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Abstract. Procedure learning involves identifying the key-steps and de-
termining their logical order to perform a task. Existing approaches com-
monly use third-person videos for learning the procedure, making the ma-
nipulated object small in appearance and often occluded by the actor,
leading to significant errors. In contrast, we observe that videos obtained
from first-person (egocentric) wearable cameras provide an unobstructed
and clear view of the action. However, procedure learning from egocen-
tric videos is challenging because (a) the camera view undergoes extreme
changes due to the wearer’s head motion, and (b) the presence of unre-
lated frames due to the unconstrained nature of the videos. Due to this,
current state-of-the-art methods’ assumptions that the actions occur at
approximately the same time and are of the same duration, do not hold.
Instead, we propose to use the signal provided by the temporal corre-
spondences between key-steps across videos. To this end, we present a
novel self-supervised Correspond and Cut (CnC) framework for proce-
dure learning. CnC identifies and utilizes the temporal correspondences
between the key-steps across multiple videos to learn the procedure.
Our experiments show that CnC outperforms the state-of-the-art on the
benchmark ProceL and CrossTask datasets by 5.2% and 6.3%, respec-
tively. Furthermore, for procedure learning using egocentric videos, we
propose the EgoProceL dataset consisting of 62 hours of videos captured
by 130 subjects performing 16 tasks. The source code and the dataset
are available on the project page https://sid2697.github.io/egoprocel/.

1 Introduction

Imagine showing an autonomous agent how to prepare a sandwich, and it learns
the steps required for it! Motivated by this vision, our work focuses on developing
a framework that allows an agent to identify the steps required to perform a
task and their order after observing multiple visual demonstrations by experts.
Given a set of instructional videos for the same task, procedure learning [18,
19, 63] broadly consists of two steps, (a) assigning all the frames to the K key-
steps (including the background), and (b) discovering the logical ordering of the
key-steps required to perform the task. Procedure learning differs from action
segmentation as it aims to jointly segment common key-steps (actions required to
accomplish a task, as shown in Figure 1) across a given set of videos. In contrast,
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Fig. 1. The left-hand side figure shows six key-steps required to prepare a turkey sand-
wich [47] across four egocentric videos. The arrows among the videos highlight the
change in the ordering of corresponding key-steps. This work utilizes these correspon-
dences and aims to learn an embedding space where the corresponding key-steps have
similar embeddings (right-hand side figure). To this end, we propose CnC which learns
the embedding space and utilizes it to localize the key-steps and identify their ordering.

action segmentation aims to identify actions (unrelated to their relevance to
accomplishing a task) from a single video. Furthermore, procedure learning deals
with additional or missing key-steps and background actions unrelated to the
task and identifies an ordering of the key-steps.

Existing instructional videos datasets [2,19,33,38,51,67,77,79] majorly con-
sist of third-person videos. Here, the camera is kept far from the expert, to avoid
interference in the actual task. Due to this, the manipulated objects are typically
small or sometimes invisible. Additionally, third-person videos can be captured
from various positions, leading to wide variations in the camera viewpoints for
the same task [11]. Further, most datasets comprise videos scraped from the
internet (YouTube) [19, 33, 51, 67, 79], which are noisy and have large irrelevant
segments. In contrast, egocentric cameras are typically harnessed to the sub-
ject’s head and have a standardized location. They provide a clearer view of the
executed task, including the manipulated objects. As a result, recent works have
introduced datasets consisting of egocentric videos [9, 24, 32, 47, 57, 64], which
have proven helpful for various tasks [23,31,46,54,65].

Motivated by the advantages of egocentric videos over third-person videos,
we propose an egocentric videos dataset for procedure learning: EgoProceL. Ego-
ProceL consists of 62 hours of egocentric videos of 16 tasks ranging from making
a salmon sandwich to assembling a Personal Computer (PC), thereby ensuring
diversity of tasks and facilitating generalizable methods. However, egocentric
videos come with their own set of challenges. For example, the camera view un-
dergoes extreme movements due to the wearer’s head motion, introducing frames
unrelated to the activity and unavailability of the actor’s pose [65].
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To overcome the challenges and learn the procedure from egocentric videos,
we propose utilizing the signal provided by temporal correspondences across
videos. As shown in Figure 1, critical moments like putting a slice of turkey on
the bread while preparing a turkey sandwich are present across all the videos. To
exploit the signal provided by such temporal correspondences, we propose a self-
supervised, three-stage, Correspond and Cut (CnC) framework for procedure
learning. The first stage of the CnC uses the proposed self-supervised TC3I loss
to learn an embedding space such that the same key-steps across the videos
have similar embeddings (Figure 1). The second stage consists of the proposed
ProCut Module (PCM). PCM performs clustering on the learned embeddings
and assigns each frame to a key-step. The final stage of CnC creates a key-step
sequence for each video and infers relevant ordering to perform the task.

Current works mostly use frame-wise metrics to evaluate the models devel-
oped for procedure learning [18, 19, 40, 63, 70]. While these metrics evaluate the
procedure reasonably well compared to simply calculating the accuracy, they
do not suit datasets with significant class imbalance. Furthermore, procedure
learning datasets consist of significant background frames [79]. Hence, a model
assigning all the frames to the background might achieve high scores. We pro-
pose to solve this problem by calculating the scores via the contribution of each
key-step, leading to lower scores when models assign most of the frames to the
background. Further, when comparing with the previous works, (a) we use CnC
on standard third-person benchmark datasets [19, 79] and (b) employ existing
metrics to evaluate. We show that CnC outperforms the state-of-the-art tech-
niques for procedure learning (Table 2).
Contributions: The major contributions of our work are:

– To facilitate procedure learning from egocentric videos, we create the Ego-
ProceL dataset. The dataset consists of 62 hours of videos captured by 130
subjects performing 16 tasks.

– We propose CnC, which utilizes the proposed TC3I loss and PCM to identify
the key-steps and their ordering required to perform a task.

– We investigate the usefulness of egocentric videos over third-person videos
for procedure learning. We observe an average improvement of 2.7% in the
F1-Score when using egocentric videos instead of third-person videos.

– The EgoProceL dataset and the code written for this work are released on
http://cvit.iiit.ac.in/research/projects/cvit-projects/egoprocel (mirror link).

2 Related Works

We aim to perform procedure learning in a self-supervised fashion, unlike previ-
ous works [53, 61, 77], which assume the availability of mapping between video
frames and key-steps. Also, different from weakly supervised approaches [3, 7,
13, 30, 44, 45, 59, 60, 79], we neither use the number of key-steps required to per-
form the task nor an ordered or unordered list, as it requires viewing the videos
or defining heuristics, leading to scalability issues [18, 19]. Additionally, learn-
ing various procedures requires numerous videos and annotating all the videos
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would consume considerable resources. Motivated by this, we create CnC as a
self-supervised framework for procedure learning to create a scalable and efficient
solution.

Multimodal Procedure Learning:Another class of methods work with multi-
modal data, like narrated text and videos [2, 10, 14, 22, 50, 62, 63, 76, 78]. These
works use Automatic Speech Recognition (ASR) to obtain the text, which is
not perfect. Due to this, the output needs to be manually cleaned, which is not
scalable. Additionally, such methods assume an alignment between the text and
videos [2, 50, 76], which might not be accurate for most cases [18, 19]. Instead,
we use only the visual modality as an input to the framework. Due to this, we
eliminate the need to obtain narrations that might be inaccurate and make our
framework scalable.

Learning Key-step Ordering: Current works do not capture different key-
step ordering to perform the same task. They either assume a strict ordering [19,
40, 70] or do not predict the order [18, 63]. However, we observe that subjects
perform the same task in multiple ways (Figure 1), motivating us to capture
different ways to accomplish the task. Therefore, the final stage of CnC aims to
create a key-step order for each video and infer the relevant ordering to perform
the task.

Representation Learning for Procedure Learning: Existing works on pro-
cedure learning employ various ways to create frame-wise features. To learn the
representation space, Kukleva et al . [40] use relative timestamps of frames, and
Vidal et al . [70] predict the representation and timestamps of the future frames.
On the other hand, Elhamifar et al . either use the latent states obtained from an
HMM [19] or discover and utilize attention features from individual frames [18].
However, these methods do not exploit the signal provided by temporal corre-
spondences, which is crucial for procedure learning, as we show in this work.

Self-Supervised Representation Learning: Learning a representation space
without annotations saves substantial time and energy when creating deep learn-
ing solutions. Motivated by this, recent works explore various pretext tasks
to generate supervision signals for training deep learning architectures [6, 28,
68, 69, 73]. A few pretext tasks for learning image representations include im-
age colourization [41, 42], object counting [48, 55], solving jigsaw puzzles [5, 36],
predicting image rotations [20, 37], and reconstructing input images [29] from
noise [71]. Pretext tasks for learning video representations include predicting
future frames [1, 12, 26, 35, 66, 72], using temporal order and coherence as la-
bels [21,34,43,52,75], and predicting the arrow of time [74].

Video representation learning methods mentioned above employ a single
video. However, we want to identify similar key-steps in multiple videos for
procedure learning. To this end, we build upon existing video alignment tech-
niques [16,27] and devise a loss function that works well for procedure learning.
Note that procedure learning aims to find key-steps across a given set of videos;
hence, it differs from video alignment.
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Table 1. Comparison of datasets for Procedure Learning. The average number of key-
steps and video length for EgoProceL are the highest, highlighting the complexity of
the procedures included in EgoProceL

Dataset Egocentric View Manually Created Avg. key-steps Avg. Video Length (sec) #tasks

Breakfast [38] ✗ ✓ 5.1 137.5 10
Inria [2] ✗ ✗ 7.1 178.8 5
ProceL [18] ✗ ✗ 8.3 251.5 12
CrossTask [79] ✗ ✗ 7.4 297 18
EgoProceL (ours) ✓ ✓ 8.7 769.2 16

3 EgoProceL: Egocentric Video Dataset for Procedure
Learning

The EgoProceL dataset focuses on the key-steps required to perform a task
instead of every action in the video. To construct EgoProceL, we take two
approaches: (a) identifying publicly available datasets that we annotate for
key-steps; (b) recording new tasks to expand the range of tasks. We follow the
following criteria to shortlist from the public datasets: (1) The task should re-
quire multiple key-steps to perform. For example, preparing a sandwich involves
a minimum of four key-steps [11]. (2) Videos of the same task must contain a
similar set of key-steps. However, the order of the key-steps can differ. (3) To
compare the performance of CnC in egocentric and third-person views, we re-
quire a dataset with recordings of the same task in both views. (4) We prefer
longer videos with sparse key-steps to generate practical solutions.

We select CMU-MMAC [11], EGTEA Gaze+ [47], MECCANO [58], and
EPIC-Tents [32] based on the above criteria. CMU-MMAC contains recordings
of subjects performing the same task from one egocentric and four third-person
views. Therefore, by using it, we compare the performance of CnC between
egocentric and third-person views. Though these four datasets include a diverse
range of tasks, they do not contain tasks where the subject works in a constrained
environment and deals with small objects (e.g ., screws). To alleviate this, we
include manually recorded videos of assembling and disassembling a Personal
Computer (PC). This addition makes the dataset diverse and challenging in
terms of variability in the size of objects involved and the complexity of key-
steps (e.g ., fixing the motherboard requires fastening nine screws).

EgoProceL contains videos and key-step annotations for multiple tasks from
CMU-MMAC [11] and EGTEA Gaze+ [47] and individual tasks like toy-bike
assembly [58], tent assembly [32], PC assembly, and PC disassembly. EgoProceL
consists of 62 hours of annotated egocentric videos, including 16 tasks with an
average duration of 13 minutes. To annotate the videos for key-steps, we create a
list of key-steps for each task, e.g ., assembling a PC requires ‘Fix motherboard’,
‘Fix hard disk’, ..., ‘Place the cabinet cover’. We use ELAN [17] to annotate each
video by marking the start and end location during which the key-step occurs.

Along with various procedure learning tasks, EgoProceL is appropriate for
understanding hand-object interaction, action forecasting and recognition, and
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Fig. 2. Key-step annotations for making turkey sandwich [47] and assembling a PC.

a shared study of videos and text. Figure 2 shows some example annotations
and Table 1 compares EgoProceL with existing datasets. We also considered a
few other datasets that did not satisfy the requirements mentioned above [9,64].
The reasons for their non-inclusion are given in the supplementary.

4 Correspond and Cut Framework for Procedure
Learning

Humans often follow the same steps to perform any particular task, though the
order of steps might be different. This work proposes a methodology which,
given a set of videos of humans performing a task, learns similar embeddings
across videos for the key-steps required to complete a task. Once we have the
embeddings, learning a procedure reduces to clustering the embeddings for lo-
calizing the key-steps among all the videos. To learn the embeddings, we exploit
temporal correspondences between the videos of the same task. For that pur-
pose, we train a representation learning network using the proposed TC3I loss.
TC3I builds on top of existing temporal video alignment methods [16,27]. After
learning the embeddings, we use PCM, shown in Figure 3, to cluster and localize
the underlying key-steps. PCM models the clustering problem as a multi-label
graph cut problem and solves it to localize the key-steps. Once we localize the
key-steps using PCM, we use the frame’s relative location in a video to generate
the key-step ordering for each video.

Notation: CnC takes in V = {Vi : i ∈ N, 1 ≤ i ≤ n} untrimmed videos of the
same task, where n is the total number of videos. Each of the n videos can have a
different number of frames. We denote the embedding function used to generate
the frame-level embeddings as fθ, which is a neural network with parameters θ.
A video Vk with m frames is denoted as Vk = {f1

k , f
2
k , . . . , f

m
k } and the video’s

frame-level embeddings are denoted as fθ(Vk) = {v1k, v2k, . . . , vmk }. We assume K
key-steps in a task, where K is a hyper-parameter.
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Fig. 3. Correspond and Cut (CnC) framework for Procedure Learning. CnC
takes in multiple videos from the same task and passes them through the embedder
network trained using the proposed TC3I loss. The goal of the embedder network is
to learn similar embeddings for corresponding key-steps from multiple videos and for
temporally close frames. The ProCut Module (PCM) localizes the key-steps required
for performing the task. PCM converts the clustering problem to a multi-label graph
cut problem solved using the Alpha Expansion algorithm [4]. The output provides the
assignment of frames to the respective key-steps and their ordering.

4.1 Learning the Embeddings using the TC3I loss

We aim to learn similar embeddings for the frames with comparable semantic
information across different temporal locations from multiple videos. For that
purpose, we use Temporal Cycle Consistency (TCC) [16] to find correspondences
across time in videos.

Consider two videos V1 and V2, with lengths p and q, respectively. To check if
a point vi1 in V1 is cycle consistent, its nearest neighbour vj2 = argminv2∈V2

∥vi1−
v2∥ is calculated in V2. Then the process is repeated for vj2 in V1 to get vk1 =

argminv1∈V1
∥vj2−v1∥. If i = k, then the point is considered cycle consistent. An

acceptable embedding space consists of a maximum number of cycle-consistent
points for a pair of sequences. Specifically, for a point vi1 in V1, we determine its
soft nearest neighbor ṽ2 in V2 by using the softmax function as follows:

ṽ2 =
∑
j

αjv
j
2, where αj =

e−∥vi
1−vj

2∥
2∑

k e
−∥vi

1−vk
2∥2

. (1)

Here αj signifies the similarity between vi1 and individual vj2 ∈ V2. Once we
have the soft nearest neighbor, a similarity vector βi

1 is calculated. β defines the
proximity between ṽ2 and each frame vk1 ∈ V1 as:

βi
1[k] =

e−∥ṽ2−vk
1∥

2∑
j e

−∥ṽ2−vj
1∥2

. (2)

As β is a discrete distribution of similarities over time, it peaks around the
ith time index. To avoid this, a Gaussian prior is applied to β by minimizing

the normalized squared distance |i−µ|2
σ2 as the objective. By applying additional

variance regularization, β is enforced to be peaky around i. Hence, the final cycle
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consistency loss between videos V1 and V2, corresponding to ith frame of V1 is:

L(V1, V2, v
i
1) =

|i− µ|2

σ2
+ λ log(σ). (3)

Here, µi =
∑

k β
i
1[k]×k and σ2

i =
∑

k β
i
1[k]×(k−µi)

2, and λ is the regularization
weight. Formulating TCC in this way ensures the model is not heavily penalized
when it cycles back to close-by frames.

We observe that there are many repetitive frames in egocentric videos because
of which cycle consistency loss often loops back to similar but temporally far-
away frames. To alleviate the issue, we utilize the Contrastive-Inverse Difference
Moment (C-IDM) loss [27] (a modified form of Inverse Difference Moment [8])
for applying temporal regularization on each video. The C-IDM loss between the
two frames i and j of a video V1 is computed as:

I(V1, i, j) = (1−N (i, j)) γ(i, j)max (0, ζ − d(i, j)) +N (i, j)
d(i, j)

γ(i, j)
. (4)

Here, γ(i, j) = (i− j)2 + 1, d(i, j) is the Euclidean distance between fθ(v
i
1), and

fθ(v
j
1), ζ is the margin parameter, and N is the neighborhood function such that,

N (i, j) = 1 if |i−j| ≤ σ, and 0 otherwise. Here, σ is the window size for separat-
ing temporally far away frames. The C-IDM loss encourages the embeddings of
the temporally close frames to be similar and the embeddings of temporally far
frames to be dissimilar. The final loss combines both TCC and C-IDM (referred
to as TC3I loss from now on):

TC3I(V1, V2) =
∑
i∈V1

L(V1, V2, v
i
1) +

∑
j∈V2

L(V1, V2, v
j
2)

+ ξ
∑
i∈V1

∑
j∈V1

I(V1, i, j) + ξ
∑
i∈V2

∑
j∈V2

I(V2, i, j). (5)

Here, ξ is a regularization parameter.

4.2 Localizing the Key-Steps using the ProCut Module

Once we learn the embeddings, we aim to localize the key-steps required for
performing the task. Kukleva et al . [40] localize the key-steps by generating K
clusters of embeddings using the K-Means algorithm [49]. However, they need
to assume a fixed order of key-steps to assign frames to the key-steps. Instead,
we propose a novel ProCut Module (PCM) for the purpose. PCM converts the
clustering problem to a multi-label graph cut problem [25], as described below.

Let G = ⟨V,E⟩ be a graph consisting of a set of nodes V and a set of directed
edges E connecting them. The node set V consists of K terminal nodes repre-
senting the key-steps, and non-terminal nodes (equal to the number of frames)
representing the embeddings of the frames generated using the Embedder net-
work. There are two kinds of edges in the graph: t-links connecting non-terminal
nodes to the terminal nodes, and n-links connecting two non-terminal nodes.
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Fig. 4. ProCut Module (PCM). Non-terminal nodes in the graph represent the
embeddings of the frames. Terminal nodes represent the key-steps required to per-
form the task. The terminal and non-terminal nodes are connected using the t-links.
Non-terminal nodes are connected using the n-links. The numbers inscribed in arrows
represent the cost of using the respective link. Costs highlighted in green represent the
lowest cost to assign a frame to the key-step. For brevity, n-links are shown only for
the first non-terminal node. Diagram best viewed in colour.

We use the Fuzzy C-Means algorithm [15] to assign a cost to the t-links.
The algorithm performs soft clustering and calculates the probability of a frame
belonging to each cluster. We subtract the probability value from 1 to obtain
the cost of assigning a frame to each cluster. The cost value for the n-links is
assigned based on the temporal distance between the nodes. For example, if the
nodes are temporally closer (e.g ., nodes at positions 1 and 2 in Figure 4), the
cost of assigning the same label to them is lower, otherwise (e.g ., for nodes at
positions 1 and 5 in Figure 4), the cost is high. After creating the graph G, we
use α-Expansion [4] to find the minimum cost cut. We use the discovered cut to
assign frames to K labels. As shown in Figure 4, the lowest costs (highlighted
in green) result in assigning the first and second frames to key-step 1, the third
and fourth frames to key-step 2, and the last to key-step 3.

4.3 Determining Order of the Key-Steps

When it comes to determining the ordering of the key-steps, it makes sense to
allow each video to have a distinct key-step ordering as there can be multiple
ways to perform a task. However, current works either use a fixed order of key-
steps to decode all the videos [19, 40, 70] or do not predict the ordering [18, 63].
One of the advantages of using CnC to determine the key-step is that it allows
each video to have its independent order of the key-steps.

To infer the sequential order of key-steps, we calculate the normalized time
for each frame vni in video Vi consisting of p frames as T (vni ) = n

p [40, 70].
Then we calculate the time instant for each cluster as the average normalized
for frames assigned to it. The clusters are then arranged in increasing order of
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the average time, providing us with the sequence of key-steps used to perform
the task in a video. Once we have key-step order for all the videos of the same
task, we generate their ranked list based on the number of times the subjects
followed a particular order. The order followed the most ends up being at the
top of the ranked list. Doing this enables us to determine different sequential
orders of key-steps to accomplish a task.

4.4 Implementation Details

We use ResNet-50 [28] as our backbone network to extract the features. Moti-
vated by [16], for training the Embedder network, we use a pair of training videos
at a time, select frames at random within the videos and optimize the proposed
TC3I loss until convergence. The features are extracted from the Conv4c layer
and a stack of c context frames features is created along the temporal dimen-
sion. We reshape our input video frames to 224×224. To aggregate the temporal
information, we pass the combined features through two 3D convolutional layers
followed by a 3D global max pooling layer, two fully-connected layers, and a
linear projection layer to output the embeddings of dimension 128. We set the
value of K to 7 and compare the performance of CnC with the other values of
K in Table 6. Furthermore, for all our experiments, we follow the task-specific
settings laid out in [18]. We use PyTorch [56] for all our experiments.

5 Experiments

5.1 Evaluation

Current works compute framewise F1-Score and IoU scores for key-step localiza-
tion [18, 19, 40, 63, 70]. The F1-Score is a harmonic mean of precision and recall
scores. For calculating recall, the ratio between the number of frames having
correct key-steps prediction and the number of ground truth key-step frames
across all the key-steps of a video is calculated. For precision, the denominator
is the number of frames assigned to the key-steps. For calculations, the one-to-
one mapping between the ground truth and prediction is generated using the
Hungarian algorithm [39] following [2,18,19,40,63]. However, these metrics tend
to assign high scores to models that assign most frames to a single cluster, as
the key-step with most frames matches with the background frame’s label in the
ground truth. Furthermore, for untrimmed procedure learning videos, most of
the frames are background, resulting in high scores.

Shen et al . [63] attempt to solve this problem by analyzing the MoF score,
but as pointed out in [40], MoF is not always suitable for an imbalanced dataset.
Instead, we propose calculating the framewise scores for each key-step separately
and then taking the mean of the scores over all the key-steps. This penalises
the cases when there is a large performance difference for different key-step,
e.g ., when all the frames get assigned to a single key-step. Upon following this
protocol, the scores for all the methods decrease. This paper presents the results
generated using the proposed evaluation protocol unless otherwise mentioned.



Procedure Learning from Egocentric Videos 11

Table 2. Procedure Learning from Third-person Videos. Comparison between
state-of-the-art methods and CnC on benchmark third-person video datasets [19, 79].
Our method outperforms all the techniques using videos only (in F-Score). It even
manages to give at par performance compared to the techniques using multi-modal
input. P, R, and F represent precision, recall, and F-score respectively

Input Modality
ProceL [19] CrossTask [79]

P R F P R F

Uniform Video 12.4 9.4 10.3 8.7 9.8 9.0
Alayrc et al . [2] Video + Narrations 12.3 3.7 5.5 6.8 3.4 4.5
Kukleva et al . [40] Video 11.7 30.2 16.4 9.8 35.9 15.3
Elhamifar et al . [18] Video 9.5 26.7 14.0 10.1 41.6 16.3
Fried et al . [22] Video − − − − 28.8 −
Shen et al . [63] Video + Narrations 16.5 31.8 21.1 15.2 35.5 21.0
CnC (ours) Video 20.7 22.6 21.6 22.8 22.5 22.6

5.2 Procedure Learning from Third-person Videos

To test the generalizability of CnC on third-person videos and to ensure a
fair comparison with existing methods [2, 18, 22, 40, 63], we perform experi-
ments on third-person procedure learning benchmark datasets: ProceL [19] and
CrossTask [79]. We obtain the results of previous works from [63]. Note that here
we use the evaluation protocol employed by the previous works [18, 19, 40, 63].
As seen in Table 2, CnC outperforms other methods (in terms of the F-Score)
utilizing only videos as the input modality. Further, with only video as the in-
put modality, CnC even manages to perform at par with multi-modal methods.
Previous works have used different forms of self-supervision. For example, [18]
use the pseudo-labels provided by subset selection and [40] utilize the relative
time-stamps of video frames. Instead, the comparison in Table 2 shows that the
signal provided by corresponding frames is superior for the task of procedure
learning.

5.3 Procedure Learning Results from Egocentric Videos

Baselines: We consider three baseline methods:

1. Random. Here we predict the labels by randomly sampling predictions from
a uniform distribution with K values representing K key-steps.

2. TC3I + HC. Instead of PCM, we use the K-Means algorithm and generate
K clusters from the representation space.

3. TC3I + SS. Here, instead of PCM, we use subset selection for the key-step
assignment. The algorithm takes in the frame’s embeddings and M (hyper-
parameter) latent states obtained using K-Means [49]. It then selects a subset
S (of size K) of the states as key-steps and finds the frames’ assignments.
We use the greedy algorithm used in [18] to perform subset selection. Refer
to the supplementary material for the hyper-parameter values.



12 S. Bansal et al.

Table 3. Procedure Learning Results obtained on EgoProceL. Here, CnC performs
the best, highlighting the effectiveness of the TC3I loss and PCM

EgoProceL

CMU-MMAC EGTEA G. MECCANO EPIC-Tents PC Assembly PC Disas.

F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU F1 IoU

Random 15.7 5.9 15.3 4.6 13.4 5.3 14.1 6.5 15.1 7.2 15.3 7.1
TC3I + HC 19.2 9.0 20.8 7.9 16.6 8.0 15.4 7.8 21.7 11.0 24.9 14.1
TC3I + SS 19.7 8.9 20.4 7.9 16.3 7.8 15.9 7.8 24.8 11.9 23.6 14.0
CnC 22.7 11.1 21.7 9.5 18.1 7.8 17.2 8.3 25.1 12.8 27.0 14.8

MECCANO Bike Assembly
Ground 
Truth

Random

TC3I + HC

TC3I + SS

CnC

PC Assembly

Screw "red four perforated bar", "grey  
perforated bar", and "white angled 

perforated bar"

Screw "red angled perforated bar" with  
"grey angled perforated bar" in the  

"partial model"

Fix motherboard Fix Harddisk Fix CPU Fan Fix SMPSScrew "red perforated bar" 
with the "partial model"

Fig. 5. Qualitative results for MECCANO and PC Assembly highlight the effective-
ness of CnC. Additionally, PCM outperforms HC and SS when clustering the key-steps.
Furthermore, due to the TC3I loss, CnC correctly identifies the key-steps that are short
(fix a hard disk in PC Assembly). The gray segments denote the background.

Table 3 summarises the results obtained on EgoProceL using the baselines
and proposed CnC. CnC performs higher than all the three baselines. This is due
to (a) the ability of the TC3I loss to learn the representation space where similar
key-steps lie close without enforcing any ordering or temporal constraints. More-
over, TC3I adds temporal coherency to the learned representations by adopting
the C-IDM loss [27] (Figure 5). (b) PCM gains a comprehensive view of the
problem by considering the cost of assigning each frame belonging to every key-
step and its temporal relationship with the other frames. CnC performs better
on long sequences as the TC3I loss compensates by searching for corresponding
frames in the entire length of the videos, making it possible to learn a reason-
able representation space despite the length of the videos. Further, the results
in Table 3 show that PCM is superior for key-frame clustering and assignment
along with TC3I as it results in the highest F-Score and IoU on EgoProceL. The
gain in performance is because PCM considers the cost of assigning each frame
to every key-step and its temporal relationship with the other frames (Figure 5).
This allows PCM to gain a comprehensive view of the problem compared to HC,
which does not consider the cost of each frame belonging to other key-steps and
SS, which has lower generalisation power [18].
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5.4 Egocentric vs. Third-person Videos

Table 4. Egocentric vs. Third-
person results. We use different
views from [11] for comparison. We
obtain better results using CnC on
egocentric videos highlighting their
effectiveness. P, R, and F denote
precision, recall, and F-score re-
spectively

View P R F IoU

TP (Top) 17.4 18.4 17.9 8.1
TP (Back) 18.8 21.5 20.0 8.5
TP (LHS) 21.2 22.7 21.8 9.7
TP (RHS) 19.8 21.7 20.6 8.7
Egocentric 21.6 24.4 22.7 11.1

Here, we compare the results obtained after
training CnC on multiple views from CMU-
MMAC [11]. As seen in Table 4, the frame-
wise F1-Score and IoU scores are the high-
est for the egocentric view. This is because
egocentric videos offer lower occlusion by the
expert’s body and provide higher visibility
of hand-object interactions. This highlights
one of the central hypotheses of this paper:
the effectiveness of using egocentric videos
over third-person videos for procedure learn-
ing. Also, we observe that the results vary
for third-person videos due to the camera
placement. This increases one variable when
creating data for procedure learning. Alter-
natively, egocentric videos use head-mounted
cameras, eliminating uncertainty.

5.5 Ablation study

Here, we quantitatively evaluate our design choices. Due to space constraints,
results for [11] and [47] are provided here, and the rest are in the supplementary.

Table 5. Effectiveness of the TC3I loss. TC3I loss outperforms other losses as it
focuses on corresponding frames and employs C-IDM for temporal coherency

Experiment
CMU-MMAC [11] EGTEA Gaze+ [47]

Precision F-Score IoU Precision F-Score IoU

TCC + PCM 18.5 19.7 9.5 17.5 19.7 8.8
LAV + TCC + PCM 18.8 19.7 9.0 16.4 18.6 7.5
LAV + PCM 20.6 21.1 9.4 17.4 19.1 8.0
TC3I + PCM (CnC) 21.6 22.7 11.1 19.6 21.7 9.5

Effectiveness of the TC3I Loss: Here, we replace the TC3I loss in CnC
with TCC [16], LAV [27], and a combination of LAV and TCC [27] to study
the efficacy of the proposed TC3I loss. TC3I loss in Table 5 obtains the highest
F-Score and IoU. As observed in our initial set of experiments, TCC loss lacks
temporal coherency due to which temporally close frames do not lie close in
the learned representation space, resulting in lower results when compared to
TC3I and LAV, which account for temporal coherency using the C-IDM loss.
For LAV + TCC, our observations are consistent with [27] because there is
no performance gain when directly combining LAV and TCC losses since LAV
works on L2-normalised embeddings, whereas TCC does not [27]. The LAV loss
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Table 6. Selecting K. Results with various values of K. Numbers in bold are highest
in the respective row, and underlined numbers are highest in the respective column

Experiment
CMU-MMAC [11] EGTEA Gaze+ [47]

K=7 K=10 K=12 K=15 K=7 K=10 K=12 K=15

Random 15.7 12.7 11.6 10.4 15.4 12.3 11.4 10.4
TC3I + HC 19.2 17.4 16.3 16.8 20.8 17.8 16.7 17.3
TC3I + SS 19.7 17.3 17.0 15.7 20.4 17.8 16.7 16.8
CnC 22.7 19.1 20.4 20.1 21.7 19.9 19.9 19.9

performs better than TCC and LAV + TCC; however, the results are not better
than TC3I because the Soft-DTW used in LAV accounts for global alignment.
However, LAV does not focus on the per-frame features [27], which is beneficial
when looking for similar key-steps in different videos. The TC3I loss overcomes
these issues by focusing on correspondences in multiple videos at frame level and
adding temporal coherency by adopting the C-IDM loss.

Selecting the value of K Table 6 contains results of CnC and the baselines as
the function of K. Additionally, it features the results after replacing PCM with
HC and SS as the function of K. Here, key observations are: (a) CnC performs
the best when K = 7, (b) the results do not change significantly for CnC as
K increases. However, we observe a decline in the results for HC and SS as K
increases, highlighting the effectiveness of PCM for key-step localisation.

6 Conclusion

Learning procedures from the visual demonstration of a task by an expert, is an
important step in scaling the learning capabilities of autonomous agents. Unlike
current state-of-the-art techniques, instead of third-person videos, we have pro-
posed procedure learning from first-person viewpoint. Given the unavailability
of the datasets for the purpose, we proposed the EgoProceL containing egocen-
tric videos for procedure learning. We also proposed a new technique, CnC, for
procedure learning from egocentric videos that utilize the proposed TC3I loss to
learn an embedding space in a self-supervised fashion. Finally, we employ PCM
to identify the key-steps. Our results demonstrate the superiority of using the
egocentric view and the effectiveness of the proposed technique for procedure
learning.
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