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Abstract. Unmanned Aerial Vehicle (UAV) based remote sensing sys-
tem incorporated with computer vision has demonstrated potential for
assisting building construction and in disaster management like damage
assessment during earthquakes. The vulnerability of a building to earth-
quake can be assessed through inspection that takes into account the
expected damage progression of the associated component and the com-
ponent’s contribution to structural system performance. Most of these
inspections are done manually, leading to high utilization of manpower,
time, and cost. This paper proposes a methodology to automate these
inspections through UAV-based image data collection and a software li-
brary for post-processing that helps in estimating the seismic structural
parameters. The key parameters considered here are the distances be-
tween adjacent buildings, building plan-shape, building plan area, objects
on the rooftop and rooftop layout. The accuracy of the proposed method-
ology in estimating the above-mentioned parameters is verified through
field measurements taken using a distance measuring sensor and also
from the data obtained through Google Earth. Additional details and
code can be accessed from https://uvrsabi.github.io/

Keywords: Building Inspection, UAV-based Remote Sensing, Segmen-
tation, Image Stitching, 3D Reconstruction.

1 Introduction

Traditional techniques to analyze and assess the condition and geometric aspects
of buildings and other civil structures involve physical inspection by civil experts
according to pre-defined procedures. Such inspections can be costly, risky, time-
consuming, labour and resource intensive. A considerable amount of research
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has been dedicated to automating and improving civil inspection and monitor-
ing through computer vision. This results in less human intervention and lower
cost while ensuring effective data collection. Unmanned Aerial Vehicles (UAVs)
mounted with cameras have the potential for contactless, rapid and automated
inspection and monitoring of civil structures as well as remote data acquisition.

Computer vision-aided civil inspection has two prominent areas of applica-
tion: damage detection and structural component recognition [1]. Studies focused
on damage detection have used heuristic feature extraction methods to detect
concrete cracks [2, 3, 4], concrete spalling [5, 6], fatigue cracks [7, 8] and cor-
rosion in steel [9, 10, 11]. However, heuristic-based methods do not account for
the information that is available in regions around the defect and have been
replaced with deep learning-based methods. Image classification [12, 13, 14], ob-
ject detection [15, 16], semantic segmentation [17, 18, 19] based methods have
been used to successfully detect and classify the damage type. On the contrary,
structural component analysis involves detecting, classifying and studying the
characteristics of a physical structure. Hand-crafted filters [20, 21], point cloud-
based [22, 23, 24, 25], and deep learning-based [26, 27, 28, 29] methods have been
used to assess structural components like columns, planar walls, floor, bridges,
beams and slabs. There also has been a emphasis on developing architectures
for Building Information Modelling (BIM) [30, 31, 32] that involves analysis of
physical features of a building using high resolution 3D reconstruction.

Apart from structural component recognition, it is also essential to assess the
risk posed by earthquakes to buildings and other structural components. This
is a crucial aspect of inspection in seismically active zones. Accurate seismic
risk modeling requires knowledge of key structural characteristics of buildings.
Learning-based models in conjunction with street imagery [33, 34] have been
used to perform building risk assessments. However, UAVs can also be used
to obtain information in areas difficult to access by taking a large number of
images and videos from several points and different angles of view. Thus, UAVs
demonstrate huge potential when it comes to remote data acquisition for pre-
and/or post-earthquake risk assessments [35].

The main contributions of this paper are given below.

1. Primarily, we automate the inspection of buildings through UAV-based im-
age data collection and a post-processing module to infer and quantify the
details. This in effect avoids manual inspection, reducing the time and cost.

2. We estimate the distance between adjacent buildings and structures. To the
best of our knowledge, there has not been any work that has addressed this
problem.

3. We develop an architecture that can be used to segment roof tops in case of
both orthogonal and non-orthogonal view using a state-of-the-art semantic
segmentation model.

4. The software library for post-processing collates different algorithms used
in computer vision along with UAV state information to yield an accurate
estimation of the distances between adjacent buildings, building plan-shape,
building plan area, objects on the rooftop, and rooftop layout. These pa-
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rameters are key for the preparation of safety index assessment for buildings
against earthquakes.

2 Related Works

2.1 Distance between Adjacent Structures

The collision between adjacent buildings or among parts of the same building
during strong earthquake vibrations is called pounding [36]. Pounding occurs due
to insufficient physical separation between adjacent structures and their out-of-
phase vibrations resulting in non-synchronized vibration amplitudes. Pounding
can lead to the generation of a high-impact force that may cause either archi-
tectural or structural damage. Some reported cases of pounding include i) The
earthquake of 1985 in Mexico City [37] that left more than 20% of buildings
damaged, ii) Loma Prieta earthquake of 1989 [38] that affected over 200 struc-
tures, iii) Chi-Chi earthquake of 1999 [39] in central Taiwan, and iv) Sikkim
earthquake (2006) [40]. Methods such as Rapid Visual Screening (RVS), seis-
mic risk indexes, and vulnerability assessments have been developed to analyze
the level of damage to a building [41]. In particular, RVS-based methods have
been used for pre-and/or post-earthquake screening of buildings in earthquake-
prone areas. The pounding effect is considered as a vulnerability factor by RVS
methods like FEMA P-154, FEMA 310, EMS-98 Scale, NZSEE, OSAP, NRCC,
IITK-GSDMA, EMPI and RBTE-2019 [42].

The authors in [43] present a UAV-based site survey using both Nadir and
Oblique images for appropriate 3D modelling. The integration of nadir UAV im-
ages with oblique images ensures a better inclusion of facades and footprints of
the buildings. Distances between the buildings in the site were manually mea-
sured from the generated dense point cloud. We use the 3D reconstruction of
the structures from images in conjunction with conditional plane fitting for es-
timating the distance between adjacent structures.

2.2 Plan Shape and Roof Area Estimation

The relationship between the center of stiffness and gravity’s eccentricity is influ-
enced by shape irregularities, asymmetries, or concavities, as well as by building
mass distributions. For any structure, if the centre of stiffness is moved away
from the centre of gravity during ground motion, more torsion forces are pro-
duced [44]. When a building is shaken by seismic activity, this eccentricity causes
structures to exhibit improper dynamic characteristics. Hence, the behavior of a
building under seismic activity also depends on its 3D configuration, plan shape
and mass distribution [45]. Plan shape and and Roof Area is needed for calcu-
lating the Floor Space Index (FSI). FSI is the ratio of the total built-up area of
all the floors to the plot area. FSI is a contributing factor in assessing the extent
of the damage and is usually fixed by the expert committee.

Roof-top segmentation has been considered as a special case of 3D plane
segmentation from point clouds and can be achieved through model fitting [46],
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region growing [47], feature clustering [48] and global energy optimization-based
methods [49]. Studies focused on these methods have been tested on datasets
where the roof was visible orthogonally through satellite imagery[50] and LiDAR
point clouds [46, 47, 48]. The accuracy of these methods depends on how the
roof is viewed. In case of a non-orthogonal view, these methods must be used in
conjunction with some constraints. On the contrary, learning-based methods [51]
have been developed that specifically segment out roofs. The neural networks
employed in these methods have been trained on satellite imagery and do not
perform well in non-orthogonal roof-view scenarios. Our approach is to segment
out roofs when viewed both orthogonally and non-orthogonally by training a
state-of-the-art semantic segmentation model on a custom roof-top dataset.

2.3 Roof Layout Estimation

Roof Layout Estimation refers to identifying and locating objects present on the
roof such as air conditioner units, solar panels, etc. Such objects are usually non-
structural elements (NSE). As the mass of the NSE increases, the earthquake
response of the NSE starts affecting the whole building. Hence, they need to
be taken into account for design calculations. Furthermore, the abundance of
these hazardous objects may create instabilities on the roof making it prone to
damage during earthquakes. Estimating the Roof Layout is not as trivial as in
the case of satellite images, since the UAV has altitude limitations along with
camera Field of View (FOV) constraints, thereby limiting us from obtaining a
complete view of the roof in a single image. Moreover, we cannot rely on satellite
images because it does not provide us with real time observation of our location
of interest. Hence, we solve this problem by first stitching a large number of
images with partially visible roofs to create a panoramic view of the roof and
then we apply object detection and semantic segmentation to get the object and
roof masks respectively.

Various techniques for image stitching can be roughly distinguished into three
categories: direct technique [52, 53, 54], feature-based technique [55, 56, 57]
and position-based technique [58]. The first category performs pixel-based im-
age stitching by minimizing the sum of the absolute difference between over-
lapping pixels. These methods are scale and rotation variant and to tackle this
problem, the second category focuses on extracting a set of images and match-
ing them using feature based algorithms which includes SIFT, SURF, Harris
Corner Detection. These methods are computationally expensive and fail in the
absence of distinct features. The third category stitches images sampled from
videos through their overlapping FOV. Due to the inability to obtain accurate
camera poses, not much research has been conducted on this approach. In this
paper, we present an efficient and reliable approach to make use of the camera
poses and stitch a large set of images avoiding the problems of image drift and
expensive computation associated with the first two categories.
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3 Data Collection

This section discusses the methods for gathering data that were utilized to carry
out the research experiments in this study. DJI Mavic Mini4 UAV is used for
gathering visual data because of its high-quality image sensory system with an
adjustable gimbal.

(a) Frontal mode (b) In-Between mode (c) Roof mode

(d) Frontal mode (e) In-Between mode (f) Roof mode

Fig. 1: Figures 1(a), 1(b), and 1(c) indicate the UAV’s point of view while fig-
ures 1(d), 1(e), and 1(f) are representations of the respective coordinate system
adopted.

For estimating the distance between adjacent structures, the images are col-
lected in 3 different modes: Frontal Mode, In-Between Mode and Roof Mode.
Fig. 1(a) shows the frontal face of the two adjacent buildings for which data was
collected. In this mode, we focus on estimating the distance between the two
buildings by analyzing only their frontal faces through a forward-facing camera.
This view is particularly helpful when there are impediments between the sub-
ject buildings and flying a UAV between them is challenging. In fig. 1(b), the
UAV was flown in-between the two buildings along a path parallel to the facade
with a forward-facing camera. This mode enables the operators to calculate dis-
tances when buildings have irregular shapes. Lastly, for the roof mode, the UAV
was flown at a fixed altitude with a downward-facing camera so as to capture
the rooftops of the subject buildings. Fig. 1(c) is a pictorial representation of
the roof mode. The roof mode helps in tackling occlusions due to vegetation and
other physical structures.

4 UAV specification details can be found at the official DJI website:
https://www.dji.com/mavic-mini

https://www.dji.com/mavic-mini
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For Rooftop Layout Estimation, the UAV was flown at a constant height
with a downward-facing camera, parallel to the plane of the roof. This helped in
robust detection of NSE. To estimate the Plan Shape and Roof Area, a dataset
comprising of around 350 images was prepared from the campus buildings and
UrbanScene3D dataset [59]. The training set comprised of images scraped from
the UrbanScene3D videos, Buildings 4 and 6 and while the validation and test
set comprised of the Buildings 3, 5 and 7. This was done to ensure that the
model learns the characteristic features of a roof irrespective of the building
plan shape. Out of these, 50 images had fully-visible buildings while the rest
contained partially-visible buildings.

4 Methodology

We propose different methods to calculate the distance between the adjacent
buildings using plane segmentation; estimate the roof layout using Object De-
tection and large scale image stitching; estimate the roof area and plan shape
using roof segmentation as shown in Fig. 2.

Fig. 2: Architecture of automated building inspection using the aerial images
captured using UAV. The odometry information of UAV is also used for the
quantification of different parameters involved in the inspection.

4.1 Distance Between Adjacent Buildings

We use plane segmentation to obtain the distance between the two adjacent
buildings. We have divided our approach into three stages as presented in Fig.
3. In Stage I, images were sampled from the video captured by the UAV and
panoptic segmentation was performed using a state-of-the-art network [60], to
obtain vegetation-free masks. This removes trees and vegetation near the vicinity
of the buildings and thus improves the accuracy of our module. Fig. 4 shows
the impact of panoptic segmentation for frontal mode. In Stage II, the masked
images were generated from the binary masks and the corresponding images. The



UVRSAB 7

masked images are inputs to a state-of-the-art image-based 3D reconstruction
library [61, 62] which outputs a dense 3D point cloud and the camera poses
through Structure-from-Motion. Our approach for all the three modes is same
for the first two stages.

Fig. 3: Architecture for estimation of distance between adjacent structures.

(a) Image sample (b) Vegetation-free mask

Fig. 4: Removal of vegetation from the sample images enhances the structural
features of the buildings in the reconstructed 3D model leading to more accurate
results.

In Stage III, we aim to extract planes from the given point cloud that are
essential to identify structures such as roof and walls of the building. We employ
the co-ordinate system depicted in Fig. 1. We can divide this task into two parts:
i) Isolation of different building clusters and ii) Finding planes in each cluster.
Isolation of the concerned buildings is done using euclidean clustering thereby
creating two clusters. For instance, in Roof Mode the clusters are distributed on
either side of the Y-axis. Similarly, for In-Between and Frontal mode the clus-
tering happens about the Z-axis. In order to extract the planes of interest, we
slice each cluster along a direction parallel to our plane of interest, into small
segments of 3D points. For instance, in Roof mode we are interested in fitting
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a plane along the roof of a building; therefore, we slice the building perpen-
dicular to ground normal, i.e, the Z-axis. Finally, Random Sample Consensus
(RANSAC) algorithm is applied for each segment of 3D points to iteratively fit
a plane and obtain a set of parallel planes as shown under the Stage III in Fig.
3.

Our approach selects a plane from the set of planes estimated in Stage III
for each building based on the highest number of inliers. As stated above, for
each mode, the selected planes for the adjacent buildings have the same normal
unit vector. Further, we sample points on these planes to calculate the distance
between the adjacent buildings at different locations. The scale estimation is done
by using the odometry data received from the UAV and the estimated distance
is scaled up to obtain the actual distance between the adjacent buildings. This
was done by time-syncing the flight logs, that contains GPS, Barometer and
IMU readings, with the sampled images.

4.2 Plan Shape and Roof Area Estimation

The dataset for roof-top of various buildings was collected as described in Sec-
tion 3. This dataset was used to estimate the layout and area of the roof through
semantic segmentation. The complete Plan Shape module has been summarized
in Fig. 5. For the task of roof segmentation, we use a state-of-the-art semantic
segmentation model, LEDNet [63]. The asymmetrical architecture of this net-
work leads to reduction in network parameters resulting in a faster inference
process. The split and shuffle operations in the residual layer enhances informa-
tion sharing while the decoder’s attention mechanism reduces complexity of the
whole network. We subject the input images to a pre-processing module that
removes distortion from the wide-angle images. Histogram equalization is also
performed to improve the contrast of the image. Data augmentation techniques

Fig. 5: Architecture of the Plan Shape module providing the segmented mask of
the roof as output from the raw input image.

(4 rotations of 90◦+ horizontal flip + vertical flip) were used during inference to
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improve the network’s performance and increase robustness. The single-channel
grey-scale output is finally thresholded to obtain a binary mask. The roof area
from the segmentation masks can be obtained by using Equation 1 where C is
the contour area (in pixels2), obtained from the segmented mask, D is the depth
of the roof from the camera (in m) and f is the focal length of the camera (in
pixels) used.

Area (m2) = C × (D/f)2 (1)

4.3 Roof Layout Estimation

The data for this module was collected as described in Section 3. Due to the
camera FOV limitations and to maintain good resolution, it is not possible to
capture the complete view of the roof in a single image, especially in the case of
large sized buildings. Hence, we perform large scale stitching of partially visible
roofs followed by NSE detection and roof segmentation. Fig 6 shows the approach
adopted for Roof Layout Estimation.

Large Scale Aerial Image Stitching: We exploit the planarity of the roof
and the fact that the UAV is flown at a constant height from the roof. Instead
of opting for homography, that relates two geometric views in case of image
stitching, we opt for affine transformations. Affine transformations are linear
mapping methods that preserve points, straight lines, and planes.

Fig. 6: We exploit the planarity of the roof and the fact that the distance between
the UAV and the roof will be constant (the UAV is flown at a constant height).
This enables us to relate two consecutive images through an affine transforma-
tion.

Let I = {i1, i2, i3, ..., iN} represent an ordered set of images sampled from
a video collected as per Section 3. The image stitching algorithm implemented
has been summarized below:
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1. Features were extracted in image i1, using ORB feature detector and tracked
in the next image, i2 using optical flow. This helped in effective rejection of
outliers.

2. The obtained set of feature matches across both the images were used to
determine the affine transformation matrix using RANSAC.

3. Images i1 and i2 were then warped as per the transformation and stitched
on a canvas.

4. Affine transformation was calculated between image i3 and the previously
warped image i2 before it was stitched using steps 1 and 2. Image i3 was
then warped and stitched on the same canvas.

5. Step 4 was repeated for the next set of images, that is, affine transformation
was calculated for image i4 and the previously warped image i3 before it was
stitched.

Detecting Objects on Rooftop: For identification of NSE on the rooftop,
we use a state-of-the art object detection model, Detic [64] because it is highly
flexible and has been trained for large number of classes. In order to estimate
the roof layout, it is essential to detect and locate the NSE as well as the roof
from a query image. Note that we classify all the NSE as a single class. This
information can then be represented as a semantic mask which will be to calcu-
late the percentage of occupancy of the NSE. A custom vocabulary comprising
of the NSE was passed to the model. The roof was segmented out using LEDNet
as described in Section 4.2.

5 Results

This section presents the results for the different modules of automated building
inspection using aerial images.

5.1 Distance Between Adjacent Buildings

We validated our algorithm on real aerial datasets of adjacent buildings and
structures. In particular, we tested all the modes of this module on a set of adja-
cent buildings, Buildings 1 and 2, and also on Building 3, a U-shaped building.
The resulting distances for all the modes can be visualized through Fig. 7. The
corresponding distances visualized in Fig. 7 have been documented in Table 1
and 2. We obtain the ground truth from using a Time-of-Flight (ToF) based
range measuring sensor5. This sensor has a maximum range of 60 meters. We
also compare the results with that from Google Earth. It must be noted that
using Google Earth, it is not possible to measure some distances due to lack of
3D imagery.

5 The ToF sensor can be found at: https://www.terabee.com/shop/lidar-tof-range-
finders/teraranger-evo-60m/

https://www.terabee.com/shop/lidar-tof-range-finders/teraranger-evo-60m/
https://www.terabee.com/shop/lidar-tof-range-finders/teraranger-evo-60m/
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(a) Roof mode (b) In-Between mode (c) Frontal mode

(d) Roof mode (e) In-Between mode (f) Frontal mode

Fig. 7: 7(a), 7(b) and 7(c) and 7(d), 7(e) and 7(f) represent the implementation
of plane fitting using piecewise-RANSAC in different views for Buildings 1, 2
and Building 3 respectively.

Mode
Buildings 1 and 2

Distance
Reference

Ground
Truth

Google
Earth

Estimated Error
(Google
Earth)

Error (Es-
timated)

Roof

L1 in Fig 7(a) 16.40 m 17.14 m 16.70 m 4.5% 1.8%

L2 in Fig 7(a) 12.96 m 12.91 m 12.94 m 0.3% 0.15%

L3 in Fig 7(a) 12.01 m 12.08 m 11.97 m 0.58% 0.33%

L4 in Fig 7(a) 13.30 m 13.00 m 12.77 m 2.31% 3.98%

In-Between

L1 in Fig 7(b) 13.31 m 13.50 m 13.22 m 1.42% 0.67%

L2 in Fig 7(b) 12.91 m 12.40 m 12.87 m 3.95% 0.31%

L3 in Fig 7(b) 12.30 m 12.43 m 12.12 m 1.00% 1.39%

L4 in Fig 7(b) 12.70 m 12.87 m 12.50 m 1.33% 1.57%

L5 in Fig 7(b) 13.95 m 13.84 m 13.87 m 0.79% 0.51%

L6 in Fig 7(b) 12.60 m 12.69 m 12.56 m 0.71% 0.31%

Frontal

L1 in Fig 7(c) 16.96 m 16.91 m 16.92 m 0.29% 0.23%

L2 in Fig 7(c) 16.96 m - 16.78 m - 1.06%

L3 in Fig 7(c) 16.96 m - 17.13 m - 1.00%

L4 in Fig 7(c) 16.96 m - 17.05 m - 0.53%

Table 1: Distances calculated for Building 1 and 2 using our method and Google
Earth for all three modes.
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Mode
Building 3

Distance
Reference

Ground
Truth

Google
Earth

Estimated Error
(Google
Earth)

Error (Es-
timated)

Roof

L1 in Fig 7(d) 33.28 m 33.58 m 33.26 m 0.90 % 0.06 %

L2 in Fig 7(d) 33.28 m 33.63 m 33.22 m 1.05 % 0.18 %

L3 in Fig 7(d) 33.28 m 33.00 m 33.28 m 0.84 % 0.00 %

L4 in Fig 7(d) 33.28 m 33.35 m 33.81 m 0.21 % 1.59 %

In-Between

L1 in Fig 7(e) 33.28 m 32.58 m 33.11 m 2.10 % 0.51 %

L2 in Fig 7(e) 33.28 m 33.12 m 32.40 m 0.48 % 2.64 %

L3 in Fig 7(e) 33.28 m 32.94 m 32.78 m 1.02 % 1.50 %

L4 in Fig 7(e) 33.28 m 32.25 m 32.81 m 3.09 % 1.41 %

Frontal

L2 in Fig 7(f) 33.28 m 33.57 m 33.26 m 0.87 % 0.06 %

L1 in Fig 7(f) 33.28 m - 33.60 m - 0.96 %

L3 in Fig 7(f) 33.28 m - 33.59 m - 0.93 %

L4 in Fig 7(f) 33.28 m - 33.99 m - 2.13 %

Table 2: Distances calculated for Building 3 using our method and Google Earth
for all three modes.

5.2 Plan Shape and Roof Area Estimation

The roof area was estimated from images taken at different depths, that is,
when the UAV was operated at different altitudes ranging from 50m to 100m.
The module was tested on various campus buildings. The results in Table 3 were
averaged out for all samples corresponding to the same building. The module
estimates the roof area with an average difference of 4.7% with Google Earth
data. Predicted roof masks of some buildings from LEDNet are shown in Fig 8.

Fig. 8: Roof Segmentation results for 4 buildings.
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Fig. 9: We use LEDNet in both Plan Shape and Roof Area Estimation as well as
Roof Layout Estimation. The trained model correctly segments out the roof in
case of a non-orthogonal view, that is, when the downward-facing camera is not
directly above the roof.

Building Area
Measured

using Google
Earth

Estimated
Area

Absolute
Difference

Percentage
Difference

Building 3 1859.77 m2 1939.84 m2 80.07 m2 4.3 %

Building 4 350 m2 331.30 m2 18.70 m2 5.3 %

Building 5 340 m2 329.55 m2 10.45 m2 3.1 %

Building 6 3,127.60 m2 2936.82 m2 190.78 m2 6.1 %

Table 3: Roof Area Estimation Results

5.3 Roof Layout Estimation

Data for Roof Layout Estimation was collected as described in Section 3. Images
were sampled at a frequency of 10Hz. The video collected for Roof Layout Esti-
mation was sampled at a frequency of 1Hz generating 98 images. The results of
image stitching can be visualized in Fig. 10(a) with the corresponding roof mask
in Fig. 10(b) and the NSE mask in Fig. 10(c). The percentage occupancy was
calculated by taking the ratio of object occupancy area (pixels2) in Fig. 10(c) to
total roof area (pixels2) in Fig. 10(b). The final percentage occupancy obtained
was 38.73%.

6 Discussion

We estimate the distance between adjacent structures using 3D reconstruction
and conditional plane fitting and validate its performance on ground truth data
from a ToF sensor. We also make a comparison of our proposed module with
Google Earth and validate our superior performance. Moreover, it is not possible
to employ Google Earth for this module universally due to the lack of 3D im-
agery for all the buildings. We validated our distance estimation algorithm and
compared the results with the ground truth and Google Earth. We estimated
the distance between adjacent structures with an average error of 0.94%, which
is superior to Google Earth which performs with an average error of 1.36%.
Our rooftop area estimation module performs with an average difference of 4.7%
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(a) Stitched Image

(b) Roof Mask

(c) Object Mask

Fig. 10: Results for Roof Layout Estimation.

when compared to Google Earth. It is observed that the difference remains near-
constant irrespective of the size of the rooftop area. Considering the irregular
shape of the roofs, it is challenging to measure the ground truth of the roof
area manually and it is also error-prone and resource-intensive. The roof layout
was estimated through semantic segmentation, object detection, and large-scale
image stitching of 98 images. We also detected NSE on the rooftops and found
their percentage occupancy to be 38.73%.

7 Conclusion

This paper presented an implementation of a considerable amount of approaches
that have been developed, aiming at modeling the structure of buildings. Seismic
risk assessment of buildings involves the estimation of several structural parame-
ters. It is important to estimate the parameters which can describe the geometry
of buildings, plan shape of the rooftops, and size of the buildings. In particu-
lar, we estimated the distances between adjacent buildings and structures, plan
shape of a building, roof area, and percentage of area occupied by NSE. We plan
to release these modules in the form of an open-source library that can be easily
used by non-computer vision experts. Future work includes quantifying the flat-
ness of ground, crack detection, and identification of water tanks and staircase
exits that could help in taking preliminary precautions for earthquakes.

Acknowledgement: The authors acknowledge the financial support provided
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IIIT-H/IHub/Project/Mobility/2021-22/M2-003.
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Oral Büyüköztürk. Autonomous structural visual inspection using region-
based deep learning for detecting multiple damage types. Computer-Aided
Civil and Infrastructure Engineering, 33(9):731–747, 2018. 2

[17] Allen Zhang, Kelvin CP Wang, Baoxian Li, Enhui Yang, Xianxing Dai,
Yi Peng, Yue Fei, Yang Liu, Joshua Q Li, and Cheng Chen. Automated
pixel-level pavement crack detection on 3d asphalt surfaces using a deep-
learning network. Computer-Aided Civil and Infrastructure Engineering, 32
(10):805–819, 2017. 2

[18] Vedhus Hoskere, Yasutaka Narazaki, Tu Hoang, and BillieF Spencer Jr.
Vision-based structural inspection using multiscale deep convolutional neu-
ral networks. arXiv preprint arXiv:1805.01055, 2018. 2

[19] Vedhus Hoskere, Yasutaka Narazaki, Tu A Hoang, and Billie F Spencer Jr.
Towards automated post-earthquake inspections with deep learning-based
condition-aware models. arXiv preprint arXiv:1809.09195, 2018. 2

[20] Zhenhua Zhu and Ioannis Brilakis. Concrete column recognition in images
and videos. Journal of computing in civil engineering, 24(6):478–487, 2010.
2

[21] Christian Koch, S German Paal, Abbas Rashidi, Zhenhua Zhu, Markus
König, and Ioannis Brilakis. Achievements and challenges in machine vision-
based inspection of large concrete structures. Advances in Structural Engi-
neering, 17(3):303–318, 2014. 2

[22] Xuehan Xiong, Antonio Adan, Burcu Akinci, and Daniel Huber. Automatic
creation of semantically rich 3d building models from laser scanner data.
Automation in construction, 31:325–337, 2013. 2

[23] Iro Armeni, Ozan Sener, Amir R Zamir, Helen Jiang, Ioannis Brilakis, Mar-
tin Fischer, and Silvio Savarese. 3d semantic parsing of large-scale indoor
spaces. In Proceedings of the IEEE conference on computer vision and pat-
tern recognition, pages 1534–1543, 2016. 2



UVRSAB 17

[24] Mani Golparvar-Fard, Jeffrey Bohn, Jochen Teizer, Silvio Savarese, and Fe-
niosky Peña-Mora. Evaluation of image-based modeling and laser scanning
accuracy for emerging automated performance monitoring techniques. Au-
tomation in construction, 20(8):1143–1155, 2011. 2

[25] Ruodan Lu, Ioannis Brilakis, and Campbell R Middleton. Detection of
structural components in point clouds of existing rc bridges. Computer-
Aided Civil and Infrastructure Engineering, 34(3):191–212, 2019. 2

[26] Yuqing Gao and Khalid M Mosalam. Deep transfer learning for image-based
structural damage recognition. Computer-Aided Civil and Infrastructure
Engineering, 33(9):748–768, 2018. 2

[27] Xiao Liang. Image-based post-disaster inspection of reinforced concrete
bridge systems using deep learning with bayesian optimization. Computer-
Aided Civil and Infrastructure Engineering, 34(5):415–430, 2019. 2

[28] Chul Min Yeum, Jongseong Choi, and Shirley J Dyke. Automated region-
of-interest localization and classification for vision-based visual assessment
of civil infrastructure. Structural Health Monitoring, 18(3):675–689, 2019.
2

[29] Yasutaka Narazaki, Vedhus Hoskere, Tu A Hoang, Yozo Fujino, Akito Saku-
rai, and Billie F Spencer Jr. Vision-based automated bridge component
recognition with high-level scene consistency. Computer-Aided Civil and
Infrastructure Engineering, 35(5):465–482, 2020. 2

[30] Andrey Dimitrov and Mani Golparvar-Fard. Vision-based material recog-
nition for automated monitoring of construction progress and generating
building information modeling from unordered site image collections. Ad-
vanced Engineering Informatics, 28(1):37–49, 2014. 2

[31] Mani Golparvar-Fard, Feniosky Pena-Mora, and Silvio Savarese. Automated
progress monitoring using unordered daily construction photographs and
ifc-based building information models. Journal of Computing in Civil En-
gineering, 29(1):04014025, 2015. 2

[32] Hesam Hamledari, Shakiba Davari, Ehsan Rezazadeh Azar, Brenda Mc-
Cabe, Forest Flager, and Martin Fischer. Uav-enabled site-to-bim automa-
tion: Aerial robotic-and computer vision-based development of as-built/as-is
bims and quality control. In Construction research congress, pages 336–346,
2017. 2

[33] Patrick Aravena Pelizari, Christian Geiß, Paula Aguirre, Hernán
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of unmanned aerial vehicle photogrammetry to obtain topographical in-
formation to improve bridge risk assessment. Journal of Infrastructure
Systems, 24:04017041, 03 2018. https://doi.org/10.1061/(ASCE)IS.1943-
555X.0000393. 2

[36] Mahmoud Miari, Kok Keong Choong, and Robert Jankowski. Seis-
mic pounding between adjacent buildings: Identification of parame-
ters, soil interaction issues and mitigation measures. Soil Dynam-
ics and Earthquake Engineering, 121:135–150, 2019. ISSN 0267-
7261. https://doi.org/https://doi.org/10.1016/j.soildyn.2019.02.024.
URL https://www.sciencedirect.com/science/article/pii/

S0267726118313848. 3
[37] Jorge Aguilar Carboney, Hugón Juárez Garćıa, Rodolfo Ortega, and
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[41] Nurullah Bektaş and Orsolya Kegyes-Brassai. Conventional rvs methods
for seismic risk assessment for estimating the current situation of existing
buildings: A state-of-the-art review. Sustainability, 14(5), 2022. ISSN 2071-
1050. https://doi.org/10.3390/su14052583. URL https://www.mdpi.com/

2071-1050/14/5/2583. 3
[42] Pradeep Ramancharla, Aniket Bhalkikar, Pulkit Velani, Pammi Vyas,

Bharat Prakke, Neelima Patnala, and Niharika Talyan. A primer on rapid
visual screening (rvs) consolidating earthquake safety assessment efforts in
india. 10 2020. 3

[43] Giuseppina Vacca, Andrea Dess̀ı, and Alessandro Sacco. The
use of nadir and oblique uav images for building knowledge.
ISPRS International Journal of Geo-Information, 6:393, 12 2017.
https://doi.org/10.3390/ijgi6120393. 3

https://doi.org/https://doi.org/10.1016/j.buildenv.2020.106805
https://www.sciencedirect.com/science/article/pii/S0360132320301633
https://www.sciencedirect.com/science/article/pii/S0360132320301633
https://doi.org/10.1061/(ASCE)IS.1943-555X.0000393
https://doi.org/10.1061/(ASCE)IS.1943-555X.0000393
https://doi.org/https://doi.org/10.1016/j.soildyn.2019.02.024
https://www.sciencedirect.com/science/article/pii/S0267726118313848
https://www.sciencedirect.com/science/article/pii/S0267726118313848
https://doi.org/10.1193/1.1585516
https://doi.org/https://doi.org/10.1016/S0141-0296(96)00082-X
https://doi.org/https://doi.org/10.1016/S0141-0296(96)00082-X
https://www.sciencedirect.com/science/article/pii/S014102969600082X
https://www.sciencedirect.com/science/article/pii/S014102969600082X
https://doi.org/10.1080/02533839.2002.9670687
https://doi.org/10.1080/02533839.2002.9670687
https://doi.org/10.1080/02533839.2002.9670687
https://doi.org/10.3390/su14052583
https://www.mdpi.com/2071-1050/14/5/2583
https://www.mdpi.com/2071-1050/14/5/2583
https://doi.org/10.3390/ijgi6120393


UVRSAB 19

[44] Christopher Arnold and Robert Reitherman. Building configuration and
seismic design. John Wiley & Sons, 1982. 3

[45] Liora Sahar, Subrahmanyam Muthukumar, and Steven P French. Using
aerial imagery and gis in automated building footprint extraction and shape
recognition for earthquake risk assessment of urban inventories. IEEE
Transactions on Geoscience and Remote Sensing, 48(9):3511–3520, 2010.
3

[46] Dong Chen, Liqiang Zhang, Jonathan Li, and Rei Liu. Ur-
ban building roof segmentation from airborne lidar point clouds.
International Journal of Remote Sensing, 33(20):6497–6515, 2012.
https://doi.org/10.1080/01431161.2012.690083. URL https://doi.org/

10.1080/01431161.2012.690083. 3, 4
[47] Anh-Vu Vo, Linh Truong-Hong, Debra F. Laefer, and Michela Bertolotto.

Octree-based region growing for point cloud segmentation. ISPRS Journal
of Photogrammetry and Remote Sensing, 104:88–100, 2015. ISSN 0924-
2716. https://doi.org/https://doi.org/10.1016/j.isprsjprs.2015.01.011.
URL https://www.sciencedirect.com/science/article/pii/

S0924271615000283. 4
[48] Aparajithan Sampath and Jie Shan. Segmentation and reconstruc-

tion of polyhedral building roofs from aerial lidar point clouds. IEEE
Transactions on Geoscience and Remote Sensing, 48(3):1554–1567, 2010.
https://doi.org/10.1109/TGRS.2009.2030180. 4

[49] Zhen Dong, Bisheng Yang, Pingbo Hu, and Sebastian Scherer.
An efficient global energy optimization approach for robust 3d
plane segmentation of point clouds. ISPRS Journal of Pho-
togrammetry and Remote Sensing, 137:112–133, 2018. ISSN 0924-
2716. https://doi.org/https://doi.org/10.1016/j.isprsjprs.2018.01.013.
URL https://www.sciencedirect.com/science/article/pii/

S0924271618300133. 4
[50] Weijia Li, Conghui He, Jiarui Fang, Juepeng Zheng, Haohuan Fu, and Le Yu.

Semantic segmentation-based building footprint extraction using very high-
resolution satellite images and multi-source gis data. Remote Sensing, 11(4),
2019. ISSN 2072-4292. https://doi.org/10.3390/rs11040403. URL https:

//www.mdpi.com/2072-4292/11/4/403. 4
[51] Yuchu Qin, Yunchao Wu, Bin Li, Shuai Gao, Miao Liu, and Yulin Zhan.

Semantic segmentation of building roof in dense urban environment with
deep convolutional neural network: A case study using gf2 vhr imagery in
china. Sensors, 19:1164, 03 2019. https://doi.org/10.3390/s19051164. 4

[52] Aathreya S. Bhat, Amith V. Shivaprakash, Namrata S. Prasad, and
Chaitra Nagaraj. Template matching technique for panoramic image
stitching. In 2013 7th Asia Modelling Symposium, pages 111–115, 2013.
https://doi.org/10.1109/AMS.2013.22. 4

[53] Somaya Adwan, Iqbal Alsaleh, and Rasha Majed. A new approach for im-
age stitching technique using Dynamic Time Warping (DTW) algorithm
towards scoliosis X-ray diagnosis. Measurements, 84:32–46, April 2016.
https://doi.org/10.1016/j.measurement.2016.01.039. 4

https://doi.org/10.1080/01431161.2012.690083
https://doi.org/10.1080/01431161.2012.690083
https://doi.org/10.1080/01431161.2012.690083
https://doi.org/https://doi.org/10.1016/j.isprsjprs.2015.01.011
https://www.sciencedirect.com/science/article/pii/S0924271615000283
https://www.sciencedirect.com/science/article/pii/S0924271615000283
https://doi.org/10.1109/TGRS.2009.2030180
https://doi.org/https://doi.org/10.1016/j.isprsjprs.2018.01.013
https://www.sciencedirect.com/science/article/pii/S0924271618300133
https://www.sciencedirect.com/science/article/pii/S0924271618300133
https://doi.org/10.3390/rs11040403
https://www.mdpi.com/2072-4292/11/4/403
https://www.mdpi.com/2072-4292/11/4/403
https://doi.org/10.3390/s19051164
https://doi.org/10.1109/AMS.2013.22
https://doi.org/10.1016/j.measurement.2016.01.039


20 K. Srivastava et al.

[54] Moushumi Bonny and Mohammad Uddin. A technique for
panorama-creation using multiple images. International Jour-
nal of Advanced Computer Science and Applications, 11, 01 2020.
https://doi.org/10.14569/IJACSA.2020.0110293. 4

[55] Murtadha Alomran and Douglas Chai. Feature-based panoramic
image stitching. In 2016 14th International Conference on Con-
trol, Automation, Robotics and Vision (ICARCV), pages 1–6, 2016.
https://doi.org/10.1109/ICARCV.2016.7838721. 4

[56] David G. Lowe. Distinctive image features from scale-invariant keypoints.
International Journal of Computer Vision, 60(2):91–110, Nov 2004. ISSN
1573-1405. https://doi.org/10.1023/B:VISI.0000029664.99615.94. URL
https://doi.org/10.1023/B:VISI.0000029664.99615.94. 4

[57] Ying Zhang, Lei Yang, and Zhujun Wang. Research on video image stitch-
ing technology based on surf. In 2012 Fifth International Symposium on
Computational Intelligence and Design, volume 2, pages 335–338, 2012.
https://doi.org/10.1109/ISCID.2012.235. 4

[58] Paul Tsao, Tsi-Ui Ik, Guan-Wen Chen, and Wen-Chih Peng. Stitching aerial
images for vehicle positioning and tracking. In 2018 IEEE International
Conference on Data Mining Workshops (ICDMW), pages 616–623. IEEE,
2018. 4

[59] Yilin Liu, Fuyou Xue, and Hui Huang. Urbanscene3d: A large scale urban
scene dataset and simulator. 2021. 6

[60] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross Gir-
shick. Detectron2. https://github.com/facebookresearch/detectron2,
2019. 6

[61] Johannes Lutz Schönberger, Enliang Zheng, Marc Pollefeys, and Jan-
Michael Frahm. Pixelwise view selection for unstructured multi-view stereo.
In European Conference on Computer Vision (ECCV), 2016. 7

[62] Johannes Lutz Schönberger, Enliang Zheng, Marc Pollefeys, and Jan-
Michael Frahm. Pixelwise view selection for unstructured multi-view stereo.
In European Conference on Computer Vision (ECCV), 2016. 7

[63] Yu Wang, Quan Zhou, Jia Liu, Jian Xiong, Guangwei Gao, Xiaofu
Wu, and Longin Jan Latecki. Lednet: A lightweight encoder-decoder
network for real-time semantic segmentation. In 2019 IEEE Interna-
tional Conference on Image Processing (ICIP), pages 1860–1864, 2019.
https://doi.org/10.1109/ICIP.2019.8803154. 8

[64] Xingyi Zhou, Rohit Girdhar, Armand Joulin, Philipp Krähenbühl, and Is-
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