes the TTM results. TTM is more chal-
lenging than LAM. We can see that our baseline model only
increases the mAP by 9.77% on the test split in comparison
to the random guess model.

I.4 Discussion

While the benchmark tasks of detecting when attention and
speaking behaviors are directed towards the first-person are
closely related to existing analysis tasks, it is clear from
the baseline performance that there is substantial room for
improvement, with mAP of 78.07 for LAM and 55.06 for
TTM.

The TTM task is particularly challenging because it re-
quires analysis of the audio content to understand the target
audience of an utterance, as well as the fusion of audio and
video cues. The most complete solution to this problem will
require an understanding of the semantics of the utterance in
the context of an evolving conversational interaction. Future
work on this task might involve more sophisticated language
modeling and possibly hierarchical analysis approaches that
allow the integration of cues at multiple levels, e.g. at the
dialog level to understand who is participating in a conversa-
tional exchange, at the utterance level to access semantics,
and at the audio level to exploit prosodic and other cues.

The LAM task presents additional challenges such as the
need to deal with motion blur and fast head movements,
and may also benefit from a more explicit modeling of head
movement and the patterns of gaze behavior that arise in
conversational interaction.
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(a) LAM

(b) TTM

Figure 49. Baseline model architectures. (a) LAM model uses
a ResNet-18 as a backbone to extract the feature of each frame.
A Bidirectional-LSTM then takes the sequence and encode the
features into one embedding. We pass the embedding to FC layer
that predicts the LAM result. (b) TTM model has two encoders.
The video encoder is the same as LAM. The audio encoder extracts
the MFCC frequency map of the audio segment and the feature is
fed into a ResNet-18 network. The visual and audio embeddings
are concatenated and passed through the FC layer to predict the
target of this utterance.

val test
Acc mAP Acc mAP

Random Guess 32.44 53.82 47.41 50.16
Baseline 64.31 56.50 49.75 55.06

Table 31. Results of TTM. The baseline model is initialized ran-
domly.

I.5 Social Dataset Collection

The Ego4D Social data collection process was designed to
achieve: 1) naturalistic interactions, 2) multi-modal capture,
and 3) diverse participants and environments. Participants
consisted of friends and family groups and data was captured
in residences and local neighborhoods, ensuring naturalistic
interactions. Capture hardware varied across sites but in-
cluded wearable cameras, wearable eye trackers (at Georgia
Tech and Indiana University), binaural recording systems,
and smart watches (at Georgia Tech). Protocols included
highly-structured settings, where participants were asked to
play games over a period of a few hours in a residence, and
unstructured settings where participants captured social in-
teractions in daily life over a period a week or more. Sample
social interaction contexts included playing board and card
games, preparing meals, and going on walks. The bulk of the

data collection took place during the COVID-19 pandemic,
and the resulting study protocols were designed to safeguard
participants against additional risk.

The social data consists of data collected at five sites: At-
lanta, Bloomington, Redmond, Twin Cities, and Singapore.
In total, 764 hours of video and audio were collected for
the social benchmark task. A detailed summary of the data
collection practices at each site can be found in Appendix A.

I.6 Derived Tasks for Future Social Benchmarks

The core tasks of LAM and TTM define a starting point for
analyzing multi-modal egocentric data and inferring social
interactions. We now describe two groups of potential future
tasks, attention tasks and speaking tasks, that could be sup-
ported via the existing annotations in Ego4D Social and the
gaze data collected from eye trackers.

Egocentric Attention Prediction (EAP) Prior work [135,
137] has demonstrated the feasibility of predicting where
the camera-wearer is looking (i.e. their egocentric atten-
tion) using only egocentric video captured from a head-worn
camera. This work leveraged the context of hand-eye coor-
dination tasks, which require gaze to be coordinated with
hand movements and objects. A subset of the Ego4D Social
data includes gaze measurements produced by wearable eye
trackers by Indiana University and Georgia Tech participants
(e.g., Pupil Invisible), which will greatly expand the size of
data for hand-eye coordination in the wild.

Social Gaze Prediction (SGP) The LAM task addresses
the special case of social gaze: a person looks at the camera-
wearer. It is possible to generalize the task by predicting the
social gaze target for each of the visible faces in an egocen-
tric video, i.e., yp ∈ {0, 1, . . . ,M}, where M is the total
number of participants in a group social interaction, and
p ∈ {0, 1, . . . ,M}. p is the index for social members. The
case yp = q means that target p was looking at participant
q. The case yp = 0 captures alternative gaze targets, in-
cluding non-social gaze targets (e.g. looking at an object),
looking at people who are not wearing an egocentric camera
(with the result that ground truth annotations are not avail-
able), and looking at unknown targets not captured in any
of the egocentric videos. Let ŷq,p denote the LAM label
for target person p visible in frame of egocentric video Iq
captured by participant q. Then the SGP label is given by
yp = arg maxq{ŷq,p}. The Ego4D Social data includes syn-
chronized videos from multiple social members, which will
allow us to expand the annotation by matching the person ID
with the camera-wearers. Note that since the video recorders
are not genlocked, the identification of corresponding frames
will only be approximate. However, since gaze behaviors
persist over multiple frames we do not believe this will be
an issue.
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A key issue in defining the task is the determination of the
participant set. For a 2D version of SGP, termed SCG-2D,
the participant set is defined by participants who are visible
in frame t. This is a social version of the video-based gaze
follow task [37], where the goal is to predict whether each
target participant is looking at any of the other participants
who are visible in the frame. A more challenging 3D version
of the task, SCG-3D, uses all of the participants who are
present in the social scene at the time of frame t. This task
requires the ability to predict which participant the target
person p is looking at in the case where that participant is
not visible in frame t. This can in principle be accomplished
by maintaining a birds-eye view layout map of the social
scene, that captures the approximate spatial relationships
between the participants. Such a layout map could be used
in conjunction with an approach like Gaze360 [111] to solve
the SCG-3D task. Note that this task could potentially benefit
from taking recorded binaural audio as an additional input, as
the ability to localize sound sources could provide additional
cues for determining the locations of gaze targets which are
not visible in the video.

Utterance Target Prediction (UTP) The TTM task can be
generalized to the full set of participants in the same way
that LAM can be extended to SGP. The input space is the
same as TTM and the output space is similar to SGP, where
yp = q means that participant p is talking to participant
q, and yp = 0 denotes the cases where the participant is
not talking to anyone, or is talking to someone who is not
wearing an egocentric camera (and therefore ground truth
cannot be determined). In contrast to SGP, UTP requires the
identification of all of the target recipients of an utterance.
In fact, our TTM annotation already supports this task, as
it differentiates the case where the utterance is directed to
multiple participants including the camera wearer. This
additional label is ignored in the design of the simpler TTM
task.

Transcript-based Variants For all of the previously-
defined social tasks it is possible to define a variant which
utilizes a transcript of the audio file as an additional input
modality. For example, the TTM-T task is the variant of
TTM with the prediction defined as yp = f(I,A,T,B),
where T the transcript (time-stamped sequence of words)
obtained from A. This can potentially simplify the use of
dialog cues to identify the intended targets for utterances and
social gaze.
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J. Forecasting Benchmark

This section details the Forecasting benchmark task defi-
nitions, annotations, baseline models, and results.

J.1 Formal tasks definitions

As noted in the main paper, there are four forecasting tasks:
future locomotion movement prediction, future hand pre-
diction, short-term object interaction anticipation, and long-
term action anticipation.

Future Locomotion Movements Prediction

This task aims to predict the future locomotion of a user
given a sequence of past images. We formulate the problem
as:

X =
[
xt+1 · · · xt+F

]T
= f(xt−T , · · · ,xt−1; I),

(26)

where X is the future trajectory, T and F are the past and
future time horizons, respectively, xt is the point on the
trajectory at time t, and I is the egocentric image at time t.
With an assumption that the person walks over a major plane
(e.g., ground plane), we represent the trajectory in a 2D
plane, i.e., xt ∈ R2.

The essence of the locomotion task is to design a func-
tion f to predict a set of plausible K future trajectories
{X k}k given the current image. Since there exists a number
of plausible future trajectories with different topology, e.g.,
trajectories that bifurcate at an Y-junction, we predict K
future trajectories.

Future Hand Prediction

In addition to future locomotion movements prediction,
we consider another challenging task of predicting future
hand positions of key-frames (see visual illustration in
Fig. 50). Specifically, we denote the contact frame17 as
xc, pre-condition frame18 as xp, and the three frames pre-
ceding the pre-condition frame by 0.5s, 1s and 1.5s as
xp1 , xp2 , xp3 , respectively. Formally, given an input ego-
centric video 1.5s before the pre-condition time step (de-
noted as x = {xp3−to−1, ..., xp3−1}, with to referred as
observation time), this task seeks to predict the positions
of both hands (hli, h

r
i ) in the future key frames, where

i ∈ {c, p, p1, p2, p3}.

17The contact frame is defined as the first frame in which the user touches
the object, hence the moment in which the object becomes active.

18As defined in Section G, the pre-condition frame marks a moment prior
to the state-change of an object.

Short-Term Object Interaction Anticipation

This task aims to predict the next human-object interaction
happening after a given timestamp. Given an input video,
the goal is to anticipate:

• The spatial positions of the active objects, among those
which are in the scene (e.g., bounding boxes around the
objects). We consider the next active object to be the
next object which will be touched by the user (either
with their hands or with a tool) to initiate an interaction;

• The category of each of the detected next active objects
(e.g., “knife”, “tomato”);

• How each active object will be used, i.e., what action
will be performed on the active objects (e.g., “take”,
“cut”);

• When the interaction with each object will begin (e.g.,
“in 1 second”, “in 0.25 seconds”). This is the time
to the first frame in which the user touches the active
object (time to contact). This prediction can be useful in
scenarios which involve human-machine collaboration.
For instance, an assistive system could give an alert
if a short time to action is predicted for a potentially
dangerous object to touch.

In this task, models are required to make predictions at
a specific timestamp, rather than densely throughout the
video. Figure 51 illustrates the set-up. The model is allowed
to process the video up to frame t, at which point it must
anticipate the next active objects, and how they will take
part in an interaction in δ seconds, where δ is unknown. The
model can make zero or more predictions. Each prediction
indicates the next active object in terms of noun class (n̂)
and bounding box (b̂), a verb indicating the future action (v̂),
as well as the time to contact (δ̂), which estimates how many
seconds in the future the interaction with the object will
begin. Each prediction also comprises a confidence score (ŝ)
used for evaluation.

Specifically, let V be an untrimmed video. We will denote
with Vt the frame of V occurring at time-step t and with V:t
the video segment starting at the beginning of V (timestamp
0) and ending at timestamp t. Given a timestamp t, denoted
as “stopping time”, the short-term object interaction anticipa-
tion task requires that a model is able to exploit the observed
video V:t to predict N tuples (where N is arbitrary):

{(b̂i, n̂i, v̂i, δ̂i, ŝi)}Ni=1 (27)

where:

• b̂i ∈ R4 is a bounding box indicating the position of
the predicted next active object;

• n̂i ∈ N is a noun indicating the class of the next active
object, where N is the set of possible nouns.
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Figure 50. Example of future hand prediction.
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Figure 51. Example of short-term object interaction anticipation.

• v̂i ∈ V is a verb indicating the action which will be
performed, where V is the set of possible verbs;

• δ̂i ∈ R+ is the time to contact, a positive number which
estimates how many second into the future the interac-
tion with the object will begin;

• ŝi ∈ [0, 1] is a confidence score associated to the predic-
tion. Objects with a large confidence value are deemed
to be likely next-active.

The model is allowed to perform N predictions for each
observed example (with N arbitrary) both to account for
the presence of multiple next-active-objects and to handle
the multi-modality of future predictions. Each of the N
predictions is intended as a plausible future object interaction.

Figure 51 illustrates the proposed task. Given a video V:t,
a method should be able to detect the next active objects
(e.g., two instances of “dough”), predict the action which
will be performed with that object (e.g.,“take”), and the time
to contact (e.g., 0.75s).

Long-Term Action Anticipation

Long-term action anticipation aims to predict further into
the future. Rather than predict the next action at a given
timestamp, models will be required to predict the sequence
of Z future actions which the camera-wearer is likely to
perform. This is important for long-horizon planning where
a sequence of actions is required to be performed in a specific
order to achieve a goal. Critically, these actions occur over
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Figure 52. Example of long-term action anticipation. After observing a video up to a particular timestep t, a method should be able to
predict the sequence of actions that will likely occur, in the correct order (e.g., first “take dough”, next “put dough” etc.)

long time horizons, may be of variable length and do not
occur uniformly across time (e.g., an action every 5s). Thus,
the task is defined at a more abstract level — models are
required to predict sequences of action classes (verb and
noun), rather than time to action or to next active objects
bounding boxes in the current frame.

More formally, given an untrimmed video V and a stop-
ping time t as described above, the long-term action anticipa-
tion model must observe V:t and predict N sets of sequences
of Z plausible future actions:

{{(n̂z,i, v̂z,i)}Zz=1}Ni=1 (28)

where:

• n̂z,i ∈ N is the predicted noun and v̂z,i ∈ V is the
predicted verb of the z-th future action.

• {(n̂z,i, v̂z,i)}Zz=1 represents the sequence of future ac-
tions sorted by the predicted order in which they will
appear in the video.

Like the short-term object interaction anticipation task,
the model is allowed to generate N sets of predictions to
account for the multi-modal nature of future prediction. Fig-
ure 52 illustrates the proposed task.

J.2 Data Selection

Future Locomotion Movements Prediction

Egocentric videos for locomotion and hand-object interac-
tion are nearly mutually exclusive. Among these videos, we
skim through each video to manually identify video clips
(beginning and end frames) that satisfy the following selec-
tion criteria. (1) Locomotion, by definition, involves diverse
activities associated with walking. The clip should include
substantial translational movement. (2) Each video clip must
be longer than 10 seconds for past trajectory observation and
future prediction. (3) The videos must observe surround-
ing scenes. This differs from the videos for hand-object
interaction where the camera is deliberately tilted down to

focus on the hand manipulation. We consider videos from
glass-mounted cameras of which field of view approximately
aligns with the first person. (4) 3D reconstruction and ground
plane need to be accurate. After running structure from mo-
tion, we ensure 3D reconstruction from the videos achieves
reasonable quality by checking 2D reprojection of the point
cloud and ground plane. Given a set of these video clips, we
choose frames for training/testing data for every second.

Remaining Tasks

For the remaining tasks we first manually ranked the sce-
narios based on their applicability to the forecasting tasks.
For instance, scenarios like carpentery were high priority for
forecasting whereas walking in the park was low-priority.
We scored all scenarios from 1-3 based on this priority. We
impose constraints on the minimum number of hours and
participants to sub-select scenarios that have sufficient data
for training (each participant should have contributed at least
15 minutes; and there should be at least 20 minutes of videos
for that scenario). Next, we chunk our videos into 5 minute
clips, and use the following algorithm to select clips to be
labeled. To ensure geographical diversity, we distribute the
total hours over universities and randomly select clips from
each to fill the hours allocated to that university. If there
are universities that contributed less, then their hours are
distributed across the other universities. To select the clips
given a university and the hours allocated; we would first
sample a participant, then sample a video for that participant,
and sample 1 clip from that video. For certain repetitive sce-
narios (like brick making), we reject this clip if we already
have selected at least 2 clips from the same video. We repeat
the process until the required number of hours are selected.

J.3 Data Annotation

Future Locomotion Movements Prediction

We generate the ground truth of future trajectories using
3D reconstruction of the camera trajectories. Given a se-
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Figure 53. (a) We represent the future trajectory of a person using the ground plane. Given the 3D reconstruction of the camera trajectory,
we project it into the estimated ground plane to form the future trajectory. (b) The ground truth future trajectory (blue) and the predicted
trajectories (red and white) are shown in the egocentric image with the ground plane coordinate (magenta grid). We predict top 5 trajectories
where the top prediction is marked in red.

Data Outdoor Indoor Mixed Total
Train 34.1k 0.41k 16.7k 51.3k
Val 7.5k 0.23k 6k 13.9k
Test 7.4k 0.18k 3k 10.6k

Table 32. We split the image data for locomotion prediction based
on scenes that including outdoor, indoor, and mixed.

quence of egocentric images, we reconstruct the 3D ego-
motion and scene geometry using a standard structure from
motion pipeline with a few modification to handle a large
number of images. With the 3D scene point cloud, we es-
timate the ground plane using RANSAC with the ground
plane normal prior. The 3D reconstructed camera trajectory
is projected onto the ground plane to form the 2D future
trajectory as shown in Figure 53.

Our image dataset includes locomotion in outdoor,
indoor, and mixed scenes. We split the image data
into training/validation/testing sets with approximately
70%/15%/15%, respectively. The ratio across scenes does
not exactly match because the split is performed based on
the (anonymous) participant ID. The summary of the data
split can be found in Table 32.

Future Hands Movements Prediction

For the the future hand position and trajectory prediction, the
annotation will be performed by labeling bounding boxes
around hands in the frame in which the user touches the
active objects as well as in frames preceding each object
interactions. Hands bounding boxes will be associated to
a label useful to distinguish among left and right hands.
Therefore, given an object interaction, we will annotate key
frames preceding the beginning of the interaction. Specif-
ically, tc and tp denote the time step of contact frame and
pre-condition frame, and tp1 , tp2 , tp3 , denote time steps 0.5s,

1s and 1.5s before the pre-condition time step. Therefore,
for each interaction there will be 5 key frames labeled with
bounding boxes of hands, including the contact frame. We
use the bouding box center as the ground truth of hands
positions.

Short-Term Object Interaction Anticipation

Each video V of the dataset is labeled with a set of short term
object interaction anticipation annotations SV = {S(j)

V }j
indicating the occurrence of object interactions in the video.
Each annotation

S
(j)
V = (t(j)s , {n(j)h }h, v(j), {A

(j)
h }h, {B

(j)
h }h) (29)

includes:

• t(j)s : the timestamp indicating the beginning of the inter-
action with the active objects. This is the first frame in
which the user touches at least one of the active objects;

• {n(j)h }h: the set of categories of the h interacted ob-
jects;

• v(j): the class of the action involving the active objects;

• {A(j)
h }h: the bounding box annotations for the active

objects. The cardinality of {A(j)
h }h is equal to the

cardinality of {n(j)h }, i.e., |{A(j)
h }h| = |{n(j)h }|. The

hth set {A(j)
h }h contains bounding box annotations for

the active objects of category nh at timestamp t(j)s ;

• {B(j)
h }h: the bounding box annotations for the next

active objects. The cardinality {B(j)
h }h is equal to the

cardinality of {A(j)
h }h, i.e., |{B(j)

h }h| = |{A(j)
h }h|.

The jth set B(j)
h contains the bounding box annotations
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Figure 54. An example of how frames are sampled to be labeled
with next active object annotations. For a given action i, we sample
m frames at regular intervals α. If we set m = 4 and α = 0.5, we
label the frame of contact as well as 4 frames along a segment of
2s preceding the beginning of the action at a framerate of 2fps.

of next active objects of class nh. In particular, B(j)
h

contains annotations for the same object instances anno-
tated in A(j)

h , tracked in frames preceding t(j)s . Specif-
ically, B(j)

h = {B(j)
l,h |l = 1, ...,m}, where B(j)

l,h is the
set of bounding box annotations of next active object of
class nh annotated at timestamp ts − lα. Here m indi-
cates the number of frames preceding the beginning of
the interaction in which objects are annotated, whereas
α is the temporal distance between the sampled frames.
For instance, setting α = 0.5s and m = 4, we will
label the frame in which the object is interacted as well
as 4 frames in a 2s segment preceding the interaction.
Figure 54 shows an example of how frames are sampled
with the considered scheme.

Figure 55 reports a sample clip with the discussed annota-
tions. The timestamp ts is selected as the first one in which
the user touches the active objects. The frames following this
timestamp are not labeled. Active object bounding boxes are
labeled at timestamp ts, whereas next active object bounding
boxes are labeled in frames preceding ts.

Long-Term Action Anticipation

Each video V is labeled with a set of long-term action an-
notations {L(j)

V }j , corresponding to a stopping time until
which the video can be observed, and a sequence of Z future
action labels defined as follows:

L
(j)
V = (t(j), {(n(j)z , v(j)z )}Zz=1) (30)

where:

• t(j): the timestamp until which the video can be ob-
served (i.e., V:t(j) ) before making predictions of future
actions;

• n(j)z : the noun category of the primary interacted object
in the z-th future action;

• v(j)z : the verb describing how the objects will be inter-
acted with in the z-th future action .

For each video, t(j) are selected from the last timestamp of
each annotated object interaction. It is worth noting that once

short-term annotations S(i)
V are available (see Section J.3)

and a value for Z has been chosen, the long-term annotations
L
(j)
V can be easily obtained by sampling the first Z actions

annotated in video V beginning after timestamp t(j). More
formally, the future action labels for L(j)

V are obtained as:

{(n(iz)
0 , v(iz)) |(t(iz)s , {n(iz)

h }h, v(iz), {A(iz)
h }h, {B(iz)

h }h) ∈ SV ∧

t(iz)s ≥ t(j)∧

t(i1)s ≤ . . . ≤ t(iZ)
s ∧

@S(j)
V ∈ SV |t(j) /∈ {i1, . . . , iZ}, t ≤ t(j)s < t(iZ)

s }Zz=1

where n(iz)0 refers to the primary interacted object from the
set of interacted objects {n(iz)h }h. Figure 56 illustrates an
example of how long-term annotations are obtained form
short-term annotations.

Annotation analysis

Dataset statistics As discussed earlier, one of our primary
objectives when selecting the data to annotate was to
maximize the diversity in terms of activities and geographic
locations. Our dataset includes scenarios spanning a wide
range of everyday activities (e.g., gardening, cleaning,
fishing, etc.). In addition to diversity across scenarios, there
is also geographic diversity within scenarios. For example,
cooking may look very different in Italy, India, Saudi Arabia,
or Japan. In Figure 38, we show the resulting scenario and
university distributions. Overall, our benchmark consists of
120 hours of annotated video coming from 53 scenarios, 7
universities, and 406 participants.

Temporal structure of activities Human activity is goal-
driven and structured over time, with certain action se-
quences being favored over others. We measure this temporal
structure using Normalized Pointwise Mutual Information
(NPMI) [41] over pairs of actions following prior work [92].
NPMI is a measure of how likely actions follow each other.
In our dataset, typical patterns include “pull grass→ throw
grass (0.87)”, “hold spinach→ cut spinach (0.83)”, “turn-on
faucet→ turn-off faucet (0.68)”, “take cloth→ fold cloth
(0.49)” etc. Several actions also occur in sequence with high
NPMI scores due to the repetitive nature of the activity. For
example, “flip page→ flip page (0.83)” while reading, or
“cut carrot→ cut carrot (0.82)” while cooking. Finally, we
see common action sequences involving multiple objects
like “fill tire→ close valve (0.89)”, or “lift vacuum-cleaner
→ clean staircase (0.87)”. This structure is valuable and can
inform long-term action anticipation models.

Dataset split To facilitate future research and compar-
isons, we construct training, validation, and test splits
containing 40%, 30%, and 30% of the data, respectively.
We note, however, that we do not release the ground truth
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Figure 55. Example of annotations for the short-term object interaction anticipation task.

𝑆𝑉
(6)

𝑡(𝑗)

𝑆𝑉
(7)

𝑆𝑉
(9)

𝑆𝑉
(10)

𝑆𝑉
(8)

𝑆𝑉
(11)

𝑆𝑉
(5)

𝑆𝑉
(4)

𝑆𝑉
(3)

𝑆𝑉
(1)

𝑆𝑉
(2)

Video 𝑉

𝐿𝑉
(𝑗)

= 𝑡 𝑗 , 𝑛1
𝑗
, 𝑣1

𝑗
, 𝑛2

𝑗
, 𝑣2

𝑗
, 𝑛3

𝑗
, 𝑣3

𝑗

Z= 3

Figure 56. An example of a long-term annotation L(V:t) for an untrimmed video V at timestamp t can be obtained from short-term
annotations S(i)

V . In the example, Z = 3, hence the long term annotation is obtained by considering the first three actions beginning after
timestamp t.

annotations for the test set. Following common practice,
evaluation on the test set will be supported through the
public evaluation server and leader board. We assign data to
splits randomly at the level of 5 minute clips. This ensures
that all interactions within a 5 minute clip were labeled
by an annotator and provides enough temporal context for
long-term video tasks, like long-term action anticipation.

J.4 Evaluation measures

Future Locomotion and Hands Movements Prediction

Future Locomotion We measure the accuracy of the predic-
tion using two metrics. (1) K best mean trajectory error
(K-MTE): we measure K best trajectory error:

K−MTE = argmin
{Xk}Kk=1

1∑
t vt

∑
t

vt‖xt − x̂t‖, (31)

xt ∈ R2 is the predicted location at time t, x̂t is the ground
truth location, and vt is the visibility. The visibility indicates
the availability of the ground truth trajectory, i.e., due to
severe egocentric videos, the ground truth trajectories may
include missing data. vt = 0 indicates missing data at time
t. (2) Probability of correct trajectory (PCT): we measure
the success rate of the correct trajectory retrieval:

PCTε =
1

K
δ

(
1∑
t vt

∑
t

vt‖xt − x̂t‖ < ε

)
, (32)

where δ(·) is one if the statement is true and zero otherwise.
ε is the trajectory error tolerance, i.e., if the trajectory error

is smaller than the error tolerance, it is considered as a
correct trajectory prediction. PCTε measures how many
trajectories among K retrieved trajectories are close to the
ground truth trajectory.

Future Hand Movement As for the future hands movements
prediction, we only consider the key frame prediction, and
therefore adopt Mean Key Frame Displacement Error Con-
tact (M.Disp.) Key Frame Displacement Error as evaluation
metrics (C.Disp.):

• Mean Key Frame Displacement Error (M.Disp.):

Dm =
1

n

∑
i∈Ht

‖hi − ĥi‖ (33)

Ht refers to the set of visible hand positions of key
frames, and n is the length of set Ht. hi denotes the
predicted hand position in the image coordinate, while
ĥi denotes the ground truth hand positions.

• Contact Key Frame Displacement Error (C.Disp.):

Dc = ‖hc − ĥc‖ (34)

hc refers to the hand positions at Contact frame.

Note that all reports are reported on downsampled video
frames with height of 256 and original aspect ratio.
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Short-Term Object Interaction Anticipation

Methods will be evaluated at the timestamps in which next-
active objects have been annotated, i.e.,{

t|t = ts − l · α

∀ts ∈ {t(j)s |∃h : B
(j)

h
6= ∅}j

∀l ∈ {1, ...,m}
}

(35)

where {t(j)s |∃h : B
(j)

h
6= ∅}j is the set of all timestamps in-

dicating the beginning of an interaction, for which at least
one next active object has been annotated, and α and m are
defined in Appendix J.3.

Since detecting next active objects is a major part of the
task, we base our evaluation measures on mean Average Pre-
cision (mAP), as defined in the Pascal VOC challenge [60].
As in standard mAP, we first match each of the detected
next active objects to ground truth annotations. A predicted
and a ground truth bounding boxes are a possible match if
their Intersection Over Union (IOU) value exceeds 0.5 and
if some matching criteria are met. We will define match-
ing criteria later. Predictions are matched to ground truth
annotations belonging to the same evaluated example in a
greedy fashion, prioritizing predictions with higher confi-
dence scores and choosing matches corresponding to larger
IOU values. A ground truth annotation can be matched at
most with one predicted box. All matched predictions are
counted as true positives, whereas all unmatched predictions
are counted as false positives. Performance on the whole test
set is summarized using the mean of the Average Precision
values obtained for each class.

To account for the multi-modal nature of future predic-
tions (i.e., more than one next active object can be likely),
we “discount” the number of false positives obtained in a
given example by the number of available ground truth an-
notations in that example multiplied by K − 1, where K is
a parameter of the evaluation measure. Specifically, if an
example contains two ground truth annotation, we ignore
the (K − 1) ∗ 2 false positives with the highest scores. This
effectively implements a “Top-K mean Average Precision”
criterion which does not penalize methods for predicting
up to K − 1 possibly likely next active objects which are
not annotated. Given a generic prediction (b̂i, n̂i, v̂i, δ̂iŝi)
and a generic ground truth annotation (bj , nj , vj , δj), we de-
fine the following variants of this Top-K evaluation measure
considering different matching criteria:

• Noun Top-K mAP: prediction i and annotation j are a
possible match if the following conditions are satisfied:

* IOU(b̂i, bj) > 0.5;

* n̂i = nj ;

• Noun + Verb Top-K mAP: prediction i and annotation
j are a possible match if the following conditions are
satisfied:

* IOU(b̂i, bj) > 0.5;

* n̂i = nj ;

* v̂i = vj .

• Noun + TTC Top-K mAP: prediction i and annotation
j are a possible match if the following conditions are
satisfied:

* IOU(b̂i, bj) > 0.5;

* n̂i = nj ;

* |δ̂i − δj | < Tδ .

• Overall Top-K mAP: prediction i and annotation j are a
possible match if the following conditions are satisfied:

* IOU(b̂i, bj) > 0.5;

* n̂i = nj ;

* v̂i = vj ;

* |δ̂i − δj | < Tδ .

Where Tδ is a tolerance threshold, parameter of the
evaluation measure.

The goal of the different measures is to assess the ability
of the model to predict next object interactions at different
levels of granularity. We use K = 5 and Tδ = 0.25.

Long-Term Action Anticipation

Methods will be evaluated at the set of timestamps spec-
ified by the end of each annotated object interaction in a
video V . Let L(j)

V = {(n(j)z , v
(j)
z )}Zz=1 be the ground truth

annotation related to video V at time-stamp t(j) and let
{{(n̂(j)z,k, v̂

(j)
z,k)}Zz=1}Kk=1 be the K predicted sequences of

Z actions. We will consider single noun/verb/action pre-
dictions correct following the definitions discussed in Sec-
tion J.4. The K predicted sequences will hence be evaluated
using the edit distance metric as follows.

For a given k, this is obtained by evaluating the edit
distance between a predicted sequence and the ground truth
sequence of future actions. The edit distance

∆E({(n̂(j)z,k, v̂
(j)
z,k)}Zz=1, {(n(j)z , v(j)z )}Zz=1)

is computed as the Damerau-Levenshtein distance [47, 133]
over sequences of predictions of verbs, nouns and actions.
The goal of this measure is to assess performance in a way
which is robust to some error in the predicted order of future
actions. A predicted verb/noun is considered “correct” if
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it matches the ground truth verb label at a specific time-
step. The allowed operations to compute the edit distance
are insertions, deletions, substitutions and transpositions of
any two predicted actions. Following the “best of many”
criterion, the K predictions are evaluated considering the
smallest edit distance between the ground truth and any of
the K predictions:

∆E({{(n̂(j)z,k, v̂
(j)
z,k)}Zz=1}Kk=1, {(n

(j)
z , v

(j)
z )}Zz=1) =

min
k=1..K

∆E({(n̂(j)z,k, v̂
(j)
z,k)}Zz=1, {(n(j)z , v

(j)
z )}Zz=1)

Note that we consider edit distance over simple accu-
racy based measures. Treating predictions for each future
time-step independently and calculating accuracy does not
account for the sequential nature of the prediction task where
the order of predictions is important. We evaluate each met-
ric independently for verbs, nouns and actions (verb and
noun together). We report edit distance at Z = 20 (ED@20)
and use K = 5 in our experiments. We select Z = 20 as
baselines begin to predict actions at random for higher values
of Z.

J.5 Baseline definitions and implementation details

Future Locomotion Movements Prediction

We make use of the method by Park et al. [175] for a baseline
algorithm. The method models the trajectory prediction
function in Equation (26) using KNN classification with
CNN image encoding, i.e.,

{X} = KNN ({φ(Ii)}, φ(I)) (36)

whereKNN(A,B) finds the K nearest neighbor ofB given
the set A, and φ(I) ∈ Rn is a function that extracts the
image feature of I. We use the AlexNet image feature
extractor for φ.

Notably, the baseline algorithm leverages a polar co-
ordinate system to represent the trajectory, i.e., X2D

j =[
rj θj

]T
is a 2D trajectory on the ground plane where ri

and θi are the polar coordinates of the trajectory represented
in the egocentric coordinate system, i.e., distance (radial) and
direction (angle) with respect to the person’s feet location as
shown in Figure 53:

X2D
j = cart2polar(rT1Xj , r

T
2Xj) (37)

where r1 and r2 are the two spanning vectors of the ground
plane that are aligned with the rotation matrix Rt. r1 is
the facing direction and r2 is lateral direction. Both are
perpendicular to the ground plane normal n as shown in
Figure 53. cart2polar is a coordinate transform from
cartesian to polar coordinates.
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Last Frame

Pre-Trained Detector
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attach labels

output

Detected
Next Active Objects
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Figure 57. Short-Term object interaction anticipation baseline.

Future Hands Movements Prediction

Baseline Description The proposed future hand movement
prediction task can be factorized as a regression problem.
To address this task, we adopt a baseline that utilizes the
I3D network as the backbone to extract the spatial-temporal
video representations of the input video sequence, and then
use a linear mapping function as the regressor to predict the
future keyframe hand positions. We adopt the smoother l1
loss as the objective function:

Lh =

{
0.5 ∗ w ∗ (h− ĥ)2/β, if |h− ĥ| < β

w ∗ (|h− ĥ| − 0.5 ∗ β), otherwise
(38)

where h ∈ R20 is a vector that represents the x,y coordinates
of both left and right hands in the aforementioned five future
key frames. If the hand is not observed in the keyframe,
we pad 0 into the ĥ, and adopt a binary mask w to pre-
vent the gradients propagation of these unobserved instances.

Training Details We adopt the I3D model as the backbone
network and a regression header, composed of two linear
operations, to predict the hand positions in the future key
frames. For our experiments, we set observation time To
as 2s. For training, we applied several data augmentation
techniques, including random flipping, rotation, cropping
and color jittering to avoid overfitting. Our baseline model
was trained with a batch size of 64 for 25 epochs using
a cosine learning rate decay with a initial learning rate of
0.0375. We set β to 5 in the weighted smoothed L1 loss as
introduced in Eq. 38.

Short-Term Object Interaction Anticipation

Data and annotations used for the experiments We per-
formed our experiments on a subset of the data and annota-
tions to obtain verb and noun taxonomies consistent with the
Short-Term Object-Interaction Anticipation task. We started
by considering all annotated actions for which a contact
frame has been specified by the annotators. Note that these
constitute about 30% of the whole set of annotated actions
and that the notion of a contact frame is fundamental to our
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task. We then gathered all annotated frames and referenced
them to their respective contact frames, computing the time
to action targets. We discarded all those annotations which
comprised a verb or a noun class marked by the annotator
as “null”. We further discarded annotations related to nouns
which had been labeled inconsistently and non-object classes
such as “wall” or “wallpaper”. We similarly removed all
annotations related to the verb “talk” which do not involve
interactions with objects.

To avoid having an over-specific noun taxonomy, we clus-
tered selected noun classes into homogeneous groups. For
instance the nouns “okra”, “apple”, “celery” and “avocado”
have all been grouped under the “vegetable fruit” class. We
also grouped verbs which have similar semantic when antici-
pated. For instance, the verbs “take”, “carry”, “lift”, “pull”
and “remove” have all been grouped in the “take” cluster.
Note that while these actions may be visually different, they
all have similar effects on objects, which makes them in-
distinguishable when anticipated. We further removed all
annotations related to nouns appearing less than 50 times
in the test set (we follow the common split defined for this
benchmark). We choose to retain only nouns appearing at
least 50 times in the test set to allow for a reliable evaluation
through the mAP measure.

The final set of data includes 64, 798 annotated examples
in total with 87 nouns and 74 verbs. Our taxonomy is
adapted from the one presented in Figure 39. Figure 58
and Figure 59 report the distributions of verb and noun
annotations in the selected data. Among the 64, 798
annotations, 27, 801 are in the training set, 17, 217 are in
the validation set, and 19, 780 are in the test set.

Baseline Description Figure 57 illustrates the proposed
baseline for short-term object interaction anticipation. The
baseline includes two main components. A Faster R-CNN
object detector [87] is used to detect next active objects in
the last frame of the input video clip processed at full reso-
lution. A SlowFast 3D CNN [71] is hence used to predict
a verb label and a time to action for each predicted object.
This is done by obtained a fixed-length representation of
each object through ROI pooling [87]. Two linear layers
are hence used to predict a probability distribution over
verbs and a positive quantity for time to contact prediction
respectively. Verb probability distributions are obtained
using a softmax layer, whereas a softplus activation is
used for time to contact prediction to make sure that the
prediction is a positive number. The final output of the
model is obtained by attaching the predicted verb and time
to contact to each detected next active object. The noun
label and confidence scores are copied from the output of
the Faster R-CNN component.

Training Details We first train the Faster R-CNN component

on all frames with annotated next active objects. We use
the Faster RCNN detector based on ResNet50 using the “3x”
training schedule provided with the Detectron2 library19.
After this stage, the weights of the Faster R-CNN component
are not updated anymore. We hence train a SlowFast model
based on ResNet50. We follow the configuration provided
in the PySlowFast library20 to tackle the AVA detection task
(“SLOWFAST 32x2 R50 SHORT.yaml”). The SlowFast
model takes as input video clips of 32 frames sampled with
a temporal stride of 1 frame. During training, we match
each detected object to the ground truth instance with largest
Intersection Over Union (IOU), provided that it is larger than
0.5. We hence attach the verb and time to contact labels of
the ground truth boxes to the matched ones. We then train
the model applying the following loss only to boxes which
have been matched to ground truth instances:

L = Lv + λLttc (39)

where Lv is the cross entropy loss for verb prediction, Lttc is
the smooth L1 loss [87] applied to time to contact prediction,
and we set λ = 10 to control the contributions of the two
losses. To regulate the number of frames processed by the
slow branch, we set α = 8. We train the model on 4 NVIDIA
V100 GPUs with a batch size of 64 for 50 epochs using a
cosine learning rate policy with a base learning rate of 0.001.
We validate the model at the end of each epoch and consider
the weights which achieved the best overall top-5 mAP on
the validation.

Long-Term Action Anticipation

Baseline Description The goal of the baseline model is to
take as input a trimmed video of arbitrary length, and pre-
dict N different plausible sequences of future actions. The
baseline models thus consist of three components: (1) the
encoder backbone for obtaining clip level features, (2) the
aggregation module for combining the obtained features
from different clips, and (3) the decoder network for de-
coding the plausible sequences of future actions. For en-
coder backbones, we consider state of the art video recog-
nition networks from both convolutional model, namely,
SlowFast [71] and the newly proposed video transformer
models, namely, MViT [63]. For aggregation module, we
experiment with simple concatenation operators that con-
catenates the obtained clip features from multiple input clips
as well as transformer based self-attention modules. For the
decoder networks we consider the following options:

• No Change: A simple recognition baseline that assumes
no future change in the current action and simply predicts
the currently observed action as a duplicated static future
sequence for Z steps.
19https://github.com/facebookresearch/detectron2
20https://github.com/facebookresearch/SlowFast

75



ta
ke pu

t
ho

ld
cle

an
m

ov
e

cu
t

ad
ju

st
op

en
to

uc
h

clo
se

tu
rn

pa
in

t_
dr

aw
at

ta
ch

pr
es

s_
pu

sh di
p

ap
pl

y
op

er
at

e hi
t

sa
nd

di
vi

de
tu

rn
_o

ff
ro

ll
ar

ra
ng

e
tu

rn
_o

n
sc

oo
p

tig
ht

en iro
n

sh
uf

fle
th

ro
w

re
pa

ir
pa

ck
in

se
rt

sm
oo

th
sc

ra
pe

m
ar

k
de

ta
ch

kn
ea

d
dr

ill
po

ur
pe

el
fo

ld
m

ea
su

re
lo

os
en se
w

m
ol

d
in

sp
ec

t
sc

re
w tie

we
ld

sq
ue

ez
e

un
sc

re
w

wr
ite

sh
ak

e
fil

e
st

ick
ha

ng di
g

se
rv

e
se

ar
ch

_in
sp

ec
t fil
l

gi
ve

dr
iv

e
gr

at
e

sp
ra

y
pl

ay
pu

m
p

co
ns

um
e

sc
ro

ll
ki

ck
wa

te
r

pl
an

t
cli

m
b

lo
ck

sw
in

g

0

5000

10000

15000

20000

25000

Figure 58. Verb distribution in the Short-Term Object-Interaction Anticipation data.
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Figure 59. Noun distribution in the Short-Term Object-Interaction Anticipation data.

• MultiHead: This model trains Z independent heads in
parallel, one for each future time step. The final sequence
is simply the conjoined predicted actions of each head.

Finally, to generate N plausible future sequences for
constructing multimodal baselines, we simply sample the
predicted future action distribution N times. The framework
for a particular instantiation of the MultiHead baseline is
illustrated in Figure 60.

Training Details For each video, we sample multiple input
clips to process with our backbone network. A single clip
length for both the backbones, SlowFast and MViT, com-
prises of 16 frames sampled 4 frames apart. Each clip is
processed independently by the same encoder weights and
combined with the aggregation module. The aggregated fea-
ture is decoded with the decoder module where the output
behavior changes during training and testing. In training, the
decoder predicts the next action probability distributions for
each future step. We calculate the sum of losses for each
prediction as our total loss:

Figure 60. Long-Term Action Anticipation baseline. A baseline
model with a SlowFast backbone, and Z = 3 is shown here. Blue
box: clip encoder network. Yellow box: multiple classifier heads,
one for each future action. See Sec. J.5 for more details.

Llta =

Z∑
z=1

Lv((pnz , pvz), (nz, vz)) (40)

where Lv is cross entropy loss, p∗z refers to the predicted
probability distribution over verbs and nouns, and (nz, vz)
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Set Metric Mean Median
Val 5-MTE 5.11m 2.53m
Val 3-MTE 6.19m 2.99m
Val 1-MTE 8.81m 4.63m
Test 5-MTE 4.84m 2.69m
Test 3-MTE 5.54m 3.24m
Test 1-MTE 7.66m 4.73m

Table 33. Results of the locomotion prediction task. We report
mean/median for 7-15 second predictions. We use K = 1, 3, 5.

Set ε = 1m ε = 2m ε = 3m ε = 4m ε = 5m ε = 6m
Val 0.14 0.29 0.39 0.46 0.51 0.54
Test 0.16 0.31 0.40 0.47 0.53 0.58

Table 34. Results of the locomotion prediction task. We report
the probability of correct trajectory (PCT) as varying the error
threshold ε.

refer to the ground truth future action labels.
During testing, we sample action class labels (n̂z, v̂z)

from the predicted distribution independently for each future
step. We repeat this sampling procedure N times to gen-
erate multiple cancidate sets of predictions for evaluation
described in Section J.4.

We use the taxonomy presented in Figure 39 for our
experiments. We finetune a Kinetics-400 [109] pretrained
encoder backbones on Ego4D action recognition and use
this model for all baselines to extract the clip level features.
The aggregation module and decoder networks are trained
from random initialization directly on the forecasting task.
The encoder weights are kept unchanged during the decoder
network training. We set Z = 20 for long horizon future
evaluation and K = 5 as the number of plausible future
sequences predicted by the model. For all baselines, we
sample 2 input clips to capture past context unless otherwise
specified. We train the model on 8 NVIDIA V100 GPUs
with a batch size of 64 for 30 epochs and a base learning rate
of 0.0001.

J.6 Results

Future Locomotion Movements Prediction

We evaluate the KNN based baseline algorithm by measuring
mean trajectory error (K-MTE) and probability of correct
trajectory (PCT) given an error tolerance. The trajectory
length ranges from 7 to 15 seconds (70-150 points in a
trajectory given 10 FPS). Our baseline achieves mean error
8.81m for 1−MTE and 0.39 for PCTε=3m. The result is
summarized in Table 33 and 34.

Future Hands Movements Prediction

For future hands movements prediction task, we report
mean displacement error (M.Disp.) and contact frame dis-

Set Method Left Hand Right Hand
M.Disp.↓ C.Disp.↓ M.Disp.↓ C.Disp.↓

Val I3D+Reg 54.11 57.29 54.73 57.94
Test I3D+Reg 52.98 56.37 53.68 56.17

Table 35. Results of future hand movement prediction task. Note
that the left and right hands movements are evaluated separately. ↓
indicates lower is better

Set Method Noun Noun+Verb Noun+TTC Overall
Val FRCNN+Rnd. 17.55 1.56 3.21 0.34
Val FRCNN+SF 17.55 5.19 5.37 2.07
Test FRCNN+Rnd. 20.45 2.22 3.86 0.44
Test FRCNN+SF 20.45 6.78 6.17 2.45

Table 36. Results of the short-term object interaction anticipation
task. See text for discussion.

placement error (C.Disp.) on both validation and test sets
in Table 35. Our baseline model achieves M.Disp. of
(52.98/53.68) and C.Disp. of (56.37/56.17) for left/right
hand position prediction on the test set. It is worth noting
that predicting hand positions on contact frame is more chal-
lenging than on other key frames. This is because, by the
definition of contact frame and pre-condition frame, the an-
ticipation temporal footprint of contact frame is larger than
other key frames. We further provide qualitative results of
our baseline method in Fig. 61. Notably, the model can
make reasonable predictions on future hand positions. How-
ever, the model is more likely to fail when there is drastic
embodied motions.

Short-Term Object Interaction Anticipation

Table 36 reports the results for the short-term object interac-
tion anticipation task on both the validation and test sets. We
compare the proposed baseline based on Faster RCNN and
SlowFast (“FRCNN+SF” in the table) with a simpler base-
line which uses Faster RCNN to detect object and predict
their classes, but draws verb and TTC predictions randomly
from the training set distribution (“FRCNN+Rnd.” in the
table). Results are reported in Top-5 mAP% according to the
different matching criteria discussed in Appendix J.4. As can
be noted, the proposed baseline outperforms random predic-
tion by big margins when verbs and TTCs are predicted on
both the validation and test sets. This suggests that, despite
being simple, the baseline can leverage the observed video
to anticipate future object interactions. Figure 62 reports
some qualitative examples of the baseline. The model is
sometimes able to detect the next active objects and predict
suitable verbs and TTCs, but performance tends to be limited
especially in complex scenarios.
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PRE Frame1.5 sec before PRE 1.0 sec before PRE 0.5 sec before PRE Contact Frame

: Ground Truth : Prediction

Figure 61. Qualitative examples of future hands movements prediction using the proposed baseline. The ground truth hands positions are
plotted as green crosses, while the predicted hands positions are plotted as red crosses.

Figure 62. Qualitative examples of short-term object interaction anticipation using the proposed baseline. The numbers in brackets represent
the confidence scores associated to the predictions. The ground truth next-active object is highlighted using a dashed red line, whereas
model predictions are reported in blue solid lines.

Long-Term Action Anticipation

Table 37 shows our results on both the validation and test sets.
The No Change baseline simply predicts the current action as
the next Z actions, and performs poorly at predicting future
actions. Explicitly training multiple heads improves perfor-
mance on verbs, nouns and actions. Changing the backbone

architecture from SlowFast to MViT greatly improves verb
forecasting prediction performance, but deteriorates noun
forecasting performance, highlighting the trade-off between
the two despite similar action classification performance on
Kinetics. Finally, including larger video context information
in the form of multiple input clips by using the transformer
based aggregator module results in the best performance.
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Val set ED@(Z=20)
Backbone Aggregator Decoder Verb Noun Action
SlowFast Concat No Change 0.766 0.830 0.960
SlowFast Concat MultiHead 0.747 0.808 0.952
MViT Concat MultiHead 0.707 0.901 0.972
SlowFast Transformer MultiHead 0.745 0.779 0.941

Test set ED@(Z=20)
Backbone Aggregator Decoder Verb Noun Action
SlowFast Concat No Change 0.761 0.810 0.959
SlowFast Concat MultiHead 0.743 0.791 0.948
MViT Concat MultiHead 0.697 0.904 0.969
SlowFast Transformer MultiHead 0.739 0.780 0.943

Table 37. Results of the long-term action anticipation task. Lower
is better. See text for discussion.

Figure 63 shows some qualitative results of our method.
In each row, the ground truth future actions are shown along
with the predictions from our model (for 5 time-steps). Cor-
rect predictions are highlighted in green, while valid actions
that are incorrectly ordered (or paritally correct) are high-
lighted in blue. Note that though not perfectly aligned, in-
correctly ordered sequences are given partial credit via the
edit-distance metric.

J.7 Discussion

Data Annotation

Annotating the videos for forecasting tasks posed a number
of interesting challenges. First, we found the diversity of the
data led to a large and diverse taxonomy, which some anno-
tators found hard to navigate. Hence, we found a number of
annotators used the ”OTHER” option, which we eventually
manually mapped to the taxonomy where possible. In future
annotations, we plan to ask annotators to always pick the
closest taxonomy item even if writing in a free-form OTHER
label, to encourage them to stick to the taxonomy as much
as possible. Second, we noticed annotators struggled with
defining bounding boxes over “stuff” categories. For exam-
ple, when labeling “cutting grass”, it was often challenging
to draw a box that covers the full extent of the object of
change (i.e. “grass”). Finally, it was sometimes challenging
to define what the object of change was, when using large
tools. For example, if using a lawn mower to clear grass,
does one consider the mower as the tool and hence the grass
as the object of change, or the levers and buttons inside the
mower as the object of change. We chose to rely on the
narrators to define which interaction to label (i.e. pushing
the lever/button vs cutting grass), and asked the annotators
to label tools and objects accordingly.

Future Locomotion Movements Prediction

The baseline quantitative results on the locomotion predic-
tion task imply that the visual cues, e.g., side walk, obstacles,
and road, in egocentric images are highly indicative of fu-
ture movement. However, the baseline method that encodes
the visual semantics of an image with a global feature is
not detailed enough to model complex walking movement,
e.g., avoiding pedestrians. This opens an opportunity for
challenge participants to incorporate a fine-grained visual
representation.

Future Hands Movements Prediction

Our baseline model for future hands movements prediction
suffers from the drastic head movements in egocentric video
and the stochastic nature of future forecasting. We speculate
that explicitly modeling the head movements and next-active
objects may complement the video representations for pre-
dicting future hands movements.

Short-Term Object Interaction Anticipation

The short-term object interaction anticipation results high-
light that the proposed task is challenging, with the baseline
achieving an overall Top-5 mAP of 2.07% on the validation
set and 2.45% on the test set. The key challenges are likely
due to the uncertain nature of future predictions as well as
to the inability of the object detector to correctly detect next
active objects and ignore the others. Nevertheless, the pro-
posed baseline, even if simple, allows to greatly improve
over a combination of an object detector and a random pre-
diction of verbs and time to contact quantities. This suggests
that methods can learn to analyze the input video in order to
make reasonable predictions about the future.

Long-Term Action Anticipation

We discuss several important aspects of the long-term action
forecasting problem through our experiments and ablation
studies. All ablations are run with SlowFast backbone
networks, and models are trained for 30 epochs.

How important is Ego4D action recognition pre-training?
Table 38 shows the performance of our models when
pretrained only on Kinetics-400 action recognition (as
opposed to further fine-tuning on Ego4D action recogni-
tion). All models benefit greatly from training on Ego4D
data in two ways. First, there is a large domain gap
between Kinetics and Ego4D both in terms of visuals
(third-person vs. egocentric viewpoint) and the diver-
sity of activities they contain, which pre-training helps
account for. Second, action recognition models benefit
from biases in the label structure of future actions as seen
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GT: take 
sickle

→ hold 
spinach

cut 
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put 
sickle

take 
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→ → →
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→ cut 
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hold  
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→ → →

ED@5: 0.60

GT: smooth 
wood

→ remove 
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→ → →

PRED: hold 
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→ sand 
wood

hold 
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sand 
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sand 
wood

→ → →

ED@5: 0.80

Figure 63. Long term action anticipation - qualitative results. Actions in green represent correct predictions (correct action, at the correct
position). Actions in blue represent incorrect ordering of valid actions. Our edit-distance metric accounts for both cases.

Val Set ED@(Z=20)
Init Backbone Aggregator Verb Noun Action
K400 SlowFast Concat 0.752 0.820 0.958
+Ego4D SlowFast Concat 0.747 0.808 0.952
K400 SlowFast Transformer 0.746 0.809 0.953
+Ego4D SlowFast Transformer 0.745 0.779 0.941

Table 38. Long term anticipation - varying pretraining data. Mul-
tiHead decoder used for all models. Ego4D action recognition
pretraining greatly improves downstream forecasting performance.

Val Set ED@(Z=20)
# clips Backbone Aggregator Verb Noun Action
2 SlowFast Transformer 0.743 0.790 0.946
4 SlowFast Transformer 0.744 0.796 0.947
8 SlowFast Transformer 0.745 0.779 0.941

Table 39. Long term anticipation - varying number of input clips.
MultiHead decoder used for all models. Performance increases
with more input context.

from the performance of the No Change baseline in Table 37.

How important is past context for transformer based
models? Our transformer aggregation modules aggregate
information across a larger temporal history controlled by
the number of input clips to the model. Table 39 shows the
sensitivity of these models to the amount of past context
video that it has access to. Overall, performance increases as
more context information is provided to the model, however
this increase comes at the cost of memory consumption —
8 is the maximum number of clips that can be fit in GPU
memory.

How far into the future can models predict? As mentioned
in Section J.4 we report results for predictions at Z = 20
as baselines begin to predict actions at random for higher
values of Z. Figure 64 shows the plot of edit distance vs.
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Figure 64. Performance vs. number of future actions Z. Predicting
further into the future is naturally more difficult. Models begin to
predict close to random actions for very high values of Z.

Z for our baseline models. As expected, it is far easier to
anticipate actions that occur immediately next, which gets
more difficult as Z increases, and steadily plateaus.

How to generate multiple candidate predictions? As men-
tioned in Section J.4 we evaluate the best of K = 5 pre-
dictions to arrive at our final results. To generate the K
predictions, we sample each classifier head independently,
however there are several methods to improve this includ-
ing heuristic search algorithms (like beam search). Ideally,
the multi-modal nature of future prediction should be ac-
counted for in the model design itself. Moreover, decoder
models that take into account the sequential nature during
inference should be considered. These include transformer
based decoders that are popular in recent language models
(e.g., BERT, GPT) This is an important future direction of
research.
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J.8 Contributions statement

Giovanni Maria Farinella led the Forecasting Benchmark
working on the definition of the proposed tasks, on the col-
lection, and writing the paper.
Rohit Girdhar co-led the Forecasting Benchmark working
on the definition of the proposed tasks, on the collection, and
writing the paper.
Antonino Furnari contributed to the definition of the pro-
posed benchmark tasks and in particular to the Short-Term
Object Interaction Anticipation task and has been key
driver of implementation, collection, annotation develop-
ment throughout the project, and writing the paper.
Ilija Radosavovic worked on the definition of tasks and has
been key driver of implementation, collection, annotation
development throughout the project, and writing the paper.
Tushar Nagarajan contributed to the definition of the pro-
posed benchmark tasks and in particular to the Long-Term
Action Anticipation task and has been key driver of imple-
mentation, collection, annotation development throughout
the project, and writing the paper.
Tullie Murrell worked on baseline implementation of the
Long-Term Action Anticipation task.
Karttikeya Mangalam worked on baseline implementation,
experiments and writing the Long-Term Action Anticipation
task.
Christoph Feichtenhofer oversaw the development of the
task, baselines and implementation of the Long-Term Action
Anticipation task.
Miao Liu worked on the definition of Future Hands Move-
ment Prediction task and has been key driver of implemen-
tation, collection, annotation development throughout the
project, and writing the paper.
Wenqi Jia worked on baseline implementation of the Future
Hands Movement Prediction task.
Zachary Chavis worked on the Locomotion Forecasting task
and has been key driver of implementation, collection, and
annotation development throughout the project.
Hyun Soo Park worked on the definition of Locomotion
Forecasting tasks, collection, annotation, and writing the
paper.
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K. Societal Impact

Our contribution can positively impact video understand-
ing. It offers the research community a large-scale resource
captured with rigorous privacy and ethics standards (detailed
in Appendix A and B) together with a diversity of subjects,
and the benchmarks will promote reproducible technical ad-
vances. More broadly, egocentric perception has the poten-
tial to positively impact society in many application domains,
including assistive technology, education, fitness, entertain-
ment and gaming, eldercare, robotics, and augmented reality.

Nonetheless, future research in this area must guard
against the potential negative societal impact if technology
for egocentric vision were misused.

First, there are risks surrounding privacy. As we begin
to see a proliferation of wearable cameras in public spaces,
producers of these wearable devices will need to develop and
implement protocols for notice and consent regarding the
collection of data in public spaces, as well as user controls
for how such data may be used, stored, and shared with
any third parties. Similarly, models that may be used to
transcribe speech or perform other tasks related to footage
should include robust user controls such as the ability to
remove or obscure personal data or sensitive content.

Note that for all our audio-visual and social benchmarking
work, the data used has full consent from the participants
in the video, i.e., to use their unblurred faces and audio of
their conversation. To date, the research community has
lacked any large-scale data resource with which to study
these kinds of problems; Ego4D will help the community to
consider new solutions while leveraging real-world, diverse
data that respects the privacy protocols of different countries.
Furthermore, the Ego4D data is available only for users who
sign a license that enumerates the allowable uses of the data,
which is intended to hinder potential negative applications.

Second, there is a risk that our large-scale collection could
inspire future collection efforts without the same level of care
or attention to the privacy and ethical concerns as were taken
in Ego4D. To mitigate this risk, we have aimed to be compre-
hensive in our descriptions of all parts of our procedures, and
we will include our best practices recommendations when
publicly disseminating the results of the project.

Finally, despite our best efforts as discussed in the main
paper, there are still some imbalances in the dataset. For ex-
ample, the data from Rwanda is relatively small, and though
74 cities represents a leap in coverage, they do not capture
all possible demographics. We acknowledge that no matter
how far one goes, full global coverage of daily life activity
is elusive. Still, we can mitigate this risk by continuing to
grow global collaborations with researchers and participants
in underrepresented areas.
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