
Generalized Keyword Spotting using ASR embeddings

Kirandevraj R1 Vinod K Kurmi1 Vinay P Namboodiri2 CV Jawahar1

1 IIIT Hyderabad, India.
2 University of Bath, UK.

{kirandevraj.r@research., vinodkumarkurmi@research.}iiit.ac.in, vpn22@bath.ac.uk,
jawahar@iiit.ac.in

Abstract
Keyword Spotting (KWS) detects a set of pre-defined spo-

ken keywords. Building a KWS system for an arbitrary set re-
quires massive training datasets. We propose to use the text
transcripts from an Automatic Speech Recognition (ASR) sys-
tem alongside triplets for KWS training. The intermediate rep-
resentation from the ASR system trained on a speech corpus is
used as acoustic word embeddings for keywords. Triplet loss is
added to the Connectionist Temporal Classification (CTC) loss
in the ASR while training. This method achieves an Average
Precision (AP) of 0.843 over 344 words unseen by the model
trained on the TIMIT dataset. In contrast, the Multi-View re-
current method that learns jointly on the text and acoustic em-
beddings achieves only 0.218 for out-of-vocabulary words. This
method is also applied to low-resource languages such as Tamil
by converting Tamil characters to English using transliteration.
This is a very challenging novel task for which we provide a
dataset of transcripts for the keywords. Despite our model not
generalizing well, we achieve a benchmark AP of 0.321 on over
38 words unseen by the model on the MSWC Tamil keyword
set. The model also produces an accuracy of 96.2% for classifi-
cation tasks on the Google Speech Commands dataset.
Index Terms: speech recognition, keyword spotting, low-
resource languages

1. Introduction
Keyword Spotting is the problem of determining whether a tar-
get term has been uttered in a speech segment. When a term is
given in the acoustic form, we call it query-by-example (QbE)
KWS. When the keyword set is arbitrary, the network may or
may not have seen the keyword during training. This problem
of QbE KWS for any arbitrary set is achieved by building an ef-
ficient acoustic word embedding for keyword speech segments.
Similarity matching is done on these word embeddings of dif-
ferent keywords to find the match. On the other hand, ASR is
an acoustic-to-text system where input audio is converted into
text transcripts. ASR is continually evolving, with new models
advancing state-of-the-art performance. DeepSpeech2 [1] is a
speech recognition model that is trained end-to-end with CTC
loss on LibriSpeech [2] corpus and has achieved a 6.71 Word
Error Rate (WER).

In this paper, we identify that the embeddings from the in-
termediate layer of DeepSpeech2 ASR can be directly used as
an acoustic word embedding for audio keyword segments us-
ing the triplet loss and CTC loss. The method is generalized to
zero-shot out of vocabulary keywords. In zero-shot setting, the
model is asked to predict the keyword classes it has not seen
during the training.

Most of the previous works focused on generalization re-
quire few samples from all the keywords the model has to pre-

Figure 1: Generalized Keyword Spotting Embedding Represen-
tation: A pretrained DeepSpeech2 ASR Net is trained with CTC
loss and triplet loss for obtaining the acoustic word embeddings
used for Keyword Spotting

dict [3]. They use the target vocabulary samples to train a pre-
diction filter and classify the samples based on the filter pre-
dictions. In contrast to those, we directly work on the embed-
ding space so we do not need any training sample for predicting
the keywords the model has not seen. We work on zero shot
out of vocabulary generalization. Other works [4] require each
pair of query and keyword pass through their model together to
make predictions. These methods take both query and keyword
in the neural network and predict if they are the same or dif-
ferent. But, we get the acoustic word embedding representation
for input audio from the model and compare it with the keyword
audio embedding that we want to classify. When the similarity
between the pair is above a certain threshold, we say that there
is a match. We do not need query and keyword pass through the
model for each predictions. Our contributions are as follows:

1. We demonstrate that intermediate representations from
ASR when fine-tuned using triplet and CTC loss func-
tions on keyword audio segments extracted from the
TIMIT [5] dataset can provide generalized keyword
spotting abilities.

2. We then further generalize our approach to low-resource
language Tamil from the MSWC [6] dataset. To apply
CTC loss we convert the Tamil characters to English us-
ing transliteration.

3. Finally, we train our model on Google Speech Com-

mands dataset [7] and compare our results on in-
vocabulary classification tasks by using kNN on our
acoustic word embeddings and show that they provide
comparable in-vocabulary results to the state of the art
while having improved generalization abilities.

2. Related Work
Most QbE KWS approaches use dynamic programming to solve
the search optimization problem over an input signal or dy-
namic time warping to allow for duration fluctuations of the
target term [8, 9]. Various forms of deep neural networks are
used for QbE KWS. Some approaches construct an embedding
space, where the query and acoustic examples are projected to
this space and is compared [10, 11]. We are approaching this
problem in the similar direction.

In recent years, various forms of neural network have
proven to be useful for keyword spotting. A convolutional neu-
ral network (CNN) is trained on frame level similarities between
the posteriors of a spoken query and a test utterance in [12]. A
Siamese CNN network is used to generate the embedding space
in [13]. A multitask objective of learning acoustic word embed-
ding with triplet loss and cross entropy loss has been explored
in [14]. Seq2seq models are used for KWS. The text and au-
dio representation are brought together by the encoder, decoder
and a feed forward neural network [15]. ASR posteriors are
used to search query in [16]. An encoder network with atten-
tion mechanism is used to learn the representation for the query
in [17]. An LSTM is trained to discriminate phones with the
CTC criterion, and a substring matching algorithm is used to
detect the keyword in [18]. The representations are obtained
for fixed vocabulary KWS using triplet loss and is classified us-
ing k-Nearest Neighbour (kNN) in [19]. Recurrent Neural Net-
works combined with convolution is used in KWS [20, 21, 22].
Few shot keyword spotting is experimented in [3]. Siamese Re-
current Autoencoders[23] have approached the similar task.

While these contributions have been focused on the task of
KWS and have made significant contributions to the task, our
contribution differs in terms of being focused on generalizing
the KWS ability to a set of arbitrary keywords rather than a fixed
small command set. The KWS task used here is the same as that
in the literature [24], which is similar to an isolated word recog-
nition task, and it is different from detecting keywords from a
continuous speech signal [8, 22].

3. PROPOSED KWS MODEL
3.1. Pretrained ASR with CTC loss

The end-to-end model we use in this work is DeepSpeech2,
an acoustics-to-characters system based on a deep neural net-
work. This model is pretrained by OpenSeq2Seq frame-
work [25]. The input to the model is a sequence of audio spec-
trograms(frequency magnitudes), obtained with a 20ms Han-
ning window and a stride of 10ms. With a sampling rate of
16kHz, we have 160 dimensional input features. The Deep-
Speech2 model has two convolutional layers and five Gated Re-
current Units (GRU). Each convolutional or recurrent layer is
followed by batch normalization and a ReLU non-linearity. The
model is trained with CTC loss function. The CTC loss function
is given as:

L1 = − log p(l|x) (1)

where the probability of a label sequence l given an input se-
quence x is defined as:

p(l | x) =
∑

π∈B−1(l)

p(π | x) =
∑

π∈B−1(l)

T∏
t=1

ASRK
t (x) [πt]

(2)
where B removes blanks and repeated symbols, B−1 is its
inverse image, T is the length of the label sequence l, and
ASRK

t (x) [πt] is unit j of the model output after the top soft-
max layer at time t, interpreted as the probability of observing
label j at time t.

The acoustic word embedding for the keyword audio seg-
ments are obtained from the output of the final GRU layer. The
output dimension of the final GRU layer is 1600 for each time
instance. We take the average of this representation across time
dimension to obtain a fixed representation of size 1600 for vari-
able length audio.

3.2. Adding Triplet loss with CTC loss

As described in [26], a triplet network comprises three instances
of the same feed-forward network with shared parameters. We
denote the triplet of inputs as x, x+, x− for anchor, positive
and negative sample.

The averaged GRU output from Net(x) is used to calculate
the triplet loss. We use cosine similarity as the distance metric.
The loss function used to train the triplet network is given as:

L2

(
x,x+,x−) = max(δ[Net(x),Net

(
x+)]

−δ
[
Net(x),Net

(
x−)]+ α, 0

)
where the distance from anchor to the positive sample is mini-
mized, while the distance from anchor to the negative sample is
maximized. α denotes the margin between positive and nega-
tive sample and δ denotes the distance measurement.

We then append the triplet loss with the calculated CTC loss
for backpropagation (Figure 1). Total loss of the model can be
give as follows: (λ1 and λ2 are the weights given to the CTC
and triplet loss)

L = λ1L1 + λ2L2

3.3. Zero Shot Out-Of-Vocabulary Generalization
This method is easily generalized to Zero-Shot Out Of Vocabu-
lary keywords. This is possible because we operate at the em-
bedding space directly. We obtain the acoustic word embedding
for any audio segment from our model as shown in Figure 1.
The audio sample can be from keywords the model has or has
not seen. During prediction, we convert all the sample audio
keyword files into this embeddings space. Then, for every test
audio sample, we first obtain the word embedding by passing
it through the model. Then we compare the test audio embed-
ding with all the keyword embeddings using cosine similarity.
When the similarity is above a certain fixed threshold, we say
the keyword and the test audio is a match.

While the cosine similarity comparison method has been
the key, the other generalization methods use a modified ver-
sion with one or few train samples for the keywords. In the
work [27], the model requires configuration with a sample
keyword audio and respective threshold values for prediction.
While our method does not require configuration for each key-
word and the threshold is constant. In the work [3], a keyword-
specific classification layer is trained with five training samples
and uses this classifier for predicting those words. In contrast,

our method does not require any sample for out of vocabulary
zero-shot prediction. Other works have focused on fixed vo-
cabulary keyword spotting and require retraining to add new
classes.

4. Experiments
4.1. Datasets
TIMIT Dataset: We use TIMIT [5] dataset for training and
testing our architecture and the baseline. TIMIT dataset con-
tains approximately five hours of speech. We segment words
based on word boundaries instead of voice activity detection
in this work. After that, the speech segments are grouped into
separate words, and functional words like articles and conjunc-
tions are removed. Finally, words with more than four letters
are chosen. The TIMIT dataset has its default train and test
split. The train and test splits contain 12261 and 3988 audio
segments, consisting of 1645 and 571 unique words. Out of
the 571 unique words, 227 words are in vocabulary, and the
remaining 344 words are zero-shot out of vocabulary. All the
audio files are segmented such that the length of the audio is 1
second.
Google speech command dataset: The data used in this ex-
periment were drawn from the Speech Commands dataset [7].
The dataset consists of 105,829 audio recordings of 35 different
English words spoken by 2618 English speakers, representing
a general sample of speakers with different accents and speak-
ing styles. Non-keyword or silent samples were not included in
the selected data. The training, validation, and test set contains
84843, 9981, and 11005 samples.
Multilingual Spoken Words Corpus (Tamil Split): The
MSWC corpus [6] has spoken word segments for keywords in
many languages. We selected the Tamil language to understand
how the method generalizes to low resource languages as it had
very low audio samples for training. The split had a total of 190
keywords and has a total of 1884 audio samples. We split the
dataset into 150 keywords for in-vocabulary training and the re-
maining keywords for zero-shot out-of-vocabulary testing. We
chose 177 samples from 28 in-vocabulary words and all the 294
samples from out-of-vocabulary words for testing. All Tamil
language keyword scripts are transliterated to English such that
keywords sound as similar as possible to ASR’s English char-
acter vocabulary. Though few phonemes in the Tamil language
don’t exist in English and several Tamil phonemes sound dif-
ferently, these characters are converted to the closest sounding
English characters. We also share our transliteration of Tamil
keywords here1

4.2. Training
HyperParameters for TIMIT training: We used the
OpenSeq2Seq [25] DeepSpeech2 pretrained model for our pro-
posed KWS model. The raw signal is applied with data augmen-
tation operations such as adding noise and speed perturbation.
The model is trained with a polynomial decay learning rate with
power 0.5 and uses an initial learning rate of 1 × e−3. In ad-
dition, an L2 penalty of 1 × e−5 is used. We use a batch size
of 32 and the Adam optimizer [28]. We train the model up to
500 epochs and select the last model to report the accuracy on
the test set. The value of λ1 is 1 and λ2 is 20. We keep the
hyperparameters constant for all the experiments in this work.
We also train a few other models: with CTC loss and triplet
loss separately after loading the pretrained weights, with CTC
and triplet loss together without loading pretrained weights. We

1https://github.com/Kirandevraj/GeneralizedKWS

also measure the performance of the pretrained model without
any training.

Triplet Mining: The triplets for the triplet loss are mined
online for each batch rather than mining it beforehand. A batch
hard strategy is used where the distance between all the pairs
in a batch is calculated, and then for each reference sample,
the positive sample which lies farthest, and the negative sam-
ple which lies closest, are considered for calculating the triplet
loss. Each batch has more than one sample for each keyword
to help learn the similarity between the positive pairs, and each
batch has more than one keyword, with each keyword on default
having an equal number of samples.

Baseline Training: We compare our work to an Acoustic
Word Embeddings system implemented by [11]. In their work,
they train two LSTM networks; one receives an audio signal,
and the other receives a sequence of letters corresponding to a
term that has or has not been uttered within the audio signal.
Their goal is to bring the LSTM outputs to produce embedding
vectors. They use a contrastive loss function. The distance be-
tween the LSTMs’ outputs should be smaller if the input term
has been uttered in the audio signal than if the term has not been
uttered in the audio signal. We train their Multi-View code for
1000 epochs with their best performing objective for baseline
comparison.

Low resource Language Training: The model is trained
on MSWC Tamil split for 1000 epochs on the training set. We
train three models: with only triplet loss, triplet and CTC loss
with pretrained weights, and without pretrained weights. The
performance is measured on in-vocabulary and zero-shot out-
of-vocabulary words from the test split from the same dataset.
The CTC loss is applied to the transliterated text during training.

Fixed Vocabulary Training: We compare our model’s
performance for classification tasks on the Speech Commands
dataset using kNN. We train our architecture with this dataset
and obtain the embeddings for the test set that are later classified
using the kNN algorithm. We train our model for 300 epochs
for this task. We use [19] to compare the results. They have
used a triplet loss based embedding trained on same dataset and
used a variant of kNN to show accuracy performance.

We perform additional end-to-end training with the speech
commands dataset. We add additional training layers to do end-
to-end training. We attach a fully connected layer to the Deep-
Speech2 backbone to reduce the model dimension from 1600
to 35 classes. We then add a softmax layer to the fully con-
nected layer to produce probabilities for each class. The model
is trained with a cross-entropy loss function for 300 epochs.
We observe the top-1 accuracy results from softmax probability
outputs for this experiment. We perform the fixed vocabulary
training to compare our method’s performance against the fixed
vocabulary keyword classification task.

4.3. Results
TIMIT evaluation: For each pair of words from the test data
set, the word discrimination system decides whether the pair
contains the same or different words. The system response la-
bels and actual ground truth labels were used to estimate the av-
erage precision (AP) as an overall system performance measure.
To determine the AP value, for each pair of words from the test
set, the distance between acoustic embeddings of both words
was calculated, and a threshold was applied to determine if the
pair represents the same or different words. The total number of
pairs in the test set was 7.9 million for the TIMIT dataset. This
includes both in-vocabulary and out-of-vocabulary words. By
sweeping the threshold value, a precision-recall curve was ob-

Table 1: Average Precision evaluation for Generalized Keyword
Spotting model and Multi-View model on TIMIT dataset for
ALL(both IV and OOV), in-vocabulary(IV) and zero-shot out-
of-vocabulary(OOV) test keywords samples.

Model ALL IV OOV

Multi-View [11] 0.328 0.528 0.218
Pretrained ASR 0.848 0.911 0.803
Pretrained + CTC 0.903 0.954 0.750
Pretrained + Triplet 0.936 0.975 0.700
CTC + Triplet 0.965 0.990 0.800
Pretrained + CTC + Triplet 0.971 0.991 0.843

Table 2: Average Precision evaluation for Generalized Keyword
Spotting Model for Low Resource Language trained on Tamil
split of MSWC dataset. The columns indicate ALL(both IV and
OOV), in-vocabulary(IV) and out-of-vocabulary(OOV) test key-
words samples.

Model ALL IV OOV

Pretrained + Triplet 0.030 0.061 0.057
CTC + Triplet 0.161 0.300 0.253
Pretrained + CTC + Triplet 0.295 0.587 0.321

tained from which the AP was estimated. We calculate the AP
value for all the trained models on the TIMIT dataset and report
the results in Table 1. It can be observed that the performance of
the model that was trained with loading pretrained weights and
CTC and triplet loss has significant performance improvement
over Multi-View and other models. We also observed that the
model with Triplet + CTC loss was able to converge relatively
faster than the model with only triplet loss.

The performance of in-vocabulary and out-of-vocabulary
words is calculated separately for both Multi-View and our
model and is reported in Table1. The total number of pairs
used to calculate AP in in-vocabulary is 1.7 million, and out-
of-vocabulary is 2.2 million.

Low Resource Language Evaluation: We calculate the
AP value for the generalized keyword spotting models for low
resource language on the Tamil MSWC test dataset, and the re-
sults are reported in Table 2. It can be observed that pretraining
and fine-tuning with CTC and triplet loss has helped the model
in achieving better performance in the Tamil language. Al-
though pretraining and fine-tuning with only triplet loss has not
helped in generalization. The total number of pairs in the test
set was 110K. The total number of pairs used to calculate AP
in in-vocabulary is 15K, and out-of-vocab is 43K. We hereby
share this as the initial benchmark for low-resource zero-shot
out of vocabulary keyword spotting.

Speech Commands Evaluation: We obtain all the embed-
dings for the train and test set from our model trained on Google
Speech Commands dataset V2 (35 classes) with triplet and CTC
loss. We then apply kNN to classify the test set to calculate ac-
curacy. We compare our results with [19, 20, 29]. We achieve
a classification accuracy of 96.2%. We have tested kNN for
several values of k and have found that for the speech com-
mands dataset, the best performing value for k is 7. For the
KWS application, larger datasets occupy a lot of memory for
the kNN part of the model. Our approach has the potential
to achieve competitive results on classification tasks through
kNN for small keyword sets. The end-to-end training on the
same DeepSpeech2 backbone with Fully Connected and Soft-
max layer achieves 94.4%. Our method performs slightly bet-

Table 3: Accuracy evaluation of our model on classification task
trained on Google Speech Commands dataset V2. The number
of target classes is 35. We use our Pretrained+CTC+Triplet
embeddings with kNN for accuracy comparison. We addition-
ally show the performance of end-to-end training on our Deep-
Speech2 method.

Model Accuracy

Pretrained ASR 85.7
Attention RNN [20] 93.9
AST [29] 98.1
Res15 [19] 97.0
Pretrained + FC-Softmax 94.4
Pretrained + CTC + Triplet 96.2

Table 4: Keywords retrieved by the Pretrined ASR vs Pretrained
+ triplet vs Our Pretrained + CTC + Triplet model on OOV
and IV keywords. Bold represents query and the closest sample
belonging to the same keyword.

Model Query: Top 3 unique nearest neighbours

Pretrained magnetic: economic, barometric, diagram
Pre + triplet magnetic(oov): magnetic, money, nobody
Ours magnetic(oov): magnetic, money, barometric
Pretrained livestock: livestock, stopwatch, stockings
Pre + triplet livestock(oov): muscular, catastrophic, extra
Ours livestock(oov): livestock, extra, electron
Pretrained getting: looking, would, meeting
Pre + triplet getting(iv): began, getting, bedroom
Ours getting(iv): getting, heating, eating
Pretrained program: program, arriving, problem
Pre + triplet program(iv): causeway, cranberry, corduroy
Ours program(iv): program, problem, popular

ter than end-to-end training on the same backbone showing the
method is able to generalize to strong cross-entropy loss-based
methods. The results are shown in Table 3.

4.4. Analysis

We show the nearest neighbors for four sample queries in the
test set in Table 4. Our model performs better than the pre-
trained model for the keyword magnetic and the keyword live-
stock even though it is unseen during training even while the
triplet model has missed livestock. The model improves the
representation for keyword getting from the pretrained model
after seeing it. The model preserves the representation for the
keyword program while the triplet model fails to retrieve it. It
can be observed that the keywords that lie closer have similar
phonemes for our model in all the cases in Table 4.

5. Conclusion
A novel method of learning acoustic word embeddings by trans-
ferring pretrained ASR architecture for KWS with triplet net-
work and CTC is proposed and experimented. We show this
method generalizes to zero-shot out of vocabulary keywords.
It is demonstrated that the proposed model is competitive with
recent deep learning benchmarks for word discrimination and
classification tasks. We show initial zero-shot generalization
results for low-resource languages and share the text transliter-
ation for these keywords. It is also observed that pretraining in
one language helps in KWS on a different low-resource target
language.

6. References
[1] D. Amodei, S. Ananthanarayanan, R. Anubhai, J. Bai, E. Bat-

tenberg, C. Case, J. Casper, B. Catanzaro, Q. Cheng, G. Chen
et al., “Deep speech 2: End-to-end speech recognition in english
and mandarin,” in International conference on machine learning.
PMLR, 2016, pp. 173–182.

[2] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Lib-
rispeech: an asr corpus based on public domain audio books,”
in 2015 IEEE ICASSP. IEEE, 2015, pp. 5206–5210.

[3] M. Mazumder, C. R. Banbury, J. Meyer, P. Warden, and V. J.
Reddi, “Few-shot keyword spotting in any language,” in Inter-
speech, 2021.

[4] T. S. Fuchs, Y. Segal, and J. Keshet, “Cnn-based spoken term de-
tection and localization without dynamic programming,” ICASSP
2021 - 2021 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 6853–6857, 2021.

[5] J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus, and D. S.
Pallett, “Darpa timit acoustic-phonetic continous speech corpus
cd-rom. nist speech disc 1-1.1,” NASA STI/Recon technical report
n, vol. 93, p. 27403, 1993.

[6] M. Mazumder, S. Chitlangia, C. Banbury, Y. Kang, J. M. Ciro,
K. Achorn, D. Galvez, M. Sabini, P. Mattson, D. Kanter et al.,
“Multilingual spoken words corpus,” in Thirty-fifth Conference
on Neural Information Processing Systems Datasets and Bench-
marks Track (Round 2), 2021.

[7] P. Warden, “Speech commands: A dataset for limited-vocabulary
speech recognition,” arXiv preprint arXiv:1804.03209, 2018.

[8] T. Fuchs and J. Keshet, “Spoken term detection automatically ad-
justed for a given threshold,” IEEE Journal of Selected Topics in
Signal Processing, vol. 11, no. 8, pp. 1310–1317, 2017.

[9] B. Yusuf and M. Saraclar, “An empirical evaluation of dtw sub-
sampling methods for keyword search.” in INTERSPEECH, 2019.

[10] D. Ram, L. Miculicich, and H. Bourlard, “Multilingual bottleneck
features for query by example spoken term detection,” in 2019
IEEE ASRU, 2019, pp. 621–628.

[11] W. He, W. Wang, and K. Livescu, “Multi-view recurrent neural
acoustic word embeddings,” in Proc. ICLR, 2017.

[12] D. Ram, L. M. Werlen, and H. Bourlard, “Cnn based query by
example spoken term detection.” in Interspeech, 2018, pp. 92–96.

[13] H. Kamper, W. Wang, and K. Livescu, “Deep convolutional
acoustic word embeddings using word-pair side information,” in
2016 IEEE ICASSP. IEEE, 2016, pp. 4950–4954.

[14] D. Shitov, E. Pirogova, T. A. Wysocki, and M. Lech, “Learning
acoustic word embeddings with dynamic time warping triplet net-
works,” IEEE Access, vol. 8, pp. 103 327–103 338, 2020.

[15] K. Audhkhasi, A. Rosenberg, A. Sethy, B. Ramabhadran, and
B. Kingsbury, “End-to-end asr-free keyword search from speech,”
IEEE Journal of Selected Topics in Signal Processing, vol. 11,
no. 8, pp. 1351–1359, 2017.

[16] A. Rosenberg, K. Audhkhasi, A. Sethy, B. Ramabhadran, and
M. Picheny, “End-to-end speech recognition and keyword search
on low-resource languages,” in 2017 ICASSP. IEEE, 2017, pp.
5280–5284.

[17] H. Zhang, J. Zhang, and Y. Wang, “Sequence-to-sequence
models for small-footprint keyword spotting,” arXiv preprint
arXiv:1811.00348, 2018.

[18] Y. Zhuang, X. Chang, Y. Qian, and K. Yu, “Unrestricted vocab-
ulary keyword spotting using lstm-ctc.” in Interspeech, 2016, pp.
938–942.

[19] R. Vygon and N. Mikhaylovskiy, “Learning efficient representa-
tions for keyword spotting with triplet loss,” in SPECOM, 2021.

[20] D. C. de Andrade, S. Leo, M. Viana, and C. Bernkopf, “A neu-
ral attention model for speech command recognition,” ArXiv, vol.
abs/1808.08929, 2018.

[21] T. Kim and J. Nam, “Temporal feedback convolutional re-
current neural networks for keyword spotting,” ArXiv, vol.
abs/1911.01803, 2019.

[22] C. T. Lengerich and A. Y. Hannun, “An end-to-end architecture
for keyword spotting and voice activity detection,” ArXiv, vol.
abs/1611.09405, 2016.

[23] Z. Zhu, Z. Wu, R. Li, H. M. Meng, and L. Cai, “Siamese re-
current auto-encoder representation for query-by-example spoken
term detection,” in INTERSPEECH, 2018.

[24] W. He, W. Wang, and K. Livescu, “Multi-view recurrent neu-
ral acoustic word embeddings,” arXiv preprint arXiv:1611.04496,
2016.

[25] O. Kuchaiev, B. Ginsburg, I. Gitman, V. Lavrukhin, J. Li,
H. Nguyen, C. Case, and P. Micikevicius, “Mixed-precision train-
ing for nlp and speech recognition with openseq2seq,” arXiv
preprint arXiv:1805.10387, 2018.

[26] E. Hoffer and N. Ailon, “Deep metric learning using triplet net-
work,” in International workshop on similarity-based pattern
recognition. Springer, 2015, pp. 84–92.

[27] B. Kim, M. Lee, J. Lee, Y. Kim, and K. Hwang, “Query-
by-example on-device keyword spotting,” 2019 IEEE Automatic
Speech Recognition and Understanding Workshop (ASRU), pp.
532–538, 2019.

[28] D. P. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” arXiv preprint arXiv:1412.6980, 2014.

[29] Y. Gong, Y.-A. Chung, and J. R. Glass, “Ast: Audio spectrogram
transformer,” ArXiv, vol. abs/2104.01778, 2021.

	 Introduction
	 Related Work
	 PROPOSED KWS MODEL
	 Pretrained ASR with CTC loss
	 Adding Triplet loss with CTC loss
	 Zero Shot Out-Of-Vocabulary Generalization

	 Experiments
	 Datasets
	 Training
	 Results
	 Analysis

	 Conclusion
	 References

