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Figure 1: We address the problem of generating speech from silent lip videos for any speaker in the wild. Previous works train
either on large amounts of data of isolated speakers or in laboratory settings with a limited vocabulary. Conversely, we can
generate speech for the lip movements of arbitrary identities in any voice without additional speaker-specific fine-tuning.
Our new VAE-GAN approach allows us to learn strong audio-visual associations despite the ambiguous nature of the task.

ABSTRACT
In this work, we address the problem of generating speech from
silent lip videos for any speaker in the wild. In stark contrast to
previous works, our method (i) is not restricted to a fixed number of
speakers, (ii) does not explicitly impose constraints on the domain
or the vocabulary and (iii) deals with videos that are recorded in
the wild as opposed to within laboratory settings. The task presents
a host of challenges, with the key one being that many features of
the desired target speech, like voice, pitch and linguistic content,
cannot be entirely inferred from the silent face video. In order to
handle these stochastic variations, we propose a new VAE-GAN
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architecture that learns to associate the lip and speech sequences
amidst the variations. With the help of multiple powerful discrim-
inators that guide the training process, our generator learns to
synthesize speech sequences in any voice for the lip movements
of any person. Extensive experiments on multiple datasets show
that we outperform all baselines by a large margin. Further, our net-
work can be fine-tuned on videos of specific identities to achieve a
performance comparable to single-speaker models that are trained
on 4×more data. We conduct numerous ablation studies to analyze
the effect of different modules of our architecture. We also provide
a demo video that demonstrates several qualitative results along
with the code and trained models on our website1.

CCS CONCEPTS
• Computing methodologies → Reconstruction; Neural net-
works.

KEYWORDS
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1 INTRODUCTION
As the world’s communication becomes increasingly digital, it is
also becoming increasingly visual. From video calls to movies to
YouTube videos, there is a surge in video content consumption.
Naturally, understanding and enabling applications for talking-face
videos [2, 3, 13, 20, 36, 37] has been an active area of research in re-
cent years. Tasks such as speech/text-based lip synthesis [27, 30, 37]
have witnessed tremendous advancements. The opposites of these
tasks, namely, lip-to-text generation and lip-to-speech generation,
both falling under the umbrella of “lip-reading”, have proven far
more challenging. For the task of lip-to-text generation, multiple
impressive works have pushed the boundaries with models that
work for any speaker in the wild. However, its sibling task, lip-to-
speech synthesis, has not yet witnessed a similar advancement in
such unconstrained settings.

Lip-to-Speech Synthesis for Arbitrary Identities: The goal of
lip-to-speech synthesis is to generate meaningful speech for a silent
talking-face video. Previous works in this space have focused on
training models that work for a fixed set of speakers. They achieve
impressive results but rely on videos recorded in laboratory set-
tings [17, 23] or require tens of hours of single-speaker data [36]
when working with real-world videos. This makes the previous
methods hard to scale to the large number of identities in the wild.

Our goal in this work is to perform lip-to-speech synthesis for
silent videos of any identity. This allows us to produce results on
any speaker at test time. We also show that we can further fine-
tune on videos of a single speaker, if necessary, and achieve similar
performance to single-speaker models but with 4× lesser data.

Overarching Challenges: The set of challenges in our task can be
divided into two major groups: (i) challenges of lip-to-speech gener-
ation and (ii) challenges in handling the large variations in identities.
In lip-to-speech generation, deciphering the uttered words is am-
biguous, e.g. lip movements of “pat”, “bat” and “mat” are the same
but map to different speech outputs. The second set of challenges
is unique to the task in this work and was not faced by previous
single-speaker models. The diversity in voices, accents and speak-
ing styles makes it difficult to learn the lip-speech correspondences.
Generating continuous speech data is also far more challenging
when there are no constraints on identity and voice. Finally, more
speakers usually mean more variations in terms of content and
topics spoken. Given this second set of challenges, we must ask
ourselves: Can single-speaker methods be directly extended for un-
constrained, real-world multi-speaker lip-to-speech synthesis?

Overview of this Work: The key idea of this work is to allow the
model to handle the highly stochastic nature of the task. Unlike the
constrained single-speaker case, the model has limited knowledge
about the topic being spoken. It needs to determine which voice to

generate in, the pitch, accent, emotion, prosody and tone. All these
aspects vary stochastically due to inadequate priors in the input.
Existing single-speaker models trained using an L1 reconstruction
loss enforces a highly constrained one-to-one correspondence be-
tween the input and the output, which, as we will see, is detrimental
to this task.

In this work, we propose a novel VAE-GAN architecture whose
core idea is to map the input lip sequence to an output distribution
of plausible speech sequences. We are the first to handle the issue of
ambiguities in lip-to-speech synthesis explicitly. Through extensive
quantitative and qualitative comparisons, we show that this is very
helpful in such an unconstrained setting. In addition to the varia-
tional architecture, we add a variety of perceptual loss functions to
ensure the realism and style of the generated speech. We show that
these discriminators (GAN discriminator to enforce the generation
quality and voice discriminator to enforce the voice quality) play an
essential role when learning such an unconstrained task. Our model
not just handles videos of arbitrary speakers but also makes the
single-speaker lip-to-speech synthesis task much more scalable. We
show that we can match the quality of the current state-of-the-art
single-speaker models while using 4× lesser training data. Our key
contributions/claims in this work are:
• We address the problem of lip-to-speech synthesis in the wild,
with no explicit constraints on the number of speakers and
vocabulary. This allows us to, for the first time, generate speech
for any person’s silent lip movements in any voice.

• We distill the content information from speech sequences and
align them with the corresponding lip movements using our
novel VAE-GAN architecture.

• Our pre-trained model can be further fine-tuned and personal-
ized to specific speakers in a data-efficient manner compared
to the current single-speaker models trained from scratch. We
show that our network achieves comparable performance while
using only 25% of the training data.

2 RELATEDWORK
2.1 Constrained Multi-speaker Lip-to-speech
The problem of lip-to-speech synthesis has been receiving growing
attention in recent times. One of the initial works [21] in con-
strained laboratory settings used a 2D convolution-based encoder-
decoder architecture to learn amapping between lipmovements and
LPC features of the corresponding speech. The network is trained
on the GRID corpus [17], containing lab-recorded videos from 34
speakers. There have been follow-up works [5, 19, 31, 32, 41] that
train in similar settings [17, 23], containing speakers with limited
head movements and a small vocabulary. However, we observe that
the performance of these works severely degrades when directly
extended to unconstrained settings comprising in-the-wild videos
with large variations in vocabulary, speakers and head movements.

2.2 Single-speaker Lip-to-speech
In order to perform lip-to-speech synthesis for in the wild silent
videos, a more recent work, Lip2Wav [36] proposes the idea of learn-
ing a model by training on large amounts of single-speaker data.
Lip2Wav demonstrates impressive results in real-world settings by
utilizing ≈ 20 hours of data for isolated speakers. The sheer amount
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of data per speaker allows the model to learn fine-grained speaker-
specific attributes. The same work also shows preliminary results
on word-level multi-speaker lip-to-speech using LRW [14] dataset.
In Table 1, we contrast our task against the previous works. Most
of the earlier works function under one or more constraints. As we
will show later, these methods do not scale to the case of “generat-
ing speech for any identity in any voice”. We discuss the reasons
and describe how our novel approach addresses these issues.

Table 1: Major differences between our approach and the ex-
isting approaches. Our work deals with the most challeng-
ing task in this space.

Approach vocab. natural training data per zero-shot gen.
size setting? spkr (in mins.) (unseen spkrs.)

Vid2Speech [21] 56 × 48 ×
Ephrat et.al [19] 82 × 30 ×
GAN based [41] 82 × 30 ×
Lip2AudSpec [5] 56 × 48 ×
Lip2Wav [36] ≈ 5𝐾 ✓ 1200 ×

Ours 50K+ ✓ 3 ✓

2.3 Lip-to-text Generation
A closely related task to lip-to-speech generation is lip-to-text gen-
eration, usually referred to as “lip reading”. Early works focused
on obtaining single-word labels by posing it as a classification
problem [14, 39]. More recent works can produce sentence-level
predictions using different models with losses like CTC [8, 42] and
models ranging from LSTMs [13] to Transformers [1, 26].

Synthesizing speech from lips is far more challenging than gen-
erating text from lips due to the following reasons: (i) Lip-to-text
models only need to transcribe the content (words), whereas in
lip-to-speech, along with the content, other speaker attributes like
voice and prosody also need to be modelled; (ii) Lip-to-speech deals
with continuous outputs (harder for learning), whereas lip-to-text
has the luxury of generating discrete tokens. Thus, although there
has been tremendous progress in unconstrained lip-to-text genera-
tion, lip-to-speech generation in unconstrained settings, which is
the focus of our work, still has a large room for improvement.

3 VAE-GAN ARCHITECTURE
Given a sequence of lipmovements𝐿 = (𝐿1, 𝐿2, ..., 𝐿𝑇 ) and a speaker
identity vector 𝑉 , the goal is to generate speech segment 𝑆 =

(𝑆1, 𝑆2, ..., 𝑆𝑇 ′) corresponding to the lip movements 𝐿 and in the
voice of 𝑉 . We start our discussion by examining the issues in pre-
vious methods and propose appropriate changes to enable learning
in a significantly more unconstrained multi-speaker setting.

3.1 Fundamental issues in Previous Works
3.1.1 Stochastic Nature in Lip-to-Speech Synthesis. All of the pre-
vious works aim to map the input lip sequence to a single speech
sequence, i.e., they do not account for stochastic nature of the
task. The stochasticity arises due to inadequate priors, i.e., the
speech cannot be entirely inferred from the lip movements due to
the homophene ambiguity. But additional ambiguities are intro-
duced as we move from laboratory settings to utterances in real-
world videos [36], where even the single-speaker case becomes

challenging when the speech is “freely uttered”: it can have varying
decibel levels (no concrete correlation to lips), stress on particular
phonemes, and even transient lip motion during pauses.

3.1.2 Scaling to Multi-speaker Lip-to-Speech. As we move further
into the multi-speaker case, the task becomes severely ill-posed and
extremely challenging. Given only the lip movements and a voice
token, there are many stochastically varying factors that cannot be
inferred from either of the inputs. In addition to the ambiguities
mentioned in Section 3.1.1, each speaker can have distinct speak-
ing styles and lip shapes in the multi-speaker setting. The large
variation in voices and accents also influences how the phonemes
are uttered. Such variations cannot be adequately captured in the
voice token input. As none of the existing models handle these
issues, even in the single-speaker case, they do not scale well to
multi-speaker lip-to-speech.

3.1.3 What “Space” is Right to Learn these Ambiguous Audio-Visual
Correspondences? Finally, the existing models struggle to learn in
the unconstrained multi-speaker scenario because their learning
signal comes from the level of raw spectrograms. This is because
most of the current models use a visual encoder - speech decoder
approach with only an L1 reconstruction loss. Given a large amount
of stochastic variations in both the visual and speech modalities,
we argue that it is beneficial to learn speech-lip correspondences
in the feature space, whose benefits have been well-studied in the
literature [10, 11, 25, 34, 35]. The intuition is that the low-level
variations are more meaningfully represented in the feature space.
For example, matching the lip shapes of “ma” with its instances in
the speech in different voices will be far easier in a feature space
that is voice invariant and contains only the content information
from the speech sequences. We build upon this intuition to arrive
at our core idea.

3.2 Our Core Idea
Our core idea is two-fold. Firstly, we want to match the distributions
(Figure 1) of (i) the lip sequence and (ii) the content from the speech
sequence in the latent feature space to allow the model to handle the
stochastic variations mentioned above. Secondly, we want to learn
a decoder that decodes meaningful speech samples from this latent
space while also conditioning on a speaker identity embedding that
provides the voice information.

Concretely, we first represent each input lip sequence as a distri-
bution (instead of a single vector) and match it to the corresponding
speech content distribution. The intuition for matching at the level
of distributions is that it allows the ambiguities to be meaningfully
represented by allowing a “one-to-many” correspondence. Once we
have such a shared latent space, the second step is to decode sam-
ples from this latent distribution and generate meaningful speech.
We realize these ideas in the following manner. We use a stan-
dard automatic speech recognition (ASR) model to extract content
information from the input speech sequences. A variational auto-
encoder [28] then maps the speech content information to a shared
latent space and decodes the samples from this latent space to real
speech sequences. We have an additional visual encoder that maps
the lip sequences to the same shared latent space. We tie these two
latent distributions together using the Kullback-Leibler Divergence
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Figure 2: We propose a novel VAE-GAN architecture for our task. While previous approaches enforce a one-to-one mapping
between lip and speech sequences, we deal with the task’s ambiguities differently. We map the speech content (ASR represen-
tations) and the lip sequence to similar distributions and use a decoder to generate realistic speech outputs from this latent
space. Additional discriminators enable high-fidelity generation in such unconstrained settings.

(KL) loss [29] as illustrated in Figure 2. Finally, we sample points
from these distributions and feed them to a speech decoder along
with the speaker identity embedding to generate intelligible speech
sequences. We delve into each of the modules below.

3.2.1 Visual Encoder. We adopt the visual encoder used in several
previous models that aim to learn audio-visual correspondence [2, 4,
15, 16]. Our visual encoder consists of 3D convolutional layers, with
only the first layer having a temporal receptive field of 5 frames. It
provides a good trade-off between speed and capturing short-range
temporal information. The visual encoder inputs a spatio-temporal
volume 𝐿 : (𝑇, 96, 96, 3) and outputs 1D embeddings 𝑙 : (𝑇, 512) at
each time-step. We perform 4× temporal upsampling using nearest-
neighbor interpolation on 𝑙 to match the speech time-steps 𝑇 ′.

3.2.2 Speech Content Encoder. We believe that lip movements pri-
marily represent the content information present in a speech se-
quence. Thus, before matching with the lip distribution, we need
to distill the content from speech segment. We achieve this using
a standard pre-trained ASR network [6]. The melspectrogram is
passed through this frozen encoder to generate a 𝑇 ′ × 1024 di-
mensional embedding denoted by 𝑐 . Thus, we separate the voice
information from the speech representations, which, as we will see
later, is crucial to our training strategy.

3.2.3 Variational Auto Encoder Based Approach & Latent Distribu-
tion Matching. We now map both, lip and speech content embed-
dings, 𝑙 and 𝑐 to Gaussian distributions with a diagonal covariance
matrix: N(𝜇𝑙 , 𝜎𝑙 ) and N(𝜇𝑐 , 𝜎𝑐 ) , where (𝜇𝑙 , 𝜎𝑙 ), (𝜇𝑐 , 𝜎𝑐 ) are ob-
tained using two projection modules 𝑃𝑙 and 𝑃𝑐 . Both these modules

contain a bi-directional GRU [12] followed by ReLU-activated fully-
connected layer. The bi-directional GRU helps to capture contextual
information in both directions at each time-step. Now that we have
two distributions, one corresponding to the speech content, another
corresponding to the lips, random points 𝑐𝑝 and 𝑙𝑝 are sampled
from these distributions using the re-parametrization trick [28]. We
can clearly see that we no longer have a “single value” for each in-
put lip or speech sequence, but rather two probability distributions
for these inputs.

Our final step is to tie these distributions together, i.e., we want
the lip distribution N(𝜇𝑙 , 𝜎𝑙 ) to be close to the speech content dis-
tribution N(𝜇𝑐 , 𝜎𝑐 ). If we do this, then we can train a decoder that
decodes speech samples from the content distribution N(𝜇𝑐 , 𝜎𝑐 )
and also use it to decode from points in the lip distribution. Thus, we
minimize the Kullback-Leibler Divergence (KL) loss [29] between
these two distributions:

𝐿klglobal =
1
𝑁

𝑁∑
𝑖=1

𝐾𝐿[N (𝜇𝑐 , 𝜎𝑐 ) | |N (𝜇𝑙 , 𝜎𝑙 )] (1)

We term 𝐿𝑘𝑙𝑔𝑙𝑜𝑏𝑎𝑙 as the global KL-divergence loss since the
distributions are created by considering the complete sequence
of speech and lip movements. To further improve the alignment,
inspired from [18], we take random corresponding temporal seg-
ments of the distributions and align them by minimizing a “local”
KL-divergence loss (Figure 3). We choose 𝑅 = 10 small temporal
segments for each batch sample and use its (𝜇𝑟 , 𝜎𝑟 ) to minimize
Equation 2:
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Figure 3: In addition to using a global KL-divergence loss to
tie the lip and speech content distributions, we also enforce
these distributions to be temporally aligned byminimizing a
local KL-divergence loss on random smaller time segments.
The intuition is that lips and speech are locally aligned in
time, in the form of visemes and phonemes.

𝐿kllocal =
1
𝑁

𝑁∑
𝑖=1

𝑅∑
𝑟=1

𝐾𝐿[N (𝜇𝑟𝑐 , 𝜎𝑟𝑐 ) | |N (𝜇𝑟
𝑙
, 𝜎𝑟
𝑙
)] (2)

Here,N(𝜇𝑟 , 𝜎𝑟 ) are 𝑟𝑡ℎ random patches sampled from the lip and
content distributions along the temporal dimension. Binding the
distributions at the local level is crucial as phoneme-viseme map-
pings occur locally rather than globally. We show the importance
of employing both local and global KL-divergence losses in Table 6.
Since the two distributions are aligned using the KL-divergence
loss, we can sample from the lip distribution during inference while
sampling from the speech content one during training.

3.2.4 Speaker Embedding. While the visual/content encoder spec-
ifies “what to utter”, we also need an input for “which voice to
utter in”. While this can be done by representing each speaker in
the dataset with a one-hot vector, it does not generalize to new
speakers during inference. Instead, we adopt a recent advance-
ment [24] in training multi-speaker text-to-speech models, where
a pre-trained identity network2 containing the embedding with
voice information is used. The speaker embedding can be obtained
for any voice, given just one second of the voice sample. For each
video in the dataset, we generate a 256-dimensional speaker embed-
ding using a random one-second segment of the audio. We apply a
ReLU-activated fully-connected layer to this pre-trained speaker
embedding input 𝑉 before feeding it to the decoder.

3.2.5 Speech Decoder. Our final step is to train a module that can
generate speech segments given points sampled from the above
created joint latent space. It is clear that we need to feed points
from the lip distribution at test time, as we do not have the speech.
During training, we have three ways of sampling the points: (i)
only from the lip distribution, (ii) only from the speech content
distribution and (iii) alternately sample from both the distributions.
We hypothesize that learning with points from (ii) is far easier and
allows the network to learn excellent latent representations of the
speech content. As the distributions are being matched in the la-
tent space, learning accurate, meaningful representations of one of

2github.com/CorentinJ/Real-Time-Voice-Cloning

them can be quite beneficial for learning the joint space. Indeed,
we observed that good convergence and intelligible speech both at
training and test time could be achieved only by training the de-
coder on points sampled from the speech content distribution. The
points are sampled using the re-parametrization trick [28] and are
of the shape (𝑇 ′, 256). Along with the sampled points from content
(𝑐𝑝 ) or lip distribution (𝑙𝑝 ), the decoder ingests the speaker embed-
ding input 𝑉 , which is concatenated with the sampled points. The
concatenated content-voice feature vectors [(𝑐𝑝 |𝑙𝑝 );𝑉 ] : (𝑇 ′, 512)
contain information on both “what to utter” and “the voice to ut-
ter in”. We use a bi-directional LSTM layer followed by 4 dense
layers to decode the melspectrogram segment (𝑇 ′, 80) from the
concatenated feature vector. During training, the generator 𝐺 in-
gests speech content 𝑐 and speaker embedding 𝑉 and minimizes
the L1 reconstruction loss between the generated speech and the
ground-truth speech 𝑆 :

𝐿r =
1
𝑁

𝑁∑
𝑖=1

| |𝐺 (𝑐,𝑉 ) − 𝑆 | |1 (3)

Note that during training, the generator network is essentially
a VAE for the speech with an additional KL loss constraint on its
latent space. Because of the KL loss, we can sample from the speech
distribution during training, and during inference, when the speech
is absent, we can sample and decode points from the lip distribution.
Therefore, during inference, we predict𝐺 (𝑙,𝑉 ) as our output. Since
we employ a content encoder during training, the decoder is forced
to condition on the speaker embedding for the voice information.
The content encoder distills only the content information from a
speech sequence and does not leak the voice information, allowing
us to maintain good voice quality even at test time when we decode
from the lip distribution. We now describe additional discriminators
that we will use along with our generator to improve the quality
and accuracy of the generated speech outputs.

3.2.6 Enforcing Realism with a VAE + GAN. In our experiments,
we observed that generating realistic samples for such a diverse set
of voices, accents and speaking styles, using a plain L1 reconstruc-
tion loss produced unrealistic, unintelligible samples (Table 5). We
hypothesize that this occurs because of the known issue of the L1
loss regressing to the mean. Multiple works in the past [33, 38] also
point to the benefits of using a GAN along with a VAE. We found
that it is highly beneficial to train a WGAN-GP [22] critic in a GAN
setup along with our VAE architecture. The critic consists of a series
of 1D convolutional layers that takes an audio spectrogram segment
of shape 𝑇 ′ × 80 as input and outputs a single number as the score.
The generator 𝐺 and the critic 𝐷 optimize the Wasserstein objec-
tive [7] along with the gradient penalty [22] in the equations below,
where 𝑆 contains all linear interpolates between 𝑆 and 𝐺 (𝐿,𝑉 ):

𝐿adv = E𝑥∼𝑆 [𝐷 (𝑥)] − E𝑥 ′∼𝐺 (𝐿,𝑉 ) [𝐷 (𝑥 ′)] (4)

𝐿gp = E
𝑥∼𝑆 [(∥∇𝑥𝐷 (𝑥)∥ − 1)2 (5)

3.2.7 Improving Voice of the Generated Speech. To ensure that the
model learns the voice and other style attributes, we use our pre-
trained identity network as described in Section 3.2.4 to penalize
the generated speech segments if they do not match the voice/style
attributes of the ground-truth speech segment. We train the discrim-
inator network to maximize the cosine similarity 𝐿𝑣𝑜𝑖𝑐𝑒 between

github.com/CorentinJ/Real-Time-Voice-Cloning
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the embeddings of the generated (𝑉𝑔𝑒𝑛) and the ground-truth (𝑉𝐺𝑇 )
speech segments.

𝐿voice =
1
𝑁

𝑁∑
𝑖=1

𝑉𝑔𝑒𝑛 ·𝑉𝐺𝑇
𝑚𝑎𝑥 (∥𝑉𝑔𝑒𝑛 ∥2 · ∥𝑉𝐺𝑇 ∥2, 𝜖)

(6)

3.3 Training Settings & Inference
The complete loss function to train our network is the weighted
summation of all the above losses:

𝐿G = 𝜆𝑟𝐿r + 𝜆𝑘𝑔𝑙𝑜𝑏𝑎𝑙 𝐿KLglobal + 𝜆𝑘𝑙𝑜𝑐𝑎𝑙 𝐿KLlocal
+ 𝜆voice𝐿𝑣𝑜𝑖𝑐𝑒 +min

𝐺
max
𝐷

𝐿adv + 𝜆g𝐿gp (7)

In our experiments we set 𝜆𝑟 = 10, 𝜆𝑘𝑔𝑙𝑜𝑏𝑎𝑙 = 5, 𝜆𝑘𝑙𝑜𝑐𝑎𝑙 =

5 and 𝜆𝑣𝑜𝑖𝑐𝑒 = 5. We follow the pre-processing procedures of
Lip2Wav [36] to detect and extract face crops from training videos.
We create video inputs by randomly sampling a window of 𝑇 = 25
(1 sec.) contiguous face crops resized to 96× 96. The corresponding
audio segment is sampled at 16kHz. We compute STFT with a hop
length of 10𝑚𝑠 and a window length of 25𝑚𝑠 . We finally obtain
melspectrograms with 80 mel-bands and 𝑇 ′ = 100 mel time-steps
(1 sec.). We use a batch size of 32 and RMSProp [40] optimizer with
an initial learning rate of 0.00005 for both the generator and the
discriminator, which is advised for training a WGAN model [22].
The generator is trained every five discriminator iterations fol-
lowing [22]. As this is a WGAN, the discriminator loss shows the
progress of training and correlates with the quality of the gener-
ated samples. Hence, we stop the training once the discriminator
loss does not improve for 10 epochs. During inference, we feed the
speaker embedding and the lip distribution to the decoder instead
of the content distribution. Since our model can take a variable
number of time steps as input, it can directly generate for any
length of video without any further changes.

3.3.1 Datasets and Training Strategy. Our primary focus is to syn-
thesize speech for silent lip videos in unconstrained settings; we
intend to make our model identity-agnostic and work for a larger
vocabulary. But, for the sake of comparison with previous works,
we also train our model on the lab-recorded constrained GRID [17]
and TCD-TIMIT [23] datasets. We use the speaker-independent
train-test setting as [41] for GRID and single-speaker lip-to-speech
setting as [36] for TCD-TIMIT dataset. For unconstrained evalua-
tion, we first train our model on the word-level LRW data [14]. Next,
we use the complete LRS2 dataset [13] (both train and pre-train
sets), which contains sentences and phrases as opposed to specific
words. The LRS2 data comprises thousands of speakers from BBC
programs with a vocabulary of 59𝑘 and 2𝑀 word instances. A large
number of speakers and vast vocabulary covered in both of these
datasets encourage our model to be speaker agnostic and pose no
limitations on the vocabulary size.

4 EXPERIMENTS
We evaluate our model against various baseline methods in two
settings: (i) laboratory setting videos and (ii) in the wild videos.

4.1 Evaluation in Constrained Settings
4.1.1 Baselines. We compare ourmodel with the following existing
lip-to-speech methods: (i) Improved Vid2Speech [19], (ii) GAN-
based [41] and (iii) Lip2Wav [36]. Note that since we train using the
same settings as Lip2Wav [36] for TCD-TIMIT dataset, we report
the paper scores for all the comparison methods. Similarly, we take
the paper scores from [41] for GRID dataset (speaker-independent
training settings).

4.1.2 Metrics. We evaluate our model using the standard speech
metrics: Perceptual Evaluation of Speech Quality (PESQ) and short-
time objective intelligibility measure (STOI). PESQ measures the
overall perceptual quality of speech and STOI correlates with the
intelligibility of speech. Also, to specifically evaluate the voice
quality of the generated samples, we measure the distance (𝐿1)
between the speaker embeddings of the generated and the ground-
truth samples (termed speaker embedding distance (SED)).

4.1.3 Results. Table 2 shows the results of different models on
GRID and TCD-TIMIT datasets. We see that our approach designed
specifically for the unconstrained scenario performs slightly better
or comparable to other methods when used in constrained settings.
Also, we can observe that in terms of voice quality (SED metric),
our method beats the existing approaches, thus indicating that we
are able to preserve the voice of the identity to a large extent.

Table 2: Quantitative results on the constrained GRID [17]
and TCD-TIMIT [23] datasets.
Dataset GRID [17] TCD-TIMIT [23]
Method PESQ↑ STOI↑ SED↓ PESQ↑ STOI↑ SED↓
Imp. Vid2Speech [19] n/a n/a n/a 1.23 0.49 n/a
GAN-based [41] 1.24 0.44 n/a 1.22 0.32 n/a
Lip2Wav [36] 1.20 0.38 4.38 1.35 0.56 4.64
Ours 1.28 0.45 3.76 1.35 0.55 4.36

4.2 Evaluation in Unconstrained Settings
4.2.1 Baselines. As no prior works in the multi-speaker lip-to-
speech synthesis train on such unconstrained datasets, we extend
previous models [19, 36, 41] with the same speaker embedding
we use in our model and train all of them on the same dataset as
ours. On the LRW dataset, we evaluate the publicly released multi-
speaker Lip2Wav model. Additionally, to highlight the importance
of our novel modules and facilitate more direct comparison, we
implement the following baselines: (i) a non sequence-to-sequence
encoder-decoder architecture, (ii) a sequence-to-sequence model
with only L1 reconstruction loss and without the VAE-GAN setup,
(iii) A standard speech encoder trained from scratch instead of our
pre-trained content encoder and (iv) Lip-to-text [26] followed by
text-to-speech (TTS) [24] model.

4.2.2 Metrics. Explicitly modeling the stochastic nature of the
problem is one of the major contributions of our work. Naturally,
this allows our model to generate speech samples, which can dif-
fer from the original ground-truth. Thus, along with the standard
speech evaluation metrics (PESQ, STOI) and our voice quality met-
ric (SED), that directly evaluate the generated speech against a fixed
ground-truth, we also evaluate our model using the perceptual met-
rics. Specifically, following the recent GAN-based TTS systems [9],
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Table 3: All models are pre-trained on LRW dataset and then trained on LRS2. We can see that we outperform all the competi-
tive methods, especially on the challenging LRS2 data, which contains unseen speakers, words, poses and a large vocabulary.
Dataset LRW [14] LRS2 [13]
Method PESQ↑ STOI↑ SED↓ FDSD↓ KDSD↓ LSE-C↑ LSE-D↓ PESQ↑ STOI↑ SED↓ FDSD↓ KDSD↓ LSE-C↑ LSE-D↓
Imp. Vid2Speech [19] 0.65 0.09 6.01 5.645 10.2 1.782 10.43 0.59 0.30 6.25 4.275 3.1 2.009 8.424
GAN-based [41] 0.72 0.10 5.90 5.189 9.1 1.983 9.426 0.80 0.40 6.13 3.626 1.8 2.503 8.489
Lip2Wav [36] 1.19 0.54 5.73 1.831 1.1 2.526 8.286 0.58 0.28 6.22 10.71 15.5 1.874 11.48
Seq2seq baseline 1.01 0.50 6.16 4.306 7.7 2.396 8.412 0.97 0.43 6.47 3.840 2.8 1.991 8.532
Non seq2seq baseline 1.05 0.49 6.17 4.112 7.1 2.282 8.441 0.96 0.44 6.43 3.803 2.3 2.078 8.536
Ours w/o Content Encoder 0.53 0.14 5.89 2.941 3.4 2.531 8.205 0.45 0.32 6.02 2.856 1.2 2.385 8.230
Lip-to-text [26] + TTS [24] 0.60 0.09 5.91 1.056 0.5 2.181 14.160 0.48 0.11 6.17 0.984 0.1 2.024 19.012
Ours 0.78 0.15 5.65 1.638 0.8 2.538 8.173 0.60 0.34 5.95 1.273 0.2 2.507 8.155

we propose to use: Frechet DeepSpeech Distance (FDSD) and Kernel
DeepSpeech Distance (KDSD), to evaluate the perceptual quality and
the linguistic aspect of the generated speech. Note that we multi-
ply KDSD scores with 103 for better readability. Further, we also
evaluate whether the output speech matches the lip movements
using LSE-C (measures the confidence of lip-syncing) and LSE-D
(measures an embedding level distance between the speech and
lip-movements) metrics of [37]. We use the public implementations
of these metrics for reliable comparison and reproducibility.

4.2.3 Results. Table 3 compares our model with the different meth-
ods on the LRW and LRS2 datasets. We outperform existing ap-
proaches [19, 41] and the baseline methods by a significant margin
in perceptual metrics. Thus, although we under-perform in stan-
dard speech metrics (PESQ and STOI), we argue that our method is
superior because perceptual metrics are more correlated to human
judgement of intelligibility and speech quality. We further support
this fact by providing qualitative results in the demo video on our
website and conducting a human evaluation (Table 4). The standard
metrics PESQ and STOI enforce one-to-one mapping, and thus are
not ideal for evaluating our method. Also, GRID and TIMIT are
constrained datasets with very less variations. On the other hand,
LRW and LRS2 are more challenging and unconstrained datasets
and our method is more effective on such challenging data. On the
LRS2 dataset, where single-speaker methods such as Lip2Wav [36]
fail to learn the audio-visual alignment, we achieve state-of-the-art
perceptual metric scores. We encourage the reader to view the demo
video for qualitative comparisons demonstrating the superiority of
our approach.

Lip-to-text + TTS baseline: An additional baseline would be
to use a state-of-the-art lip-to-text model [26] and convert the
predicted text transcripts to speech using a multi-speaker TTS
model [24]. We can deduce the following from the scores reported
in Table 3. The lip-to-text model trained on text transcripts is nat-
urally far more accurate in predicting the word tokens than any
lip-to-speech model. Thus, it achieves the best results in terms of
intelligibility and perceptual quality metrics such as FDSD, KDSD.
The fact that our lip-to-speech model comes close to the lip-to-text
baseline for the same metrics shows that our approach captures the
speech content most accurately.

For other metrics like LSE-D that measures if the generated
speech is in-sync with the video, we see that the output of lip-
to-text baseline is not in-sync with the lip movements. The same
content can be uttered in different ways (speeds, accent, prosody,

Figure 4: Activation maps of the visual encoder. Our model
strongly attends to the lip region while generating speech,
despite variations in head poses and the lip location.

voice), and the lip-to-text + TTS baseline cannot capture this. All
the lip-to-speech models inherently achieve this to different extents
and is an essential condition for the lip-to-speech task. Thus, ours
is the best approach for the task of lip-to-speech synthesis.

Qualitative results: In Figure 4, we plot the activation maps from
the visual encoder to highlight that the model predominantly at-
tends to the lip region. We encourage the reader to check our sup-
plementary and demo video on our website for qualitative samples.

Computation cost: We train our network using 4 NVIDIA 2080
Ti GPUs. The network consists of 18M parameters and takes 0.5-
seconds to generate 1-second of speech.

4.3 Human Evaluations
We perform human evaluations with the help of 20 participants. The
participant group spans members of 22 − 40 years with an almost
equal male-female ratio. We choose 15 random samples from the
LRS2 dataset [13] and generate the results for all the comparison
models. Participants rate the speech segments on a scale of 1 − 5
based on: (A) Intelligibility (is the speech meaningful?) (B) Percep-
tual Quality (C) Sync Accuracy (is the generated speech in-sync
with lip movements?) and (D) Voice Match. Table 4 summarizes the
mean scores of all the participants. Inline with the quantitative eval-
uations, the speech generated by our approach is of considerably
higher quality and is more legible and natural. We also perform a
Student’s T-Test for Table 4 and compute the p-value to be ≈ 0.035,
indicating that the differences are statistically significant.

4.4 Adapting to Single-Speaker Lip-to-Speech
Our model can generate speech for arbitrary speakers, which is
highly beneficial for applications where there is almost no training
data available for that speaker. However, in a few applications, it is
possible to obtain some data of a target speaker for fine-tuning. Cur-
rent single-speaker models need nearly 20 hours of data to produce
impressive results. This is really difficult to obtain in many scenar-
ios. Our multi-speaker model can resolve this issue to a large extent



MM ’22, October 10–14, 2022, Lisboa, Portugal Sindhu B Hegde et al.

Table 4: (A) Intelligibility (is the speech meaningful?), (B)
Perceptual Quality, (C) Sync Accuracy, (D) Voice Match.
Our approach outputs meaningful, intelligible speech that
matches lip movements and voice of the target person.
Method (A) (B) (C) (D)
Imp. Vid2Speech [19] 2.02 1.98 1.74 1.13
WGAN-based [41] 2.17 2.43 2.19 2.01
Lip2Wav [36] 1.07 1.02 1.25 1.03
Seq2seq baseline 1.98 2.10 1.86 1.83
Non seq2seq baseline 2.01 2.23 1.92 1.84
Ours w/o Content Encoder 2.51 2.62 2.01 1.76
Ours 3.22 2.98 2.28 2.69

Figure 5: Fine-tuning our pre-trained multi-speaker model
consistently outperforms the current best single-speaker
model (FDSD lower is better) in the low data regime.

- we can fine-tune our pre-trained multi-speaker model on a small
amount of speaker-specific data and achieve impressive personal-
ized results. By using only 25% of the training data (5 hours), we
can nearly match the single-speaker model’s performance trained
with 20 hours.

We fine-tune our network on the speakers in the Lip2Wav dataset [36].
We vary the number of hours in the train set and train the current
single-speaker state-of-the-art Lip2Wav model [36] and fine-tune
our multi-speaker model. We plot the variation of the FDSD met-
ric with the training data size in Figure 5. We can clearly see that
in the low data regime, pre-training on multi-speaker data vastly
outperforms the best single-speaker model trained from scratch.

5 ABLATION STUDIES
We perform ablations to assess the effect of our key design choices.
The results are on the unseen LRS2 test set.

5.1 Impact of Each Discriminator
We use two discriminators in our final model, one for enforcing
better voice and style attributes and another for enforcing real-
istic speech. We assess the importance of using each of them in

Table 5. We can see that despite getting a minor improvement in lip-
sync metrics, both the discriminators enforce better overall speech
generation as observed by the speech metrics.

Table 5: The discriminators enforce our model to produce
meaningful and realistic speech outputs.
Method FDSD↓ KDSD↓ LSE-C↑ LSE-D↓
Ours w/o both Discs 4.055 2.9 2.188 8.199
Ours w/o WGAN 3.916 2.7 2.294 8.194
Ours w/o Voice Disc 4.310 3.6 2.319 8.189
Ours 1.273 0.2 2.507 8.155

5.2 Importance of Local and Global Alignment
Table 6 shows that optimizing both local and global KL-divergence
together improves the alignment between lip and content distribu-
tions, thus improving the overall performance. Training with either
of the losses in isolation leads to inferior results.

Table 6: Optimizing both the global and local KL-divergence
loss improves the overall quality of the results.

Method FDSD↓ KDSD↓ LSE-C↑ LSE-D↓
Ours w/o local KL div 2.883 3.2 2.340 8.249
Ours w/o global KL div 5.040 6.8 2.003 8.937
Ours 1.273 0.2 2.507 8.155

6 LIMITATIONS AND FUTURE DIRECTIONS
Unconstrained lip-to-speech synthesis is far from a solved problem
- there is still a considerable room for improvement. Ours is the
first attempt to design a model which can generate speech for
any speaker in any voice. We specifically deal with the issue of
learning speech-lip correspondences and handling the homopheme
ambiguities. However, there are still multiple unresolved problems.
For example, our model struggles when there is a drastic movement
of the head while speaking and if the head is non-frontal. Another
issue is that we can get output sounds that do not form the right
words or phrases. This is because it is hard to learn a language
model in the speech modality compared to lip-to-text models that
train on text transcripts. We hope our efforts in this work lead
to new future directions that tackle some of the aforementioned
issues.

7 CONCLUSION
In this work, we address the problem of the unconstrained lip-
to-speech synthesis for the first time. We extensively discuss the
challenges this problem presents, due to which the existing ap-
proaches fail to scale to such unconstrained settings. To tackle
these challenges, we propose a VAE-GAN model trained to explic-
itly handle the stochastic nature of the task. Our approach produces
significantly more intelligible, realistic speech outputs compared to
all other models. We justify the use of different parts of our archi-
tecture with numerous ablation studies. We believe that our core
idea of handling stochasticity can encourage future efforts to en-
able advanced versions of lip-to-speech and lip-to-text generation
systems for arbitrary languages and speakers in the wild.
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