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Figure 1: We solve the problem of upsampling extremely low-resolution (LR) talking-face videos to generate high-resolution
(HR) outputs. Our approach exploits LR frames (8 × 8 pixels), corresponding audio signal and a single HR target identity image
to synthesize realistic, high-quality talking-face videos (256 × 256 pixels). Please check our project page for video results.

ABSTRACT
In this paper, we explore an interesting question of what can be
obtained from an 8 × 8 pixel video sequence. Surprisingly, it turns
out to be quite a lot. We show that when we process this 8 × 8
video with the right set of audio and image priors, we can obtain
a full-length, 256 × 256 video. We achieve this 32× scaling of an
extremely low-resolution input using our novel audio-visual up-
sampling network. The audio prior helps to recover the elemental
facial details and precise lip shapes and a single high-resolution
target identity image prior provides us with rich appearance de-
tails. Our approach is an end-to-end multi-stage framework. The
first stage produces a coarse intermediate output video that can
be then used to animate single target identity image and generate
realistic, accurate and high-quality outputs. Our approach is simple
and performs exceedingly well (an 8× improvement in FID score)
compared to previous super-resolution methods. We also extend
our model to talking-face video compression, and show that we
obtain a 3.5× improvement in terms of bits/pixel over the previous
state-of-the-art. The results from our network are thoroughly an-
alyzed through extensive ablation experiments (in the paper and
supplementary material). We also provide the demo video along
with code and models on our website1.
∗Both authors contributed equally to this research.
1http://cvit.iiit.ac.in/research/projects/cvit-projects/talking-face-video-upsampling
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1 INTRODUCTION
Over the years, we have always been fascinated with questions
that can push the limits of computer vision. For instance, can we
recognize actions [15] or objects [48] in videos/images of about
30 × 30 pixels? Or how small a face can we detect in an image? It
turns out, the face can be as tiny as 3 pixels tall [25]! Recovering
extremely feeble signals has also led to remarkable achievements,
such as the imaging of the black hole. In this vein, we explore
whether we can upsample talking-face videos with resolutions as
low as 8× 8 pixels. Clearly, this is an exceptionally challenging task.
Surprisingly, we reveal that one can obtain realistic high-resolution
(HR) talking-faces (256 × 256 pixels) when provided with the right
set of additional information. We utilize a single target identity
image and the accompanying audio to upsample 8×8 video to a full
256 × 256 dimensional video (a fascinating 32× scale-factor) that
far exceeds previous methods. In today’s digitally connected world,
where talking-face videos are among the most common forms of
video content, ourmulti-modal system can have numerous potential

http://cvit.iiit.ac.in/research/projects/cvit-projects/talking-face-video-upsampling
https://doi.org/10.1145/3503161.3548080
https://doi.org/10.1145/3503161.3548080
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applications. Some of them include: (i) video conferencing in low-
bandwidth situations, (ii) recovering low-quality archival footage
of public talks and speeches and (iii) enhancing videos captured
from a distance with a high camera zoom.

Challenges: Although our task has promising applications, synthe-
sizing HR videos from extremely low-resolution (LR) inputs (e.g.,
8×8 pixels) is a very challenging task. Essential face attributes such
as identity, age and gender are almost entirely lost at such low reso-
lutions and cannot be directly recovered (see LR video in Figure 1).
Apart from reconstructing these elementary identity details, the
network must also learn to predict the original head poses and ac-
curate lip shapes. Given the arduous nature of the task, it is evident
that the model will struggle to achieve the desired quality if it relies
solely on the LR input. Thus, in our work, we argue that considering
appropriate priors is quintessential to obtain high-quality results.
Specifically, we assess the importance of two kinds of priors: (i)
audio signal, which can help to recover elemental facial attributes
and can significantly improve lip shape generation; (ii) a single HR
target identity image which can aid in restoring fine-grained details
such as skin texture, color, hair, teeth and surrounding background.
The target identity image can be any sample frame, either from the
same video or any other image with similar characteristics in terms
of the face identity, pose, clothing and background. To understand
our task better, we will now explore how our work is connected to
some of the existing problems in literature.

Super-Resolution (SR) Perspective: The SR literature till date
has focused on super-resolving inputs (either faces, generic images
or videos) [7, 18, 19, 31] where sufficient information is already
available (e.g., 256 × 256 pixels input). None of these methods can
handle extreme scale-factors like 32×. When the input resolution is
very low (like 8×8), we observe that most of the current SRworks [6,
7, 18, 19, 31, 36, 43] generate sub-optimal results. The essential
visual attributes such as the identity, face texture and lip shape do
not accurately match the original face. This is natural because the
network is forced to speculate these details without adequate priors.
Thus, the existing methods: (i) do not aim to preserve the specific
identity details and (ii) do not explicitly deal with talking-face videos
where specialized temporal information like lip synchronisation
must be maintained throughout the video.

In our work, we propose to address these limitations by gener-
ating high-quality talking-face videos with accurate lip-sync. It is
important to note that although we aim to generate HR talking-
faces from LR inputs, the task we are attempting is very different
compared to the typical SR problem. The use of a single HD target
identity image and synthesizing from extremely LR talking-faces
(8 × 8 pixels) sets us considerably apart from the traditional SR.

Compression Perspective: Our task enables applications such
as low-bandwidth video calling; thus making it closely related to
the task of talking-face video compression. However, unlike the
existing works like “os-synth” [50] where 3D face keypoints are
transmitted, we take a unique path in our work. We propose to
transmit the LR frames to extract the face structure, motion and
pose information. Transmitting keypoints have several limitations:
(i) Keypoints can only be extracted if we have the HR video before-
hand. While the availability of actual video might be a possibility in

video conferencing, this poses severe constraints in various other
applications where the actual HD video is not present; (ii) Keypoints
do not encode adequate head pose information, thus requiring ad-
ditional specialized head pose estimation models; (iii) Keypoints do
not cover other information like background, lighting, accessories
like glasses and beards that could be present in talking-faces. Thus,
in our work, we demonstrate the advantages of using LR frames
and achieve better compression ratio compared to the standard
codecs, while also not compromising on the desired quality.

Talking-Face Animation Perspective: Our task also shares simi-
larities with audio-driven talking-face generation (A2TF) [26, 28, 42,
51, 58] and face re-enactment (FR) [44, 57] tasks. A2TF works aim to
generate videos of a target identity conditioned on the audio signal
(input: single target identity image + audio). FR methods ingest a
single target identity image and an HD video of a different identity
with an aim to animate the target image according to the motion of
the driving video (input: single target identity image + HD video as
pose prior). Although we agree that in terms of the problem space,
our work resembles A2TF/FR, we want to point out that our focus is
very different - upsampling extremely low-resolution videos. There
are key differences as noted in Table 1. We leverage positive aspects
from these dimensions to solve an entirely new task - generating
HD videos from extremely LR inputs while preserving the exact
same facial features, e.g., pose and identity. Nevertheless, we also
include a comparison with A2TF and FR works in Section 4.3.

Table 1: Key differences between audio-driven talking-face
generation (A2TF), face re-enactment (FR) and proposed task.

Pose prior Lips are in-sync Matches GT Can be used
used with audio? frames? for SR?

A2TF None ✓ × (changes pose) ×
FR HD video ✓ ✓ (same id-recons.) ×
Ours LR frames ✓ ✓ ✓

Overview of this Work: In this work, we propose a talking-face
video upsampling framework, where the core idea is to utilize
adequate priors to generate high-quality (256 × 256) videos from
extremely low-resolution inputs. A gallery showing our synthesized
frames is displayed in Figure 2. We conduct extensive experiments
and comparisons with state-of-the-art methods for the tasks of
super-resolution and compression. To the best of our knowledge,
we are the first to synthesize high-quality talking-faces at scale-
factors of 32× from an input as small as 8 × 8 pixels. We also
show how our network can be utilized for low-bandwidth video
conferencing, along with a demo video on our project page.

To summarize, the major contributions of our work are:
• We present a novel audio-visual network that can upsample very
low-resolution talking-face videos at scale-factors previously
unseen in video SR literature (32×).

• Our approach to make use of adequate priors: (i) audio signal and
(ii) a single target identity, achieves significant improvements
over the existing works for SR and compression tasks.

• Our system has strong real-world use-cases, owing to its ability
to preserve true identity information. We specifically demon-
strate the superior quality of our results for low-bandwidth video
conferencing and achieve a significant reduction in bandwidth
compared to H.264 standard.
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Figure 2: Input: LR frames (top); Output: HR frames (bottom).
Our approach effectively synthesizes a diverse set of HR
talking-faces, handling different poses, gender, age and race.
Our method also works for “human-like” synthetic faces
even though it was trained only on real faces.

2 RELATEDWORK
Image & Video Super-Resolution: Single image super-resolution
(SISR) has progressed tremendously with the advent of deep learn-
ing and CNNs [13]. A flurry of works [18, 33, 35, 45, 47, 51, 53] have
followed this initial method, thereby improving the performance
by many folds. To account for specialized facial attributes which
are not present in generic images, face super-resolution (FSR) meth-
ods [5, 6, 34] with specific loss functions like facial landmarks [36]
and facial heatmaps [31] were proposed. However, these FSR ap-
proaches focus on scale-factors up to 8×, which is in stark contrast
to our attempt of 32× SR.

Recently, PULSE [37] proposed a StyleGAN-based approach to
super-resolve static faces at high scale-factors of 64×. However, the
model generates imaginary faces of people who do not exist, posing
severe constraints on applications where the person’s identity needs
to be matched/recovered correctly. Conversely, in our work, we
aim to generate HR faces of the specific (real) identity.

To capture the temporal aspect which is not present in the static
faces, video SR approaches came into picture. From early recurrent
architectures [20] to more recent advancements [7, 19, 43], impres-
sive results have been achieved for scale-factors up to 4×. However,
these generic video SR methods produce blurred results with many
artifacts when the input resolution is very low (8× 8) and the scale-
factors are very high (> 8×). Moreover, “talking-face videos” have
their own set of additional challenges, which are neither tackled in
video SR nor in static FSR works. Thus, in our work, we overcome
these limitations and design a novel network that specifically deals
with talking-face videos.

Talking-Face Video Generation: Audio-driven talking-face gen-
eration (A2TF) is an active research area. Various methods have
been proposed [11, 17, 42, 54, 58] to accurately morph the lip move-
ments of input target identity to be in-sync with the corresponding
speech. Face re-enactment (FR) works [32, 44, 46] have also shown
impressive performance in transferring head motions and expres-
sions based on guiding videos. While our task shares some similari-
ties with A2TF/FR works, we differ in the fact that we are given very
sparse information in the form of very low-resolution input. This
is not the case in talking-face generation models where HR frames
(or extracted landmarks) are used for conditional generation.

Few works [32, 55] use a 3D model as an intermediate step to
recover high-quality videos. The major benefit of adapting a 3D
model is the superior quality of the output generations. But, it
comes with an additional overhead - the computational complexity,
making such heavy models very impractical for mobile hardware
deployments. In contrast, our method is (i) simple, (ii) generalised,
since it can be applied for any in-the-wild identity (unlike some of
the 3D models that require speaker-specific training) and (iii) does
not require specialized large-scale 3D datasets to train the models.

Data Compression using Deep Learning: Deep learning has
lead to profound improvements in image and video compression
techniques. Starting from initial auto-encoder based methods [14,
52] to flow-based approaches [3, 24], there have been multiple
efforts to obtain a compact image/video representation. To enable
video calls at a reduced bandwidth, specific methods like [39, 41]
have been designed. In “SRVC” [29] authors used video SR as a
tool for compression, but at a scale-factor of merely 2×. Recently,
“os-synth” [50] demonstrated impressive results by transmitting
a sequence of learned 3D facial keypoints. However, as discussed
previously, transmitting keypoints has its own set of limitations.
Thus, unlike the existing compression methods, we take a path of
extreme-scale (32×) SR for the first time and transmit very low-
resolution (8 × 8) videos. We show that our proposed approach
of utilizing the audio and the visual modalities can enable video-
conferencing in bandwidth-limited regions, while also achieving a
better compression ratio over the existing works.

3 LEARNING TO UPSAMPLE LR VIDEOS
We start the discussion by highlighting the critical elements of
our approach. We then present our framework with a detailed
description of the modules involved.

3.1 Critical Elements of our Approach
Audio Prior: As discussed previously, when the input resolution is
a meager 8×8 pixel video, the ambiguity and the loss of information
is so paramount that the person’s original identity characteristics
are barely discernible. In such situations, we show that audio can
aid in the recovery of dominant facial traits of the person because
the audio and the face share multiple common features [30, 38, 40]
like gender, age and ethnicity. We exploit the audio signal not only
to disambiguate the LR input, but also to greatly improve the lip
shape generation. Although precise lip shape is not a crucial ne-
cessity for static face SR, it is a very important aspect of video SR
where the generated lip movements should sync with the given
speech. In our work, we explore the natural correlation between
speech and lips [1, 10, 21, 42] to generate accurate lip movements.

Visual Prior: To be able to generate faces that replicate the actual
identity, it is important to preserve sharp details like face texture,
lip colour, hair, teeth and skin tone. Most of the current works
hallucinate these details, leading to significant variations in fine-
grained information. Such models are thus unusable for real-world
use-cases, where videos of a specific identity needs to be generated.
We argue that considering the adequate prior information is of
utmost importance to: (i) generate a video of a specific identity and
(ii) reconstruct the high-quality facial details. To achieve this, we
provide our network with a single HR image of the target identity,
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which helps to transfer the identity-specific sharp details to the
synthesized video. In most applications, a single HR identity image
is easily accessible. For example, during video conferencing, the
first frame can be transmitted in the original resolution.

3.2 Our Approach
An overview of our proposed framework is depicted in Figure 3.
The goal of our work is to generate a sequence of HR frames, 𝐹ℎ𝑟 =

(ℎ𝑟1, ℎ𝑟2, ..., ℎ𝑟𝑛) from the LR input, 𝐹𝑙𝑟 = (𝑙𝑟1, 𝑙𝑟2, ..., 𝑙𝑟𝑛) that ac-
curately match the ground-truth frames 𝐹𝑔𝑡 = (𝑔𝑡1, 𝑔𝑡2, ..., 𝑔𝑡𝑛). We
consider the corresponding audio signal, 𝐴 and a single HR target
identity, 𝐹𝑖𝑑 as prior information. We detail the different compo-
nents of our model and the network architecture below.
Backbone Network:We pre-train a backbone network to gener-
ate a “driving video” for our face animation network. It extracts
the relevant features of the identity, face structure, pose and mo-
tion information. We observe that pre-training the network before
training the face animation network helps to improve the model’s
performance because the basic face details and motion information
captured is essential to animate the HR face (details about the ani-
mation network is explained below). We empirically demonstrate
the importance of this in the ablation study (in supplementary).
Visual Encoder: We extract the visual features from the LR frames
𝐹𝑙𝑟 using a visual encoder, which comprises a series of 3D convolu-
tion layers with residual connections. Our visual encoder resembles
multiple previous models [2, 10, 21] designed specifically for pro-
cessing talking-face videos. The input to the visual encoder is a
contiguous window of𝑇 LR frames 𝑙 : (𝑁,𝑇 , 3, 8, 8) where 𝑁 refers
to the batch size and 𝑇 refers to the window frames (here 𝑇=5).
The encoder processes these input frames and generates the visual
embeddings, 𝑓𝑣 : (𝑁,𝑇 , 512, 8, 8).
Audio Encoder: We consider the corresponding audio segment 𝐴
and extract the melspectrogram representation using a window
length of 25ms with a hop length of 10ms sampled at 16kHz. The
melspectrograms (𝑇 ′, 80) are given to the audio encoder, which is a
stack of residual 1D convolutions with appropriate strides to match
the visual time-steps 𝑇 . The generated features (𝑁,𝑇 , 512) are then
upsampled using transpose convolution layers to obtain the audio
embeddings, 𝑓𝑎 : (𝑁,𝑇 , 512, 8, 8).
Identity Structure & Motion Predictor: We concatenate the learned
visual and audio embeddings in the latent space (along the channel
dimension) to obtain 𝑓𝑐𝑎𝑡 = (𝑁,𝑇 , 1024, 8, 8). Inspired from Deep
Back-Projection Network (DBPN) [18], we use iterative upsampling
and downsampling layers in our module, where the primary idea
is to effectively capture the mutual relationship between the LR
and HR frames. We consider the fused representation 𝑓𝑐𝑎𝑡 and
stack the time steps along the batch dimension to obtain 𝑓𝑐𝑎𝑡 :
(𝑁 ∗𝑇, 1024, 8, 8). As the visual and the audio encoders have already
captured the temporal information, the stacking strategy improves
the convergence speed and also gives us the desired performance.
The output of this block is a sequence of frames (𝐹𝑖𝑛𝑡 ) of resolution
256 × 256 pixels, which encapsulates the elemental facial details,
face structure, pose and motion information. The network is trained
to minimize the 𝐿1 reconstruction loss:

𝐿rec =
1
𝑁

𝑁∑︁
𝑖=1

| |𝐹𝑖𝑛𝑡 − 𝐹𝑔𝑡 | |1 (1)

Face Animation Network: To synthesize the HR videos of the
target identity by preserving all the details, we consider a single
HR image of the target identity as our input. This is in-line with the
audio-driven talking-face generation works [42, 44, 50, 57] where a
single target identity is considered to replicate the identity-specific
details. The target identity image helps to capture the fine-grained
features like face texture, skin tone, hair and lip color, which are
otherwise not recovered in the existing FSR works [6, 18, 36]. These
details are crucial, especially when our input is a mere 8 × 8 pixel
video and make our model applicable in cases where we must match
the actual identity to the maximum extent. We adopt one of the
popular methods, FOMM [44] to animate the target identity based
on the driving video obtained from our backbone network.
Overview of First-Order Motion Model (FOMM): FOMM ingests a tar-
get identity image (to extract the appearance) and a driving video
(to extract the pose and motion). The learned latent representation
of motion in the driving video is combined with the target identity
to synthesize the output video. During training, the model observes
the target-driving image pairs and predicts a dense motion field
which is later encoded using a keypoint detection network. The
target image is then rendered according to the learned trajectories
in the driving video. We refer the reader to [44] for more details
about FOMM. Note that FOMM is designed to work even when the
target image and the driving video are of different identities. How-
ever, this feature is not necessary in our work where the aim is to
preserve the target identity, so we make appropriate modifications,
as described below.
Adapting FOMM to our Task: For our task at hand, the goal is to
animate the HR target identity image 𝐹𝑖𝑑 in accordance with the
motion of the driving video 𝐹𝑖𝑛𝑡 . As described previously, our back-
bone network reconstructs the basic identity attributes like face
structure, age and gender. We thus generate a residual mask as
the output of the animation network and add the intermediate
outputs 𝐹𝑖𝑛𝑡 (see Figure 3) to obtain a realistic HR talking-face
video 𝐹ℎ𝑟 of the target identity as the final output. We fine-tune
the entire network (including the backbone network) end-to-end,
by optimizing the FOMM loss 𝐿𝑓 𝑜𝑚𝑚 and our task-specific losses,
𝐿𝑟𝑒𝑐 , 𝐿𝑟𝑒𝑔𝑖𝑜𝑛 and 𝐿𝑠𝑦𝑛𝑐 . The FOMM loss 𝐿𝑓 𝑜𝑚𝑚 consists of: (i) a
VGG-19 based perceptual loss at multiple resolutions and (ii) an
equivariance constraint to enforce the model to predict consistent
keypoints to known geometric transformations. We describe other
task-specific losses that we use in out network below.
Enforcing Local Correspondence: In our experiments, we observed
that the model at times generates frames where the facial regions
like eyes, eyebrows and lips are slightly off-position. This occurs
if the target identity ingested by our animation network is signifi-
cantly different from the driving video. Hence, to further improve
the generation quality, we add a face landmark-based region loss,
which penalizes the network for generating incorrect regions. We
compute the face landmarks [4] for both GT 𝐹𝑔𝑡 and generated
frames 𝐹ℎ𝑟 and extract the following 𝑅 face regions: lips, nose, eyes
and eyebrows. We then add a patch-based local loss by minimizing
the 𝐿2 distance for all these 𝑅 regions (here 𝑅=4) to ensure that the
predicted regions are as close as possible to the actual regions.

𝐿region =
1
𝑁

𝑁∑︁
𝑖=1

𝑅∑︁
𝑟=1

| |𝐹ℎ𝑟 − 𝐹𝑔𝑡 | |2 (2)
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Figure 3: We propose a novel audio-visual talking-face upsampling framework. Our approach recovers the basic facial attributes
like the identity structure, pose and motion using a backbone network. We then consider a single HR target identity image to
capture the fine-grained details. Our end-to-end trainable animation network ingests the intermediate outputs (from backbone
network) and the target identity and reconstructs realistic, high-quality videos that accurately match the actual identity.

Enforcing Accurate Lip-sync: Prior works [42] involving speech and
lip movements have shown that using a lip-sync discriminator can
greatly benefit in enforcing strong audio-visual correspondences.
This can also be observed in our task, as learning to synthesize
HR frames from very low-resolution input might lead to gener-
ating lips that are out-of-sync with the audio segment. Thus, we
pre-train a lip-sync discriminator, “SyncNet” adapted from [10],
trained to maximize the cosine similarity between the lip-speech
pair (𝐹𝑔𝑡 , 𝐴) when they are in-sync (and minimise the similarity
if they are out-of-sync). Once trained, we use this network as a
frozen discriminator to penalize the generated frames 𝐹ℎ𝑟 if they
do not match the corresponding audio segment. In our end-to-end
network, we minimize the sync loss:

𝐿sync = − 1
𝑁

𝑁∑︁
𝑖=1

log( 𝑓ℎ𝑟 · 𝑎
𝑚𝑎𝑥 (∥ 𝑓ℎ𝑟 ∥2 · ∥𝑎∥2, 𝜖)

) (3)

3.3 Training Settings and Datasets
The final loss function is the combination of the above losses:
𝐿HR = 𝜆𝑟𝑒𝑐𝐿rec + 𝐿𝑓 𝑜𝑚𝑚 + 𝜆𝑟𝑒𝑔𝑖𝑜𝑛𝐿region + 𝜆𝑠𝑦𝑛𝑐𝐿sync (4)

In our experiments, we set 𝜆𝑟𝑒𝑐 = 50, 𝜆𝑟𝑒𝑔𝑖𝑜𝑛 = 100 and 𝜆𝑠𝑦𝑛𝑐 =

0.05. We provide the details regarding pre-processing and training
settings in supplementary file on our project page.
Datasets:We train ourmodel usingAVSpeech [16] andVoxCeleb2 [8]
datasets; both containing talking-face videos spanning a wide va-
riety of identities, languages and poses. For AVSpeech data, we
extract the face tracks using an off-the-shelf face detector [56]. We
curate a set of 50 hours for training and ∼ 3 hours from the official
test split for testing and verified it for accurate lip-sync using Sync-
Net [9]. We also benchmark our model on VoxCeleb2 data which
comprises face tracks with a fair amount of background. Owing
to computational limitations, we randomly sample a subset of 100
hours for training and use the full official test split for testing. Note
that there are no overlaps between the identities used in training

and testing sets in both datasets. The code, models and file-lists are
released on our website for reproducibility and future research.

4 EXPERIMENTS
4.1 Extreme-scale Super-Resolution
Baselines: The state-of-the-art works in video SR literature super-
resolve up to a scale-factor of 4×. We thus re-train the existing
state-of-the-art video SR method, TecoGAN [7] at a scale-factor of
32× on the same training dataset as ours. We extend the existing
face SR approach, SPARNet [6] to work for video SR by appropri-
ately modifying the architecture (ingest a window of 5 frames) and
train using the same settings as mentioned above. These methods
originally do not consider a HR target identity as input; thus, it
would be unfair to compare them without the identity informa-
tion. Hence we provide a HR target identity image to these models
in a manner typically used in talking-face generation methods:
concatenating it channel-wise with the input.
Metrics: We evaluate our SR model on: (i) PSNR, (ii) SSIM, (iii)
Fréchet InceptionDistance (FID) [23], (iv) LandmarkDistance (LMD)
[4] and (v) Lip-Sync Error Distance (LSE-D) [42]. More details about
the metrics can be found in the supplementary file.
Results:We compare our results with existing SR approaches at
extreme scale-factor of 32× in Table 2. As we can see from the
table, our method outperforms the existing works by a significant
margin on both AVSpeech [16] and VoxCeleb2 [8] datasets. None of
the current techniques match the ground-truth identity (measured
using PSNR) and perceptual quality (measured using FID) of our
generations. The LSE-D metric indicates that our method achieves
accurate lip-synchronization with audio, thus validating our claim
that the audio signal enables us to generate far more accurate lip
shapes than the competing methods. Our method also surpasses
the existing approaches in preserving the overall face structure
(measured using SSIM and LMD).

Figures 4 and 5 show the qualitative comparisons. We can clearly
observe that our models generate results with far fewer artifacts
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Table 2: Quantitative comparison for 32× SR on AVSpeech [16] and VoxCeleb2 [8] datasets. Our method outperforms the
baselines by a significant margin across all metrics. Note that the baselines have also been trained with a single identity image.

Dataset AVSpeech [16] VoxCeleb2 [8]
Method PSNR↑ SSIM↑ FID↓ LMD↓ LSE-D↓ PSNR↑ SSIM↑ FID↓ LMD↓ LSE-D↓
Bicubic 22.33 0.60 102.41 0.246 14.18 22.16 0.60 105.14 0.255 17.83
SPARNet [6] 23.17 0.68 92.14 0.201 12.87 22.98 0.67 83.01 0.228 14.07
TecoGAN [7] 19.26 0.62 84.73 0.213 13.01 16.91 0.54 82.19 0.234 14.12
Ours 25.06 0.73 11.54 0.162 12.43 24.95 0.71 14.10 0.196 13.91

Figure 4: Qualitative comparisons on AVSpeech dataset [16]. Our method captures the rich identity-specific attributes like
eyeballs, hair strands, face texture and lip shape, far better compared to the existing approaches.

and captures rich, fine-grained details. Although all the comparison
methods consider the HR target identity as input, they do not match
the quality of our generations. This shows that our overall network
design is highly effective in making use of the available target
identity image. In the examples, we can also see the diverse range
of our models’ generative capabilities: eyeballs with precise eye
color (Fig. 4: row 1), microphone (Fig. 4: row 2), hair strands (Fig. 4:

row 2), lip shape (Fig. 4: rows 2,3 and Fig. 5: rows 1,2), face texture
such as wrinkles (Fig. 4: row 3), beard (Fig. 5: rows 1,2). More visual
examples can be found on our project page.
Ablation study: We validate the design choices of our network by
analyzing the importance of audio signal, landmark-based region
loss, the use of different target identity images and several other
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Figure 5: Qualitative comparisons on the models trained on VoxCeleb2 dataset [8]. Our method surpasses the existing baselines
in generating the outputs that accurately match the ground-truth identity.

Table 3: Quantitative comparison for talking-face video com-
pression on VoxCeleb2 dataset [8]. We achieve the best trade-
off in terms of quality versus compression ratio. Our method
achieves the lowest FID (indicates very high perceptual qual-
ity) and a very low/comparable BPP.
Method BPP↓ PSNR↑ SSIM↑ FID↓
H.264 (CRF=23) (min. compression) 0.109 32.96 0.79 9.75
H.264 (CRF=36) 0.027 19.24 0.67 30.12
H.266 0.0076 23.27 0.70 58.32
fs-vid2vid [49] n/a 20.36 0.71 85.76
os-synth [50] 0.016 24.37 0.80 69.13
Ours 0.023 24.95 0.71 14.10
Ours (Frame-Interpolation) 0.0046 23.72 0.68 14.51

additional experiments, along with human evaluations in our sup-
plementary. We also compare the performance of different models
at multiple scale-factors like 4×, 8×, 16× and 32× in supplementary.

4.2 Talking-Face Video Compression
One of the major applications of our system is in compressing
talking-face videos to reduce the bandwidth in video conferencing
applications. We can transmit the LR frames (8 × 8 pixels) along
with the audio signal on the sender’s side and the receiver can
reconstruct the high-quality video (256 × 256 pixels) using a single
HR target identity image. A sample video calling demo is illustrated
in Figure 6. We assume that a single target identity image can be
sent at the beginning (e.g., 1𝑠𝑡 frame) and hence does not consume
additional bandwidth. Note that this is very different from the
standard codecs, where full resolution I-frames are transmitted at
regular intervals. Also, since the audio signal is always accompanied
in a video call, we do not consider this as an extra overhead.
Baselines:We benchmark our model’s capability using the exist-
ing talking-face video compression methods: few-shot vid2vid (fs-
vid2vid) [49], one-shot free-view synthesis (os-synth) [50] and the
standard codecs: (i) H.264 (with CRF of 23 and 36) and (ii) H.266 (im-
plemented using vvenc: https://github.com/fraunhoferhhi/vvenc).

Figure 6: Illustration of low-bandwidth video calling en-
abled by our system. Note that HR frames shown at both the
sender’s end are taken from an actual video call recording
(credits: https://www.youtube.com/watch?v=lQJD8RAq3lY).

Since we train and evaluate on the same dataset (VoxCeleb2 [8]), we
directly take the scores reported in os-synth [50] for comparison.
Metrics:We compare the compression factor using the standard
bits-per-pixels (BPP) metric and measure the reconstruction quality
using PSNR, SSIM and FID metrics.
Results: Table 3 shows the comparison of our approach with the
competing methods. We calculate the average BPP across all test
videos for H.264 and H.266 codecs. The number of bits required by
the current state-of-the-art “os-synth” [50] to represent a 256 × 256
image is 1056 (20 keypoints: (20 × 6 + 12) × 8). Our approach
requires 1536 bits (8 × 8 × 3 × 8), with a BPP of 0.023. The BPP
obtained using our method beats H.264 and is comparable to os-
synth [50]. In terms of perceptual quality, we can observe that there
is a trade-off in compression factor v/s quality for H.264, (i) CRF of
23: Higher quality, with very less compression and (ii) CRF of 36:
Better compression, but poor reconstruction. While H.266 achieves
comparable PSNR and SSIM measures with a BPP of 0.0076, it still
lags behind perceptually as shown by the FID metric. In contrast,
our method is able to generate higher quality videos (remarkably
low FID), with a better/comparable compression factor.
Computation Comparison: Our network has ∼ 20% fewer pa-
rameters (143M) while being 2× faster (50FPS) than state-of-the-art

https://github.com/fraunhoferhhi/vvenc
https://www.youtube.com/watch?v=lQJD8RAq3lY
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Figure 7: Failure cases: (a) Drastic color changes, (b) Extreme variations of facial expressions and (c) Rapid head motions.

compression method (os-synth) on an NVIDIA 2080Ti GPU. Pre-
vious talking-face generation works focus on obtaining plausible
faces, whereas our aim is to develop the first architecture to recon-
struct the specific-identity by preserving most of the actual identity
details; future works can build upon this to achieve optimal de-
sign. Further, model optimization techniques can be applied to the
current design to make it suitable for mobile hardware deployment.
Frame-Interpolation Network: To further reduce the bandwidth
consumption, we develop a baseline frame-interpolation network
with an aim to upsample 5FPS videos to 25FPS. While such net-
works have been studied in literature [27], most of them restrict
the amount of upsampling, mainly due to the computational re-
sources involved in training the bulky networks (often consisting
of 3D CNNs). In contrast, we take the advantage of LR videos and
design a model to increase the temporal resolution of frames (5FPS
to 25FPS) for the first time. Our encoder-decoder based model pro-
cesses 5FPS LR frames (5, 3, 8, 8) and upsamples it 5× to generate
25FPS LR frames as output (25, 3, 8, 8). We refer the reader to our
supplementary for more details. The lower resolution of both the
input and output allows us to train a very light 3D CNNmodel with
only 0.2𝑀 parameters. This strategy effectively permits us to trans-
mit 5FPS LR videos. On receiving these frames, frame-interpolation
network initially upsamples them to 25FPS LR videos, which can
subsequently be ingested by our spatial talking-face video upsam-
pling network to render the final HR video. As shown in Table 3, our
frame-interpolation network achieves a further reduction in BPP,
since only 1 in 5 LR frames needs to be transferred. We thus obtain
∼ 6× and ∼ 25× reduction in bandwidth compared to os-synth [50]
and H.264 codec (with CRF 23) respectively, without a significant
compromise in the generated quality.

4.3 Audio-driven Talking-Face Generation
(A2TF) and Face Re-enactment (FR)

Baselines: For A2TF, we comparewithWav2Lip [42] andMakeItTalk
[58]. Talking-face videos are generated using the audio segment
and the first frame of the original HD video as inputs (same strat-
egy as our model). For FR, the original models take the actual HD
frames as the driving video input, however, we do not have access
to the actual HD video in our model. Thus, we upsample the LR
input using the existing video SR method, TecoGAN [7] (trained on
VoxCeleb2 dataset) and use it as our input driving video, along with
the first frame of the original HD video as target identity input.
Metrics: Along with the standard metrics, we specifically evaluate
the ability of models to match the original identity using head pose
estimationmetrics [12, 22].We convert the rotationmatrix2 to Euler
angles and report Mean Absolute Error (MAE) of these angles.

2https://learnopencv.com/head-pose-estimation-using-opencv-and-dlib/

Results: Table 4 shows the performance of different A2TF and FR
methods in comparison to our approach. A2TF models generate
accurate lip-sync (LSE-D), but they fail to match the pose of the
original identity (as noted by Yaw, Pitch, Roll and MAE metrics). FR
methods also face similar issues and do not match the identity, as
they do not have the actual HD video as driving frames. Our model
is clearly the most applicable for this task, is consistent across all
metrics and produces noticeably better results. Most importantly,
our model preserves the identity to the maximum extent.
Table 4: Quantitative comparison with A2TF [42, 58] and
FR [44, 57] methods on VoxCeleb2 test set.
Method PSNR↑ SSIM↑ FID↓ LMD↓ LSE-D↓ Yaw↓ Pitch↓ Roll↓ MAE↓
Wav2Lip [42] 14.18 0.32 8.15 4.320 9.19 24.68 38.31 28.94 30.64
MakeItTalk [58] 18.88 0.49 31.19 2.012 11.91 26.29 40.13 31.42 32.61
FOMM [44] 20.14 0.56 21.18 0.864 14.03 19.14 30.57 22.76 24.35
PC-AVS [57] 15.68 0.37 33.38 1.063 8.42 22.27 31.89 25.80 26.65
Ours 24.95 0.71 14.10 0.196 13.91 13.55 21.01 15.48 16.68

5 LIMITATIONS AND FUTURE DIRECTIONS
Although ourmethod generates realistic results for a wide variety of
inputs, there are certain situations as shown in Figure 7 where our
model results in sub-optimal generations. For example, if the color
contrast changes drastically as the video progresses, the model fails
to capture these details (Figure 7 (a)). Significant variations in facial
expressions is another case where our model struggles to replicate
the details (Figure 7 (b)). Explicitly handling the expressions is an
interesting direction that can be investigated in the future, which
we currently do not handle in our work. Finally, in the case of
sudden/rapid changes in view, camera angle, or head movements,
our model attempts to generate smooth transitions (Figure 7 (c)).
However, we found our method to be stable over a large variety of
inputs and anticipate that our idea of utilizing extremely LR frames
will be a basis for other domains and applications.

6 CONCLUSION
In this work, we present a novel framework for extreme-scale
talking-face video super-resolution and compression. We show
that by considering appropriate priors (audio signal and a single
target identity image), we are able to generate realistic, high-quality
talking-face videos from (very) low-resolution frames. Our method
handles various inputs, including but not limited to people of dif-
ferent ages, gender and ethnicity. Most importantly, our framework
is the first of its kind to produce photo-realistic lip-synced talking-
face videos while also matching the actual identity. By dramatically
reducing the bandwidth requirements, our approach can be utilized
as a tool for a seamless video-conferencing experience. We believe
our core idea of exploiting very low-resolution videos along with
adequate priors will be an important step towards the future of
super-resolution and low-bandwidth video-conferencing.

https://learnopencv.com/head-pose-estimation-using-opencv-and-dlib/
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