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Figure 1: An overview diagram depicting the generally employed processing pipeline of a crowd-counting approach (top) and
the proposed modifications we introduce in this work (bottom). See Section 3 for details.

ABSTRACT
Datasets for training crowd counting deep networks are typically

heavy-tailed in count distribution and exhibit discontinuities across

the count range. As a result, the de facto statistical measures (MSE,

MAE) exhibit large variance and tend to be unreliable indicators of

performance across the count range. To address these concerns in

a holistic manner, we revise processes at various stages of the stan-

dard crowd counting pipeline. To enable principled and balanced
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minibatch sampling, we propose a novel smoothed Bayesian sample

stratification approach. We propose a novel cost function which

can be readily incorporated into existing crowd counting deep

networks to encourage strata-aware optimization. We analyze the

performance of representative crowd counting approaches across

standard datasets at per strata level and in aggregate. We analyze

the performance of crowd counting approaches across standard

datasets and demonstrate that our proposed modifications notice-

ably reduce error standard deviation. Our contributions represent

a nuanced, statistically balanced and fine-grained characterization

of performance for crowd counting approaches. Code, pretrained

models and interactive visualizations can be viewed at our project

page deepcount.iiit.ac.in.

CCS CONCEPTS
• Computing methodologies→ Scene understanding.
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1 INTRODUCTION
Crowd counting is the technique of determining the number of peo-

ple in a given image. Estimating count from images has significant

applications in urban planning, surveillance in industries, hospitals

and other establishments. Given an image, deep counting networks

regress a single value representing the number of people in the

image. Deep networks in crowd counting are typically trained on

images and density maps generated from point annotations.

Recent large-scale datasets used to train deep counting networks

include Shanghai Tech [14], UCF-QNRF [3] and NWPU-Crowd [11].

Although these datasets have considerably helped advance the state-

of-the-art in crowd counting approaches, some issues remain to be

addressed. A particularly alarming issue is the heavy-tailed and dis-

continuous distribution of crowd counts. Specifically, these datasets

tend to contain a large number of images with small (people) count

and a rather limited number of images with a large count (see

Figure 2).

The skew in the data distribution affects all aspects of the prob-

lem. It induces imbalance in minibatch sampling, optimization and

evaluation. Since the default evaluation protocol (averaging over

test errors) does not take the data distribution skew into account,

the resulting score (e.g. Mean Absolute Error (MAE)) exhibits high

standard deviation, often 2 − 3 orders of magnitude higher than

MAE itself (see Figure 2). This high deviation prevents mean score

from being considered as a reliable performance statistic. Since

error deviation is not reported in literature, this issue has gone

unaddressed so far.

To address issues mentioned above, we propose an approach

that actively factors in the count distribution and its skew at every

stage of the problem (see Figure 1). As the first step, we devise

an algorithm for partitioning the count range into balanced strata

(bins) using Bayesian optimality as a criterion (Sec. 3). The balanced

bins form the basis for minibatch sampling (Sec. 3.3). We also for-

mulate a loss function that additionally penalizes error based on the

ground-truth binning (Sec. 3.4). Instead of reporting a single perfor-

mance summary statistic (MAE) across the entire test set range, we

report bin-wise statistics and aggregate these statistics in a prin-

cipled manner (Sec. 3.5) to report the overall score. We perform

comparative evaluation involving representative state-of-the-art

deep counting networks [2, 7, 10, 12, 15]. Our results (Sec. 5) demon-

strate that the proposed approach results in a noticeable reduction

of error deviation compared to the default (no-binning) procedure.

More generally, our approach helps both designers and end-users

determine performance for various count ranges and select from

among various approaches based on their relative performance

within these ranges.

Zoomed in

Figure 2: The scatter plot of ground-truth counts and abso-
lute errors by DM-Count [10] on the NWPU dataset [11].
The Mean Absolute Error (MAE) is 71.71, but the standard
deviation is multiple orders of magnitude larger: 376.40. The
zoomed in plot shows that even for lowest count (0 people),
error is significantly larger than 0. Clearly, MAE is a poor
representative of performance across count range.

Code, pretrained models and visualizations can be accessed from

our project page deepcount.iiit.ac.in.

2 RELATEDWORK
To the best of our knowledge, no works have analyzed the pro-

cessing pipeline for crowd counting in entirety. In this section, we

review works which aim to address some aspects raised in the

earlier section.

Density-based crowd counting: Deep Convolutional Networks which
represent the target count as a density map form the most popular

class of approaches [5, 6, 13, 14]. Some approaches have attempted

to address count distribution imbalance, although in an indirect

manner. Sam et al. [8] propose a switching CNN based model which

employs three regressors and a classifier which selects the best

regressor to which an input patch is to be routed. There have also

been attempts at reducing the skew at the patch level as in Xiong et

https://doi.org/10.1145/3474085.3475522
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al. [12]. They discretize the count range into a set of intervals and

design a classifier on these intervals, thereby converting an open

set regression problem to a closed set classification one.

Point-based crowd counting: To overcome the performance sensi-

tivity to density map preparation, recent approaches use point

annotations directly to estimate count. Ma et. al. [7] use a novel loss
function that constructs a density distribution indirectly from the

point annotations. Wang et al. [10] employ the optimal transport

(OT) loss to find similarity between predicted density map values

and ground truth binary point map and a total variation loss to

stabilize the OT computation.

Evaluation methods:Mean Absolute Error (MAE) and Mean Squared

Error (MSE) are the most prevalent evaluation measures in crowd

counting approaches, with MAE usually being the more direct

measure. More recently, some attempts have been made to examine

MAE statistics based on percentage errors, illumination levels and

scene levels to characterize performance [11]. However, these are

post-hoc measures and do not tackle imbalance which crops up in

other stages of the standard pipeline employed for crowd counting.

3 PROPOSED METHOD
3.1 Standard Processing Pipeline
As depicted in Figure 1, any standard approach to crowd-counting

can be considered to have five stages:

• Stage-1 (Data preparation): In this stage, images and corre-

sponding counts are processed suitably and are provided as

input and output to a reference deep network. This stage

includes standard procedures such as image cropping and

resizing, density map preparation, etc.
• Stage-2 (Creating data splits): The prepared data is partitioned
into training, validation and test splits according to a pre-

defined split ratio (e.g., 65%, 15%, 20%).
• Stage-3 (Minibatch creation): The deep network is trained

using a subset of data randomly sampled from the train-

ing set, usually referred as a minibatch. The training set is

partitioned into minibatches for each training epoch.

• Stage-4 (Optimization): The parameters of the deep network

are optimized for a loss function at the minibatch level.

• Stage-5 (Evaluation): A standard performance measure (e.g.,
MAE) is used for evaluating the model on the validation or

the test set.

Each of these stages involves a set of assumptions which are

often implicit. For instance, the train-validation-test splitting (Stage-

2) and minibatch creation (Stage-3) assume that the distribution

over the targets (counts) is uniform. However, target distributions

for standard crowd counting datasets are heavy-tailed. Due to the

uniform nature of sampling, the data splits and consequently, the

training minibatches, exhibit the same heavy-tailed distribution.

This skew induces a bias which penalizes samples in the tail during

optimization (Stage-4). Due to this bias, the statistical summary

measures (e.g., MSE, MAE) fail as representative measures of per-

formance (Stage-5).

To address these issues, we revisit the entire problem setting and

propose alternative paradigms for the stages mentioned previously.

We leave Stage-1 untouched and describe our modifications to the

subsequent stages.

3.2 Revisiting Stage 2 (Creating Data splits)
As mentioned earlier, the standard sampling procedure for creating

train-validation-test splits implicitly assumes a uniform distribution

over the target range. However, doing so causes the tail portion of

the distribution to be under-represented. A fundamental reason for

this effect is that the sampling is conducted at too fine a resolution,

i.e. at the level of individual counts.
One approach to address this issue is to coarsen the resolution

and partition the count range into bins (strata) that are optimal

for uniform sampling. Formally, let the total number of images

be 𝑁 and suppose the count range over the data samples is 𝑅 =

[0,𝐶], where 𝐶 is the maximum crowd count. The count data D
can be represented in terms of observed discrete counts 𝑐𝑖 and

their frequencies 𝑓𝑖 , as D = {⟨𝑐𝑖 , 𝑓𝑖 ⟩ | 𝑖 = 1, ...𝑚 }, where𝑚 is total

number of distinct counts in the dataset. Thus, 𝑐1 = 0, 𝑐𝑚 = 𝐶 .

Consider a partitioning of the counts into 𝑁𝑏 bins as:

P (1, 𝑁 ) ≡ {[𝑛𝑘−1, 𝑛𝑘 − 1]}, 𝑘 = 1, 2, 3 . . . 𝑁𝑏 (1)

where 𝑛𝑘−1 represents the start index of the 𝑘
𝑡ℎ

bin. Note that

𝑛0 = 0 and 𝑛𝑁𝑏
− 1 = 𝐶 . For simplicity, we drop the reference to

(1, 𝑁 ) when referring to P (1, 𝑁 ) in what follows.

3.2.1 Partition Prior. We formulate the prior over partitions in

terms of number of bins𝑁𝑏 in a candidate partition. In what follows,

we refer to this prior distribution as 𝑃 (𝑁𝑏 ). To avoid the degenerate
case in which each unique count in the range might land up in

its own bin, we impose constraints over the number of bins [9].

Specifically, we use a geometric prior to assign lower probability to

a partition containing larger bin counts:

𝑃 (𝑁𝑏 ;𝛾) =
{
𝑃0 𝛾

𝑁𝑏
if 1 ⩽ 𝑁𝑏 ⩽ 𝛼

0 otherwise

(2)

where 𝑃0 is a normalization constant. 𝛾 < 1 is a parameter which

affects the distribution profile and 𝛼 controls the practical effective-

ness of the upper bound on 𝑁𝑏 . Applying the laws of probability to

𝑃 (𝑁𝑏 ) and solving for 𝑃0, we obtain:

𝑃 (𝑁𝑏 ;𝛾) =
1 − 𝛾

1 − 𝛾𝛼
𝛾𝑁𝑏

(3)

3.2.2 Partition Likelihood. The likelihood for a partition P is de-

fined in terms of the likelihood of each constituent bin in the parti-

tion. Let𝑚𝑘 be the width of bin 𝐵𝑘 . Let the count frequencies of

the𝑚𝑘 distinct counts within the bin be denoted by 𝑥1, 𝑥2, . . . 𝑥𝑚𝑘

respectively. We model the likelihood for each bin as a multinomial

distribution:

𝑙𝑖𝑘 (𝐵𝑘 ) = 𝑙𝑖𝑘 (𝑥1, . . . , 𝑥𝑚𝑘
;𝑝1, . . . , 𝑝𝑚𝑘

)

=
𝑋𝑘 !

𝑥1!𝑥2! . . . 𝑥𝑚𝑘
!

𝑚𝑘∏
𝑗=1

𝑝
𝑥 𝑗

𝑗

(4)

where 𝑋𝑘 =
∑𝑚𝑘

𝑗=1
𝑥 𝑗 and 𝑝 𝑗 is probability of the 𝑗𝑡ℎ count. As-

suming bin-level independence, the log likelihood of the partition

can be expressed as:
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Figure 3: A candidate partitioning of a subsequence ofS end-
ing with the 𝑟𝑡ℎ element of S. Finding the optimal partition-
ing can be thought of as a search over such candidate parti-
tions. Refer to Sec. 3.2.3.

𝑙𝑖𝑘 [P] =
𝑁𝑏∑︁
𝑘=1

𝑙𝑖𝑘 (𝐵𝑘 ) (5)

3.2.3 Optimal Partitioning. Given the count range 𝑅 = [0,𝐶], at
one extreme, we can have a partitioning wherein all data lies in a

single bin. At the other extreme, we can have a partitioning wherein

each unique integer in the range𝑅 is a bin. Thus, finding the optimal

partitioning can be thought of as a search over candidate partitions

that lie between these two extremes.

To solve this task efficiently, we adopt a dynamic programming

approach [9]. To begin with, we transform the count frequency

data D into a sequence of counts 𝑐1, 𝑐2 ....𝑐𝑚 where 𝑐𝑖 is repeated

𝑓𝑖 times, i.e., S : {𝑐𝑖 , 𝑐𝑖 , . . . (𝑓𝑖 times, 1 ⩽ 𝑖 ⩽𝑚)}. Let F𝑜𝑝𝑡 (1, 𝑟 ) be
the optimal Maximum A Potseriori (MAP) score for the partitioning

of a subsequence of S ending with the 𝑟𝑡ℎ element of S. Following
the principle of optimality, we have:

F𝑜𝑝𝑡 (1, 𝑟 ) =


0, if 𝑟 = 1

max

1< 𝑗⩽𝑟

[
best(1,j-1) + 𝑙𝑖𝑘 (𝐵𝑙𝑎𝑠𝑡 ) ( 𝑗, 𝑟 )

+ 𝑙𝑜𝑔 𝑃 (𝑏 𝑗 ;𝛾)
]
if r=2,3. . .N

(6)

where best(1,j-1) is the memoized (precomputed and stored)

best likelihood value (Eqn. 5) for the sub-partition ending in the

( 𝑗 − 1)𝑡ℎ element, 𝑙𝑖𝑘 (𝐵𝑙𝑎𝑠𝑡 ) ( 𝑗, 𝑟 ) is the likelihood of the final bin

containing the subsequence beginning at the S’s 𝑗𝑡ℎ element and

ending with the 𝑟𝑡ℎ element (see Fig. 3). 𝑙𝑜𝑔 𝑃 (𝑏 𝑗 ;𝛾) is the prior on
number of bins (Eqn. 3). More concretely, 𝑏 𝑗 is the number of bins

that form with S’s 𝑗𝑡ℎ element as the split location for the last bin.

Note that the MAP formulation of F𝑜𝑝𝑡 (1, 𝑟 ) incorporates the
partition likelihood and prior in a Bayesian manner. With respect

to the formulation in Eqn 6, the optimal set of bins corresponds

to the ones obtained for F𝑜𝑝𝑡 (1, |S|), where |S| is the number of

elements in sequence S.

3.2.4 Additive Smoothing. The sample distribution in crowd datasets

is not only heavy tailed, but also sparse at the tail end. In other

Algorithm 1 Optimal Bins

1: procedure OptimalBins(D)

2: ⊲ Input data D
3: ⊲ Output Optimal bins 𝑏𝑖𝑛𝑠𝑏𝑒𝑠𝑡
4: ⊲ Grid search values for 𝛾 (Sec. 3.2.1)

5: Γ = [0.1, 0.2, . . . 0.9]
6: ⊲ Grid search values for train-test ratios

7: 𝑟𝑎𝑡𝑖𝑜𝑠 = [0.1, 0.2, 0.25]
8: ⊲ Cross-validation repeat factor

9: 𝑠𝑒𝑒𝑑𝑠 = 10

10: for 𝛾 in Γ do
11: for 𝑟 in 𝑟𝑎𝑡𝑖𝑜𝑠 do
12: for 𝑓 in [0 : 1 : 𝑠𝑒𝑒𝑑𝑠] do
13: D𝑓 = shuffle(D,𝑠𝑒𝑒𝑑 = 𝑓 );

14: ⊲ Algorithm 2

15: 𝑙𝑖𝑘𝑓 ,𝑟,𝛾 = FindLikelihood(D𝑓 , 𝑟 , 𝛾 )

16: end for
17: ⊲ Compute average likelihood for a fixed 𝛾 and 𝑟

18: 𝑙𝑖𝑘𝑟,𝛾 = Mean(𝑙𝑖𝑘𝑓 ,𝑟,𝛾 )

19: end for
20: end for
21: ⊲ To find the best 𝛾 across all 𝑟𝑎𝑡𝑖𝑜𝑠 ,

22: ⊲ descending sort by likelihood for each ratio 𝑟 .

23: ⊲ For each 𝛾 , sum indices of corresponding location

24: ⊲ in sorted order of earlier step.

25: for 𝛾 in Γ do
26: 𝑖𝑑𝑥𝑠𝑢𝑚𝛾 = 0

27: for 𝑟 in 𝑟𝑎𝑡𝑖𝑜𝑠 do
28: 𝑖𝑑𝑥𝑠𝑢𝑚𝛾+ = GetDescendingIndx(𝑙𝑖𝑘𝑟,𝛾 )

29: end for
30: end for
31: ⊲ The best 𝛾 is one with lowest index sum.

32: 𝛾𝑏𝑒𝑠𝑡 = argmin

𝛾
𝑖𝑑𝑥𝑠𝑢𝑚𝛾

33: ⊲ Use the best 𝛾 and determine optimal partitions (Sec. 3.2).

34: 𝑏𝑖𝑛𝑠𝑏𝑒𝑠𝑡 = BayesianOptimalBins(D, 𝑝𝑟𝑖𝑜𝑟 = 𝛾𝑏𝑒𝑠𝑡 )

35: end procedure

Algorithm 2 Algorithm to find likelihood of a held out subset

procedure FindLikelihood(D, 𝑟𝑎𝑡𝑖𝑜,𝛾 )

2: ⊲ Input Data D,train-test split ratio 𝑟𝑎𝑡𝑖𝑜 , prior param 𝛾

⊲ Output Likelihood 𝑙𝑖𝑘 of D’s test subset

4: ⊲ Split data into train, test as per 𝑟𝑎𝑡𝑖𝑜

𝑡𝑟𝑎𝑖𝑛 , 𝑡𝑒𝑠𝑡 = SplitData(D, 𝑟𝑎𝑡𝑖𝑜)

6: ⊲ Find optimal bins using train set (Sec. 3.2)

𝑏𝑖𝑛𝑠 = BayesianOptimalBins(𝑡𝑟𝑎𝑖𝑛, 𝑝𝑟𝑖𝑜𝑟 = 𝛾 )

8: ⊲ Find likelihood of test set

⊲ wrt optimal bins found earlier (Sec. 3.2.2)

10: 𝑙𝑖𝑘 = ComputeBinsLkhood(𝑡𝑒𝑠𝑡, 𝑏𝑖𝑛𝑠)

end procedure

words, the distribution is characterized by large count spans which

do not have any sample associated with them. This causes the bin-

ning procedure described in this section to output a large number

of sparsely filled bins. To mitigate this effect, we perform additive



smoothing [4] on the data before binning. Formally, a smoothing

factor 𝛽 is added to each distinct count across the count range

𝑅 = [0,𝐶]. In our case, 𝛽 = 1.

3.2.5 Grid-search for optimal hyperparameters. To determine the

optimal set of bins, we first perform a grid search with cross-

validation over a range of values for (i) distribution profile parame-

ter 𝛾 (Eqn. 2) (ii) the train-validation split ratios. Having determined

the optimal hyperparameter 𝛾𝑏𝑒𝑠𝑡 , we utilize the same to obtain the

optimal set of bins, as outlined in Algorithm 1.

3.3 Revisiting Stage 3: Minibatch Creation
To address the skew induced by the heavy-tailed, discontinuous

count distribution of data samples, we bin the data optimally using

the procedure described in Section 3.2. To populate a minibatch

using our Round Robin (RR) method, we pick a data sample ran-

domly from each of the bins in a round robin fashion, beginning at

the first bin. This process is repeated until all the bins have been

selected or the minibatch is full. We continue this process until the

entire training dataset is accounted for as an epoch (i.e., in terms of

minibatches). This procedure is followed for each epoch.

Another variant of binning which we consider is Random Sam-

pling (RS) procedure where a bin is first picked randomly from

available bins and a data sample is picked randomly from the ran-

domly selected bin. A procedure similar to Round Robin (RR) is

used to populate an epoch’s equivalent of training data. Effectively,

both our procedures ensure that the mini-batches are balanced in

terms of their count range unlike the standard random shuffle-based

approach. We analyze the results on both the binning strategies

during evaluation (Sec. 5).

3.4 Revisiting Stage 4: Optimization
The standard protocol for optimizing a deep counting network

is to minimize the per-instance loss averaged over the minibatch.

However, one is confrontedwith the same issues (imbalance, bias) as

those faced during minibatch creation (Sec. 3.3). As a consequence,

the trained networks exhibit high variance for the error term |𝑦−𝑦 |,
where 𝑦 is the ground-truth count and 𝑦 is the predicted count.

To enable data-distribution aware optimization, we introduce a

novel bin sensitive loss function L̂. Instead of the loss depending

solely on the error, we also consider the count bin to which the

data sample belongs and whether the predicted count 𝑦 lies within

this bin or outside it. If 𝑦 lies within the bin, we impose a smaller

logarithmic penalty. If the count value lies outside, we impose a

linear penalty. Formally, our strata-aware loss function is defined

as:

L̂ =

{
𝜆1 𝑙𝑜𝑔(1 + |𝑦 − 𝑦 |) if 𝑏𝑙𝑜𝑤 ⩽ 𝑦 ⩽ 𝑏ℎ𝑖𝑔ℎ

|𝑦 − 𝑦 | otherwise

(7)

where 𝑏𝑙𝑜𝑤 and 𝑏ℎ𝑖𝑔ℎ are defined by the bin that 𝑦 belongs to

(see Fig. 4) and 𝜆1 is a weighting factor of the log component. This

loss is added as an additive component to the default model loss to

encourage strata-aware optimization.

Figure 4: Bin Loss Function : The figure depicts the ground
truth count 𝑦 = 45 and the loss function variation with re-
spect to the predicted count 𝑦 inside the bin (𝑙𝑜𝑔(1 + |𝑦 − 𝑦 |))
and outside (|𝑦−𝑦 |). The reference bin is highlighted in dark
green. Refer to Sec. 3.4 for details.

3.5 Revisiting Stage 5: Evaluation
The discontinuous and heavy-tailed distribution of samples affects

the evaluation stage as well. Coupled with lack of bin-level aware-

ness during optimization, an outlier effect arises which causes the

default measures (e.g., MSE, MAE) to be ineffective representatives

of performance across the entire count range. Even more worry-

ingly, the standard deviation of error tends to be at the same level as

the mean statistic. Instead of using a single pair of numbers (mean,

standard deviation) to characterize performance across the entire

count range, we make the following proposals.

One, the evaluation measure must be reported at the level of each

bin. This provides a more comprehensive picture of performance.

Additionally, it also helps compare the relative effectiveness of

various counting networks for smaller and larger counts. Two, even
if an overall summary statistic over the test set is deemed necessary,

the mean and standard deviation of bin-level performance measures

are combined in a statistically sound manner. Let the mean and

standard deviations for the individual bins be (𝜇𝑖 , 𝜎𝑖 ); 𝑖 = 1, 2, . . . 𝑁𝑏

and let the number of samples in each bin be 𝑛𝑖 . We compute the

pooled mean and standard deviation as their weighted average:

𝜇𝑝𝑜𝑜𝑙 =
𝑛1𝜇1 + 𝑛2𝜇2 + . . . + 𝑛𝑁𝑏

𝜇𝑁𝑏

𝑛1 + 𝑛2 + . . . + 𝑛𝑁𝑏

(8)

𝜎2
𝑝𝑜𝑜𝑙

=
𝑛1𝜎

2

1
+ 𝑛2𝜎2

2
+ . . . + 𝑛𝑁𝑏

𝜎2
𝑁𝑏

𝑛1 + 𝑛2 + . . . + 𝑛𝑁𝑏

(9)

4 EXPERIMENTAL SETUP
We perform experiments with two large-scale crowd counting

datasets NWPU [11] and UCF-QNRF [3] as well as two variants of

the medium-scale dataset ShanghaiTech(A,B) [14]. Although we

revisit all stages of the problem pipeline, we retain the standard

train and test datasets for consistency. To determine optimal bin

hyperparameters (Section 3.2), we isolate a random 20% subset of

the train set and use the same for validation. Since NWPU’s test

set is not directly available, we use the publicly available validation



Figure 5: Per-bin performance of DM-Count [10] on NWPU
dataset [11] for different binning schemes (color-coded).
MAE is represented by a dot and error bars represent stan-
dard deviation. Bins in range [1, 1.2𝑘] are shown zoomed in
for better visibility. The comparatively larger deviations for
the no-binning scheme are clearly evident.

set as the test set and report results on the same. We also compare

the two different binning schemes mentioned in Section. 3.3, viz.,
round-robin (RR) and random selection (RS). For evaluation, we

utilize representative and recent state-of-the-art crowd counting

networks, viz., DM-Count [10], Bayesian Crowd Counting (BL) [7],

SCAR [2], SFA-Net [15], S-DCNet [12]. These papers report results

on the ShanghaiTech and UCF-QNRF datasets but not on NWPU

(except for DM-Count). Therefore, we report respective test set

results by training these networks on the NWPU dataset as well.

The network architecture, ground truth generation, augmen-

tation and image pre-processing steps are used as mentioned in

the respective works. We use the hyperparameters, optimizers and

loss functions used as suggested in the original implementations of

the networks. As mentioned previously, we add the bin-aware loss

function (Sec. 3.4) to the original loss function used by the models

during optimization. We compute the per-bin MAE and associ-

ated standard deviation. We also aggregate the resulting statistics

to obtain an overall performance score across the bins (Sec. 3.5).

Although not directly comparable to our proposed performance

score, we also report the standard MAE (which does not involve

any binning) as computed by existing works. As a new addition, we

Figure 6: Per-bin performance of DM-Count on UCF dataset.
The comparatively larger deviations for no-binning scheme
are clearly evident as with other plots.

also report the error’s standard deviation. For baseline comparison,

we also train models using the default (no-binning) procedure and

without the bin-aware loss function included.

5 RESULTS
5.1 Bin-level results
The bin-level mean error scores and the corresponding standard

deviation bars can be viewed for a selection of different datasets

and binning schemes in Figures 5, 6, 7 and 8. The comparatively

large deviations typically incurred when binning is not used can

clearly be seen. Also note that the bin-level plots provide a larger

perspective on the performance of the approach across the count

range, in contrast to a single number which is usually reported. Our

project page deepcount.iiit.ac.in contains interactive visualizations

for examining results on a per-dataset and per-model (approach)

basis.

5.2 Aggregate results
The aggregate scores (described in Section 3.5) can be viewed in Ta-

ble 1 – refer to the three gray-shaded columns. Across networks and

datasets, a reduction in error standard deviation is clearly apparent

when bin-aware loss is used (relative to the no-binning counter-

part). The aggregate scores reinforce the trend seen in the bin-level

plots discussed previously. The reduction in standard deviation

compensates for the marginally inferior mean score (compared to

no-binning) in some cases. As the blue highlighted results in Table 1

indicate, binning schemes provide the best overall aggregate results

across the datasets (except for the smaller count STB dataset).

In the last column of Table 1, we also present the usually re-

ported MAE measure. The results using models made available by

authors are indicated. For the first time, we also report the stan-

dard deviation for the sake of completeness and consistency. Note

that the numbers in this column are not directly comparable with

other (gray) columns of the table due to the significant differences

deepcount.iiit.ac.in


Figure 7: Per-bin performance of DM-Count on STA dataset.
Similar to our observation in the earlier plots, the com-
paratively larger deviations for the no-binning scheme are
clearly evident.

across the processing pipeline stages. However, the magnitude of

the deviation incurred even by the state of the art approaches is

somewhat alarming. It is also interesting to note that the MAE

performance ranking for different networks differs significantly

from the binning (Pooled MAE) results. For instance, BL [7] is the

best performer on UCF with Pooled MAE. A similar trend can be

seen for the STA and STB datasets as well. Due to unavailability of

BL-specific settings for NWPU dataset, we used the settings used

for BL with UCF-QNRF. These settings may be sub-optimal and

might be the reason BL underperforms on NWPU.

In our experiments, we tried two minibatching schemes (bal-

anced, random) to determine their effect on performance, if any

(Section 3.3). The aggregate results across datasets suggests that

random sampling has better overall performance approximately

half the time (Table 1, first two columns). Also, the results sug-

gest that random sampling of bins works best for top performing

networks (DM-Count [10], BL [7]) most of the time.

5.3 Ablation Studies
For ablation studies, we conducted experimentswithDM-Count [10]

on NWPU dataset. The loss function involved in optimization

(Sec. 3.4) is of the form

L∗ = L + 𝜆2L̂ (10)

where L∗
is the final loss function, L is the model loss, L̂ is

the Bin Loss and 𝜆2 is a weighting factor. From Eqn. 7, we need

to tune for both 𝜆1, 𝜆2. We conduct a grid optimization with 𝜆2
ranging over {0.01, 1} and 𝜆1 over {1, 10, 100}. The pooled MAE

and standard deviations are summarized in Table 2. Based on the

results, we fix 𝜆1 = 1, 𝜆2 = 1 for DM-Count [10] on all datasets and

minibatching schemes (RR,RS).

The effectiveness of bin-loss (Eqn. 7) also depends on the extent

to which a reference architecture utilizes the formulation for better

Figure 8: Per-bin performance of DM-Count on STB dataset.
The comparatively larger deviations for the no-binning
scheme are clearly evident, like in the earlier plots.

optimization. For SCAR [2] and SFA-Net [15], we hypothesize that

this ability is relatively lower. Therefore, bin-loss is not always

better for these networks (see Table 1). Other networks (BL [7],

DM-Count [10]) utilize the loss better, leading to consistent im-

provement in MAE and standard deviation. However, SCAR [2] is

still better than no-binning in all cases except NWPU dataset. SFA-

Net’s performance with bin-loss included is better for the larger

UCF, NWPU datasets. Also, inclusion of bin-loss results in consis-

tent gains in terms of error standard deviation especially on the

larger, heavily skewed datasets.

As mentioned in Sec. 3.2.1, we model the likelihood for each bin

as a multinomial distribution. For comparative evaluation, we also

consider two other candidate distributions for binning. The first

candidate models the likelihood for the bin counts as a Poisson

distribution:

𝑙𝑖𝑘 (𝐵𝑘 ) = 𝑙𝑖𝑘 (𝑥1, . . . , 𝑥𝑚𝑘
; 𝜆1, . . . , 𝜆𝑚𝑘

)

=

𝑚𝑘∏
𝑗=1

𝜆 𝑗𝑒
−𝜆 𝑗

𝑥 𝑗

(11)

where 𝜆1, . . . , 𝜆𝑚𝑘
are the parameters of the Poission distribu-

tions associated with the bin elements. The other terms are used in

the same context as Eqn. 4 in Section 3.2.2. The second candidate

distribution for binning is a variant of the multinomial, called strat-

ified multinomial [1]. In this variant, the optimal Bayesian binning

is applied not only to the count range, but also to the count fre-

quency distribution. The comparative results can be seen in Table 3.

Though the pooled MAE with Poisson binning is slightly lower

for random binning, the standard deviation is significantly larger

than in the case of multinomial (as employed by us). The other

results indicate the better overall stability arising from our simple

yet effective choice for the likelihood distribution.



Table 1: Evaluation results on four benchmark datasets NWPU, UCF-QNRF, ShanghaiTech-A,B (STA,STB) using the evaluation
procedure in Sec. 3.5 on diverse models. The size of test set is indicated below dataset name. The columns represent minibatch-
ing schemes (Bin Loss: random bin selection (RS), Bin Loss(RR): round robin bin selection, No-binning: default procedure
without binning). For each result, superscript denotes the standard deviation. The best result for each dataset is highlighted
in blue. The best MAE and standard deviation of the absolute errors are highlighted in bold for each network. Note that gray
highlighted columns of the table (Pooled MAE and standard deviation) are not directly comparable to the Global MAE and
standard deviation values.

Pooled MAE and std Global MAE and std

Size of Dataset Dataset Model Bin loss Bin loss (RR) No-binning Pretrained,No-binning

Large

NWPU

500

DM-Count [10] 88.1±236.7 76.7±205.0 77.8±214.9 71.7± 376.4
[10]

BL [7] 112.9±333.7 114.8±320.3 102.5±348.2 102.5±560.6

S-DCNet [12] 213.4±231.0 224.1±230.1 210.0±303.1 248.7±1161.9

SCAR [2] 112.8±321.3 111.9±325.6 111.3±332.1 111.3±555.8

SFA-Net [15] 136.0±299.1 116.4±285.2 125.0±343.0 163.4±1072.1

UCF

334

DM-Count [10] 103.8±107.5 97.9±109.1 94.5±111.6 85.9±120.6 [10]
BL [7] 91.1±100.3 92.1±105.8 98.3±134.2 87.1±126.8 [7]

S-DCNet [12] 205.9±157.8 199.2±164.8 215.2±190.0 214.7±277.7

SCAR [2] 124.5±128.6 122.9±129.0 123.4±146.9 123.4±197.1

SFA-Net [15] 128.6±133.4 128.9±162.9 128.7±163.2 128.7±199.9

Medium

STA

182

DM-Count [10] 88.6±64.4 89.6±75.9 93.0±81.3 64.1±78.4 [10]
BL [7] 68.6±69.9 68.9±63.3 68.7±61.9 63.5±74.7 [7]

S-DCNet [12] 66.6±72.6 60.5±65.5 61.3±66.9 61.3±88.7

SCAR [2] 83.7±67.4 72.9±61.8 79.3±67.4 79.3±82.9

SFA-Net [15] 68.4±65.1 64.9±59.5 63.6±55.6 63.6±92.9

STB

316

DM-Count [10] 9.1±9.3 8.6±8.6 8.9±10.3 7.3±9.3 [10]
BL [7] 9.6±9.3 9.7±9.3 10.8±9.2 7.5±9.4 [7]

S-DCNet [12] 9.2±9.4 9.6±10.5 7.9±8.6 7.8±11.0

SCAR [2] 9.8±10.2 13.8±11.7 10.3±14.0 10.3±14.1

SFA-Net [15] 9.0±7.3 8.8±8.0 7.4±6.8 7.4±9.2

Table 2: Hyperparameter search for 𝜆1 and 𝜆2 over a grid and
the resulting pooled MAE and standard deviations.

𝜆1 ↓ 𝜆2 → 0.01 1

1 84.1±183.2 76.7±205.0

10 80.5±243.7 79.5±238.7

100 80.7±236.8 80.4±252.7

Table 3: Ablations on the likelihood model for different
choices of bin-level distribution. Though the pooled MAE
with Poisson distribution is slightly lower for random bin-
ning, the standard deviation is significantly larger than our
choice (multinomial).

𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 ↓ Binning→ Bin Loss Bin Loss (RR) No-binning

Poisson 84.8±441.2 89.1±533.1 77.8±380.3

Stratified Multinomial 90.0±283.5 90.6±374.0 80.7±290.7

Multinomial (ours) 88.1±236.7 76.7±205.0 77.8±214.9

6 CONCLUSION
In this paper, we highlight biases at various stages of the typi-

cal crowd counting pipeline and propose novel modifications to

address issues at each stage. We propose a novel Bayesian sam-

ple stratification approach to enable balanced minibatch sampling.

Complementary to our sampling approach, we propose a novel

loss function to encourage strata-aware optimization. We analyze

the performance of crowd counting approaches across standard

datasets and demonstrate that our proposed modifications reduce

error standard deviation in a noticeable manner. Altogether, our

contributions represent a nuanced, statistically balanced and fine-

grained characterization of performance for crowd counting ap-

proaches.

The proposed bin-aware loss visibly reduces standard deviation

of error. However, our work highlights the need for approaches in

which error deviations are negligible compared to the mean error.

We hope that our work motivates the community to join us in

exploring these challenging aspects of the problem. Studying and

addressing issues we have raised would enable statistically reliable

crowd counting approaches in future.
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