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Abstract. Visual data obtained during driving scenarios usually con-
tain large amounts of text that conveys semantic information necessary
to analyse the urban environment and is integral to the traffic control
plan. Yet, research on autonomous driving or driver assistance systems
typically ignores this information. To advance research in this direction,
we present RoadText-3K, a large driving video dataset with fully anno-
tated text. RoadText-3K is three times bigger than its predecessor and
contains data from varied geographical locations, unconstrained driving
conditions and multiple languages and scripts. We offer a comprehensive
analysis of tracking by detection and detection by tracking methods ex-
ploring the limits of state-of-the-art text detection. Finally, we propose
a new end-to-end trainable tracking model that yields state-of-the-art
results on this challenging dataset. Our experiments demonstrate the
complexity and variability of RoadText-3K and establish a new, realistic
benchmark for scene text tracking in the wild.
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1 Introduction

There is text in about 50% of the images in large-scale datasets such as MS
Common Objects in Context [32], and the percentage goes up sharply in urban
environments. Specific activities, such as making a purchase, using public trans-
portation or finding a place in the city, are highly dependent on understanding
textual information in the wild, and driving is a prime example.

Text on traffic signs is an integral part of the traffic control plan as it provides
the driver with information on the upcoming situation. Nevertheless, textual in-
formation is currently not exploited by Advanced Driver Assistance Systems
(ADAS) or autonomous driving systems. Automatic road text understanding
could allow introducing new driving instructions in the route, updating maps
automatically, and identifying target locations in the street. At the same time,
much text on the road is a distraction for the driver. For example, 71% of Amer-
icans consciously look at billboard messages while driving [34] . As a matter
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Fig.1: Sample frames from the new RoadText-3K dataset taken from different
locations containing multilingual text. The top-left frame was captured in the
US (English text), the top-right frame in Spain (Spanish/Catalan) while bottom
row frames are taken from India videos (Telugu and Hindi). Transcriptions are
shown only for some of the bounding boxes to avoid clutter.

of fact, drivers who detected more traffic signs also detected more advertise-
ments [31], as text naturally attracts bottom-up human attention [6].

The lifetime of text objects while driving is quite short. At normal city driving
speeds (30 km/h), a road text instance enters (becomes readable) and exits the
scene within 3-5 seconds. Thus a reading system for driving is required to detect,
track and recognise text early on, at the initial instances of its occurrence, while
the text is typically far from the vehicle. This requires a fast model, tolerant to
occlusions, which can deal with tiny text instances, typically affected by motion
blur and important perspective distortions, especially in the case of roadside text.
While object tracking is a well explored area of research, there have only been
a few attempts at extending these ideas to text tracking. Our dataset contains
high-resolution videos where many of the text instances have a small size, suffer
significant perspective changes during the sequence and present visual artifacts
such as blurred or out of focus text. This makes the extension of object tracking
to road-text tracking non-trivial.

In this work, we introduce a significant quantitative and qualitative extension
to the RoadText-1k dataset [26] and a comprehensive study of baseline tracking
methods before introducing a new tracking model that yields better performance
at high speeds compared to the baselines.

Specifically our contributions are the following:

— We extend the existing RoadText-1K dataset by adding 2000 more videos.
The extended RoadText-3K dataset contains videos captured from three
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countries that contain text instances in three scripts — Latin (English /
Spanish / Catalan), Telugu and Devanagari.

— We provide a detailed study of various tracking methods and compare their
performance on RoadText-3K. We build multiple trackers based on state-
of-the-art scene text detectors and highlight the key aspects that influence
tracking in each of the approaches.

— We propose a new tracking approach using a CenterNet [37] based text
detector. Our approach outperforms other trackers in terms of MOTA and
MOTP metrics while maintaining real-time speed.

2 Related Work

2.1 Datasets for text spotting in videos

Existing datasets for spotting text in videos are ICDAR Text in Videos dataset [15],
YouTube Video Text (YVT) [24], RoadText-1K [26], Large-scale Video Text
dataset (LSVTD) [7] and Bilingual Open World Video Text (BOVText) [35].

ICDAR Text in Videos dataset was introduced as part of 20132015 Robust
Reading Challenge in ICDAR. It contains 51 videos (28k frames) of varying
lengths, captured in different scenarios such as highways, shopping in a super-
market or walking inside buildings. The videos are captured using a handheld
device or a head-mounted camera. YVT contains 30 videos (13k frames) in total,
sourced from Youtube. The videos contain scene text and born digital overlay
text such as captions, titles or logos. RoadText-1K [26] has 1,000 driving videos
(300k frames) with annotations for text detection, recognition and tracking. The
videos contain only text in English since all the videos are captured from the
United States. LSVTD [7] has 100 videos (65k frames) captured in 13 indoor
and 8 outdoor scenarios. BoVText is a recently introduced dataset with 2021
videos (1,750k frames). The dataset contains both born digital overlay text and
scene text instances. The videos are harvested from video-sharing platforms, and
consequently, there are videos captured from different parts of the world.

The newly introduced RoadText-3K contains driving or road videos and it
is an extension of the existing RoadText-1K. 2000 new videos from two different
geographical locations are added to the existing RoadText-1K to make the new
RoadText-3K dataset. Among the existing datasets, BoVText, a work that is
concurrent to ours is the only dataset that has more number of videos and text
instances in it compared to RoadText-3K. Compared to BOVText, which has
text instances in Chinese and English, Road Text-3k has annotated text instances
in Latin (English, Spanish and Catalan), Telugu and Devanagari (Hindi).

2.2 Text Detection

Text detection approaches can be classified into two types — regression-based
and segmentation-based. TextBoxes++ [18] and CTPN [30] are examples for
regression-based methods. TextBoxes++ generates proposals using a quadrilat-
eral representation of the bounding boxes. CTPN uses vertical anchors of fixed
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width to predict the location of text. The model combines the output of a Con-
volutional Neural Network (CNN) with a Recurrent Neural Network (RNN)
to build more meaningful text proposals. Segmentation based methods include
EAST [38], which generates dense pixel-level proposals. It employs non-maximal
suppression to filter the proposals. FOTS [20] generates pixel-level predictions,
outputting a confidence score, the distance, and the rotation of the bounding
box the pixel belongs to. Models such as CRAFT [2] focus on detecting curved
text. CRAFT uses a more unconventional bottom-up approach and learns to
output individual character predictions and their affinity (whether they belong
to the same word or not). Since most datasets do not include character-level an-
notations, CRAFT uses a weakly-supervised method to generate ground truth.

2.3 Text Tracking

Text tracking methods cover both main families of tracking approaches — Track-
ing by Detection (TbD) and Detection by Tracking (DbT). In TbD, text in-
stances in each individual frame are detected. Then, subsequent detections that
correspond to the same text instance are linked to form a track [7,25,33]. For
example, [7,25] use spatio-temporal redundancy between frames to track text
instances across frames.

In the case of DbT, text detection is performed in an initial frame and these
detections are then propagated to the subsequent frames using a propagation
algorithm. Detection is then repeated at set intervals to update the trackers.
In [10] text regions are extracted using a Maximally Stable External Regions
(MSER)-based detector [9] every 5 frames, and are then propagated for the next
5 frames using MSER propagation. Snooper-track [22] uses a similar strategy,
where text is tracked using a particle filter system. In [28] a combination of
TbD and DbT is used (spatio-temporal learning and template matching) to
improve text tracking. The authors use the Hungarian algorithm to do the final
association of the detections. In [29] TbD and DbT are explored for the problem
of tracking and recognizing embedded captions in online videos.

In addition to the above two categories of approaches, there have been some
end-to-end approaches that do detection and tracking simultaneously. In [36]
a Convolutional Long Short Term Memory (ConvLSTM) is used in the detec-
tion branch to capture spatial structure information and motion memory. Yu et
al. [36] proposed an end-to-end tracking model where a two branch network is
used to detect and track text instances simultaneously.

2.4 Multiple Object Tracking Metrics

Evaluation of multiple object tracking has evolved extensively over the past
years [3,21]. In this work, we evaluate the tracking of text instances using four
standard metrics — MOTA, MOTP, IDF1 and IDs. Multiple Object Track-
ing Accuracy(MOTA) takes into account false positives, false negatives and
ID switches at track level. MOTP (Multiple Object Tracking Precision) mea-
sures the similarity between the true positive detections and their corresponding
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ground truth objects (in this case, the similarity is measured in terms of the
Intersection over Union). IDF1 is similar to the F-score metric used in binary
classification, it reports the harmonic mean of identification precision and recall.
ID switches (IDs) indicates the number of re-identifications of a tracked object.

3 RoadText-3K Dataset

We introduce the RoadText-3K dataset, an extension of the existing RoadText-
1K [26] dataset. We extend the former by adding new 2000 videos captured from
two different geographical locations and containing text in 6 languages, including
English. RoadText-1K has videos captured from the United States. In the new
2000 videos, 1000 are captured from Spain, and the remaining 1000 are from In-
dia. The dataset can be downloaded from https://datasets.cvc.uab.es/roadtext3k/.

Table 1: RoadText-3K is an extension of RoadText-1K. The new dataset has
2000 more videos that are captured in locations in two continents making it
ideal for detection and tracking of multilingual text on roads.

Dataset RoadText-1K [26] RoadText-3k
Source car-mounted car-mounted
Videos 1,000 3,000 (2,000 new videos)
Length (seconds) 10 10
Resolution 1280 x 720 1280 x 720
Annotated frames 300, 000 927,974

Text Instances 1,280,613 4,039, 250

Tracks 28, 280 88,427

Unique words 8,263 22,115
Location US US, Europe and India
Scripts Latin Latin, Telugu and Devanagari

Similar to RoadText-1K, the new videos are annotated with bounding boxes
of text tokens in each frame, transcriptions for the text tokens and track infor-
mation. Videos from each of the three locations are split in 50:20:30 ratio to
train, validation and test splits respectively.

3.1 Videos

Videos are collected from various geographical locations to accommodate the
diversity of scripts scenes and geographies. Out of the 2,000 new videos, 1,000
videos are collected from India and the other 1,000 are collected from Europe.
Videos are captured with a camera mounted on a vehicle.

3.2 Annotations

We follow the same annotation approach as RoadText-1K [26]. Annotations in-
clude text bounding box, text transcription and track id. Text bounding boxes
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are added at line level as in RoadText-1K [26]. The videos from Europe have
text in Spanish, Catalan and English. Videos captured in India include text in
English, Telugu and Hindi. Few text instances do not belong to any of these
languages and are labelled as “Others”. Transcriptions are not provided for text
instances in this category.
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Fig.2: Distribution of text instances in Roadtext-3K based on legibility, type
and language.

3.3 Analysis

Basic statistics of the dataset in comparison with Roadtext-1K are shown in
Table 1. The distribution of text instances based on their legibility, text type and
language is shown in Figure 2. Around 29% of the text instances are illegible.
This is expected since texts in driving videos are subject to various artifacts
including low resolution, motion blur, glare and perspective distortions. Indian
roads and highways are dominated by English text, leading to a low percentage
of Indian language text instances. The distribution of track lengths in the dataset
is shown in Fig 3. The lifetime of text instances in the driving videos is generally
short, with most tracks having a duration of < 1 second (< 30fps). Fig 4 shows
a word cloud of the most common text tokens in the dataset. It can be seen that
tokens like “P” and “30” are among these, suggesting that there are many text
tokens from traffic/road boards.

4 Methodology

We first evaluate state-of-the-art scene text detection models on individual frame
of the videos in RoadText-3K to identify efficient detectors for our tracking
methods. For text tracking, multiple baseline trackers are built using these text
detectors in both ThD and DbT paradigms. Finally, we propose a new ThD
approach that uses CenterNet for detections.



Read while you drive - multilingual text tracking on the road 7

10 20 30 40 50 60 70 80 920

100+

N
a
x

N
=]
x

15k

Number of tracks
S
=

4]
X

Track length

Fig. 3: Distribution of track lengths in RoadText-3K.

4.1 Text Detection

To test the performance of modern text detectors on RoadText-3K, we have
evaluated CTPN [30], EAST [38], FOTS [20] and CRAFT [2] on the test split of
our dataset. Since consecutive frames contain similar text instances, we evaluate
these detectors on every 10th frame in a video. All four detection models were
originally trained to detect single words. Since text instances in our dataset are
annotated at line level, we have fine-tuned these models on the train split of
the RoadText-3K. For CTPN, EAST and FOTS, we have used implementations
available online, which include training and evaluation code*. The authors of
CRAFT provide an implementation of their model but do not include the train-
ing code, so we have used their provided pre-trained model on SynthText [11],
ICDAR 2013 [16] and ICDAR 2015 [15] datasets. Since we have many small text
instances, each frame is resized to an input size of 1280x720.

4.2 Text Tracking

Both ThD and DbT trackers are built using the above mentioned text detection
models. In addition, we propose a new TbD model that uses CenterNet for tem-
porally aware text detection. We quantitatively evaluate our methods using the
previously introduced MOT metrics®, which have also been used in the ICDAR
2013 [16] and ICDAR 2015 [15] challenges.

4 For CTPN, EAST and FOTS we have used unofficial implementations of the original
methods, for CRAFT we have used the author’s released implementation:

— CTPN: https://github.com/eragonruan/text-detection-ctpn
EAST: https://github.com/argman/EAST

— FOTS: https://github.com/jiangxiluning/FOTS.PyTorch
CRAFT: https://github.com/clovaai/ CRAFT-pytorch

® We used the implementation given in https://github.com/cheind /py-motmetrics
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Fig.4: WordCloud of the text tokens in the dataset. The most common text
comes from road signs(for example, “P”, “stop”, “30” and “exit”) and the com-
mon prefixes on Indian licence plates (for example "ts” and “ap”).

Tracking By Detection (TbD) In the TbD paradigm, trackers seek to asso-
ciate detections between frames using temporal and visual information. These
methods perform text detection on every frame, which can make the text tracking
system slower. Since detections are made independently on each frame, flicker-
ing, detection merging might occur, while the final tracking result is affected
by any detection failures. In order to evaluate TbD on our dataset, we use text
detection from the scene text detectors discussed in the previous section and use
SORT [4] to associate the instances across frames. SORT uses Kalman filters
to predict the position of the objects (text instances in our case) in consecutive
frames. Using the IoU as the distance, it solves the matching problem between
predicted positions and frame detections using the Hungarian algorithm [17].

Detection By Tracking (DbT) In DbT every single object is explicitly
tracked by a different instance of the tracker. This technique can employ vi-
sual and temporal information to find the location of the object in consecutive
frames, while keeping the inference times down. One of the major drawbacks is
that, in the case of multiple object tracking, we need to initialize a new instance
of the tracker for every new object. We have opted for a setup similar to the
ones proposed in [10,22]. Every 5 frames, we perform text detection using one
of the text detection models that we discuss in section 4.1. For every new text
instance found, we launch a tracker that will follow the text instance for the next
5 consecutive frames. In the final, frame we compare the location of the tracked
objects with the detections of the text detector on the current frame. When
the ToU between a tracked instance and one of the detections surpasses 0.5, we
consider this a match, and the tracker continues following the text instance for
the next 5 frames. When no tracked instances match any of the detections, we
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launch a new tracker. Finally, if no detection matches a tracked instance, we
keep tracking it for 5 more frames, but if no detections match it 5 frames later
the tracker stops. This avoids relying too much on the detections of the detector,
since motion blur or temporal occlusion can introduce detection failures. This
also introduces the risk of increasing the number of false positives, since a text
instance that leaves the scene or gets permanently occluded may still get tracked
for a few frames.

FOTS obtained the highest F-score and recall from all the detection meth-
ods, as well as a relative high inference speed. For this reason, we have used its
detections to start and stop the trackers. To perform the tracking of the text in-
stances we use CSR-DCF [1], KCF [13] and MedianFlow [14]. These trackers use
traditional approaches to object tracking such as correlation filters and kernels.

4.3 CenterNet-based detection and tracking

Our dataset features high resolution images with many small text instances.
While downsampling frames allows faster inference, the detection of small in-
stances requires working at a higher resolution. Nevertheless, the complexity of
many modern text detectors results in slow inference speeds on high-resolution
images. We have tried to simplify the approach towards scene text detection
and tracking on RoadText-3k, and we have tailored a framework that focuses on
real-time inference on high-resolution inputs. Our approach is based on Center-
Net [37], and we use it for both text detection and tracking. We made the code
and the weights publicly available at https://github.com/Sergigh/roadtext3k-
baselines.

CenterNet is an object detection model that represents objects as a single
point at their bounding box center, and then regresses the width and height
at the center of the location. The centers of the objects are represented as a
Gaussian kernel on a heatmap and focal loss [19] is used to learn this represen-
tation. To achieve better performance, we adopt ResNet-18 [12] as a backbone
to our networks, which offers a good balance between performance and real-time
inference. Inspired by YOLOv4 [5], we replace ReLU with the Mish activation
function [23]. We evaluated our approach on single frame object detection in the
same fashion as the previous object detectors.

For our tracking model, we have tried to leverage temporal information into
our CenterNet-based text detector. We add temporal awareness to the model by
adding one convolutional GRU cell before upsampling the feature map. This cell
which is similar to the convolutional LSTM model presented in [27], but uses the
GRU cell [8] layout. In the decoder of the network we apply transpose convo-
lutions to upscale the latent feature map. Similar to the other ThD approaches
we discuss in 4.2, we use SORT to perform the object association between the
frames. Figure 5 shows an overview of the architecture.

5 Results

Results of the detection and tracking experiments are presented in this section.
All experiments results are reported on the test split of the Roadtext-3K dataset.
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Fig.5: Our method extends the CenterNet architecture with a convolutional
GRU cell at the output of a ResNet-18 to aggregate spatial and temporal infor-
mation. h(t) represents the hidden state of the GRU cell in the frame ¢.

5.1 Frame level text detection

We consider a detection to be a true positive if it overlaps with any ground truth
instance with an IoU of over 0.5. Table 2 shows results of the frame level text
detection. FOTS obtains the best F-score and the highest recall. Our CenterNet-
based method gets competitive performance while being the fastest method we
have tested, obtaining an inference speed of 44 FPS. Despite not being fine-tuned
on our dataset, CRAFT obtains the highest precision but has the lowest FPS.

Table 2: Results of frame level text detection. FOTS has the highest F-score and
recall, while our method obtains the fastest inference speed.

Detector Precision(%) Recall(%) F-score(%) FPS

CTPN 34.62 32.74 33.65 13
EAST 32.14 29.51 31.27 17
FOTS 42.77 50.74 46.41 19
CRAFT 54.3 37.21 44.15 5
CenterNet 50.3 39.1 43.9 44

5.2 Tracking

TbD: Results of the TbD on the test split of RoadText-3K are shown in Table 3.
Our CenterNet+GRU model and CRAFT obtain similar scores. Both methods
have high precision and similar recall, and both models produce a low number
of ID switches. Using GRU with CenterNet reduces the number of ID switches
(column IDs) by a large margin and improves the MOTA score. We hypothesize
that the GRU cell helps reducing the flickering and improves the consistency of
the tracking. Speed is reported based on the combined time taken to run the
detector and associate detections using SORT. Our CenterNet-based approaches
have the highest inference speeds, reaching 40 FPS when we do not use the GRU
cell and 31 when we use it.
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Table 3: Results of Tracking by Detection (TbD) using different detectors. In all
cases the SORT algorithm [4] is used for associating detections in two consecutive
frames.

Detector MOTA (%) IDF1(%) Recall(%) Precision(%) IDs MOTP(%) FPS
CTPN 24.93 51.60 52.00 66.80 15524  65.11 11
EAST 25.20 51.33 49.20 68.00 13178  69.47 12
FOTS 28.47 56.57 59.73 66.33 12883  71.82 14
CRAFT 35.40 54.77 46.20 81.73 6328 70.59 5
CenterNet 33.80 54.80 53.00 74.50 15032 72.44 40
CenterNet+GRU  36.00 54.80 47.60 81.30 8896  72.74 31

DDbT: Table 4 shows results of the three different DbT methods we evaluated. It
can be seen that precision is much lower for all the three approaches compared
to TbD results shown in Table 3. Lower precision is partly due to a higher
number of false positives. One possible reason for this is the fact that even text
instances that have disappeared are tracked until the next set of detections are
available. However recall scores for DbT approaches are comparable to that of
TbD. For example CSR-DCF has a recall of 54.10%, second only to FOTS in
the TbD setup. DbT is usually a good choice if inference speed is a constraint.
Note nevertheless that the proposed CenterNet-based ThD approach still yields
competitive speeds (35 FPS).

Table 4: Results of detection by tracking (DbT) approach using various trackers.
FOTS [20] is used for detections in all cases.

Tracker MOTA (%) IDF1(%) Recall(%) Precision(%) IDs ~ MOTP(%) FPS
CSR-DCF -33.70 35.30 54.10 38.70 16136 71.66 25
KCF -51.80 31.10 49.60 33.40 19534 71.8 76
MEDIANFLOW -53.00 28.10 48.40 32.90 22614 71.81 83

5.3 Qualitative Analysis

Visually inspecting the results of the different methods gives us a hint of how they
behave under different conditions. For example, the two approaches we tested
behave very differently in cases of temporal occlusions. We can see one of such
cases in Fig 6, where the vehicle’s windscreen wiper temporally occludes the text
being tracked. Since the detector does not have any sort of temporal awareness,
in TbD the occluded text fails to be localized. In this case, SORT managed
to recover from the occlusion and correctly reassigned the IDs in the following
frames. Our model displays a similar behaviour to the TbD approach, but SORT
recovers again from the occlusions. In DbT, the CSR-DCF algorithm manages to
keep tracking the text instances even under partial occlusion. This robustness to
temporal occlusions minimizes the probabilities of ID switches. However, the two
text instances in the upper left side of the board (“SOUTH” and “678”) appear



12 S. Garcia-Bordils et al.

to have slightly shifted bounding boxes after the occlusion. Since we check the
detections every 5 frames to start and stop trackers, a shifted bounding box can
result in ID switches if it does not match any detection. This could be attributed
to the fact that CSR-DCF uses the last known visual appearance of the object
to find it in the next frame. Even though TbD generally offers more precise
and reliable detection overall, distant or blurry text can introduce flickering. As
seen in Fig 7a, the two lower text instances disappear for a few frames and then
reappear, increasing the chances of ID switches. In DbT (Fig 7b), the proposals
keep being reliably tracked. Our model displays a more conservative behaviour,
one of the smaller instances is not tracked but the others are consistently tracked.

(a) TbD using FOTS and SORT

(b) DbT using FOTS to start and stop CSR-DCF trackers

(c) Our CenterNet+GRU approach.

Fig. 6: Results of TbD, DbT, and our CenterNet-based model in case of a tem-
poral occlusion. Numbers shown alongside the boxes are track numbers.

Judging by the quantitative results, the TbD approach seems to obtain better
overall tracking results (best MOTA, lowest ID switches, etc.), but qualitative
results suggest that DbT can be advantageous in cases with occlusions or detector
failures. The biggest drawback of DbT is the increase in false positives, and this is
primarily due to the inability to immediately stop tracking when a text instance
leaves the scene. The lower recall in DbT (5.64% between FOTS + CSR-DCF
and FOTS + SORT) can be partially explained by the fact that we check for new
detections every 5 frames, which can delay starting a new tracker and increase
the amount of false negatives.

6 Conclusions

We have introduced RoadText-3K, an extension to the existing RoadText-1K
dataset with an additional 2000 driving videos captured in different geographi-
cal locations and containing text in different scripts and languages. We evaluated
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(a) TbD using FOTS and SORT

|
o 1 i

(c¢) Our CenterNet+GRU method.

Fig. 7: Performance of the various models under a case of detection flickering.
Numbers shown along with the boxes are track numbers.

several state-of-the-art detectors in this dataset and employed them to construct
tracking by detection and detection by tracking methods. Results demonstrate
that driving videos are especially challenging. Finally, we have presented a new
simple and efficient approach for tracking by detection which incorporates tem-
poral information in the detection branch. Our method yields competitive track-
ing results while obtaining real-time inference speeds.
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