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Abstract
We aim to solve the highly challenging task of generating con-
tinuous sign language videos solely from speech segments for
the first time. Recent efforts in this space have focused on gen-
erating such videos from human-annotated text transcripts with-
out considering other modalities. However, replacing speech
with sign language proves to be a practical solution while com-
municating with people suffering from hearing loss. Therefore,
we eliminate the need of using text as input and design tech-
niques that work for more natural, continuous, freely uttered
speech covering an extensive vocabulary. Since the current
datasets are inadequate for generating sign language directly
from speech, we collect and release the first Indian sign lan-
guage dataset comprising speech-level annotations, text tran-
scripts, and the corresponding sign-language videos. Next, we
propose a multi-tasking transformer network trained to generate
signer’s poses from speech segments. With speech-to-text as
an auxiliary task and an additional cross-modal discriminator,
our model learns to generate continuous sign pose sequences in
an end-to-end manner. Extensive experiments and comparisons
with other baselines demonstrate the effectiveness of our ap-
proach. We also conduct additional ablation studies to analyze
the effect of different modules of our network. A demo video
containing several results is attached to the supplementary ma-
terial.
Index Terms: Sign Language Generation, Speech to Sign
Language, Speech Recognition, Human-Computer Interaction,
Computational Paralinguistics

1. Introduction
According to a World Health Organization report [1], over 466
million people worldwide, or roughly 5% of the world’s popu-
lation, suffer from hearing loss. Sign language is often the pri-
mary means of communication used by people with hearing dis-
abilities. Sign language consists of manual communication fea-
tures including hand gestures, hand-shape, location, movement,
orientation. It includes non-manual gestures like eye gaze, eye-
brows, and mouth movement.

Sign-language is popularly represented in human-readable
form using glosses and text transcripts. However, annotating at
the gloss level is a tedious task and limits datasets to a smaller
size. While efforts [2, 3] have been focused on using text as
the input modality, this is inherently limiting. Generally, sign-
language replaces speech as a communication medium for peo-
ple suffering from hearing loss. Thus, apart from the content,
the speaker’s emotions and other attributes are also communi-
cated via sign language. This additional stream of information
is completely lost when converting text to corresponding sign
language videos. Text transcripts are also annotated at the sen-

Figure 1: Previous approaches have only attempted to generate
sign-language from text transcripts, we focus on directly con-
verting speech segments into sign-language. Our work opens
up several assistive technology applications and can help effec-
tively communicate with people suffering from hearing loss.

tence level, limiting the amount of higher-level context infor-
mation provided for better continuous sign language generation.
Finally, most applications like interviews and news reporting re-
quire direct translation from continuous speech to sign language
that cannot be segmented into sentences.

In this work, we focus on overcoming the current setup’s
shortcomings and directly translate natural speech to the cor-
responding sign language poses for the first time. This allows
us to generate improved sign-language gestures by inherently
transferring content and style from the speech. To generate
sign language videos from speech, we collect and release the
first large-scale dataset tailor-made for our task. The dataset
contains videos of a signer signing in Indian Sign Language
standards [4] accompanied by corresponding speech segments.
Each speech segment also contains the corresponding text tran-
scripts. We then train a multi-task transformer network on the
collected data coupled with a cross-modal discriminator to gen-
erate intelligible sign-language videos from the given speech
segment. The proposed dataset and code will be released for
future research at https://kapoorparul.github.io/S2SL/

2. Text to Sign Language Generation
Sign-language generation from text has always been an essen-
tial part of assistive technologies. Initial works [5–7] for this
problem depended on classical grammar-based approaches to
stitch together signs for isolated words to achieve continuous
sign language production. Like in many other cases, deep-
learning has had a massive impact on modern techniques. Re-
searchers considered sign-language as another “language” and
modeled converting the text in language A to “sign-language”
as a Neural Machine Translation (NMT) problem. This ap-
proach was used in [8, 9] with varying degrees of success.
Zelinka et al. [3] proposed generating Czech sign language from
words rather than glosses but they restrict the length of signs to
7 frames for each word and work with a very limited vocabu-



lary of 598 Czech lemmas. Recent methods [2, 10] use trans-
former networks to learn long-term dependencies between the
input and output modalities. Most of these works provide text
tokens as input and generate a sequence of human poses as the
signed output.

Even though these works show decent improvements in the
generation of sign-language from text, there has been no push to
include speech as the input. Some previous works [11–13] pro-
pose speech to sign language but rely on intermediate automatic
speech recognition step and finally use rule based approaches
to convert text to sign language videos for a very restrictive vo-
cabulary. Despite bringing an additional stream of information
while communicating, speech as a modality brings a lot of chal-
lenges to the current setting. For example, unlike text, speech
cannot be segmented into discrete units like words or glosses.
The lack of datasets containing speech-level annotations also
complicates the task. To help solve this problem, we collect
a dataset amenable to our task. We then propose a multi-task
transformer-based architecture for learning high-level contex-
tual information between speech and the signer’s poses. We also
use a cross-modal discriminator to classify whether the gener-
ated poses match the input speech. In Section 3, we discuss our
dataset collection procedure and the proposed network in detail.

3. Speech To Sign Language Generation
In this work, we make the first-ever attempt to generate sign-
language directly from the speech input by proposing a fully
end-to-end model. Formally, given a speech input sequence S
as {s1, s2, .., sn}, our aim is to design a model that will gen-
erate a human pose key point sequence P as {p1, p1, .., pm}
corresponding to the sign language. Here pi corresponds to the
pose key points for the ith frame in the sign language sequence.
For each input speech segment S, the corresponding text is also
transcribed as T = {t1, t2, .., tQ}. Due to the unavailability of
datasets containing speech level annotation, we curate the first
continuous sign language dataset adhering to requirements. Our
sign language dataset is based on Indian Sign Language (ISL)
standards as it is curated from Indian news reports that a signer
annotates in real-time.

3.1. Indian Sign Language Dataset

Over time, several datasets have been proposed for Ameri-
can [14], German [15], Korean [16], and Chinese [17] sign lan-
guages. Since these datasets do not contain the required speech
annotations necessary for our task, we collect and release a large
scale corpus containing all three modalities: (i) continuous sign-
language videos, (ii) text and (iii) speech. Our dataset is based
on ISL standards [4] and is far more extensive than the current
ISL datasets [18, 19].

Our proposed corpus spans a vast vocabulary of ≈ 10K
English words. We have extracted a total of 9092 high-quality
video recordings of the news for the hearing impaired available
freely on the internet. Specifically, these videos consist of front-
facing professional signers signing the spoken sentences that a
hidden speaker says, as shown in Figure 2. Our data consists
of over 18 hours of videos across 5 professional signers cover-
ing various topics, including current affairs, sports, and world
news. A comparison of our dataset with the existing datasets is
presented in Table 1. As seen from the table, German sign lan-
guage dataset Phoenix 14T [15] is significantly less challenging
in comparison to our dataset due to its limited vocabulary of
2887 words.

Figure 2: We introduce a new, large-scale Indian Sign language
(ISL) dataset containing continuous sign language videos from
5 signers along with the corresponding text and speech tran-
scripts. Our dataset covers a large number of topics and has a
vocabulary of around 10K English words.

Table 1: Comparison of our dataset with several other publicly
available datasets containing sign language information. Ours
is the first continuous Indian sign dataset to contain natural
speech annotations.

Dataset lang vocab #hours #signers continuous speech
KETI [16] KSL 524 20 14 X ×
Boston104 [14] ASL 104 0.7 3 X ×
Phoenix 14T [15] GSL 3k 11 9 X ×
INCLUDE [19] ISL 263 - 7 × ×
Ours ISL 10k 18 5 X X

3.2. Multi-tasking Transformer Network

Generating sign language poses solely from speech is a highly
challenging task. We propose a multi-tasking transformer net-
work coupled with cross-modal discriminator to generate poses
directly from speech segments. We describe the different mod-
ules of our network in this section.

The backbone of our proposed model is a modified trans-
former architecture introduced in [20]. In most natural language
processing tasks, both the input and the target domain consist
of discrete vocabulary. On the contrary, for our task, both input
and target belong to the continuous space. To assist our pri-
mary goal of generating sign language poses from speech, we
introduce an auxiliary task of recognizing the input speech and
train jointly. Our transformer architecture consists of three ma-
jor components: (i) a joint speech encoder, (ii) a pose decoder
and (iii) a text decoder decoding the complementary modali-
ties. Finally, we also employ a cross-modal matching network
as a discriminator to help the transformer learn the high-quality
translations from speech to sign language. A pictorial represen-
tation of our architecture is given in Figure 3.

3.2.1. Generating Poses from Videos

We use OpenPose [21] to represent the body poses using the hu-
man pose joint keypoints for the signers. We consider 50 human
upper body key points including hands and fingers. To minimize
the effect of noisy and missed detections of OpenPose, we use
an iterative back-propagation based method using inverse kine-
matics to lift key points from 2D to 3D as suggested by [3].



Figure 3: Multi-task transformer architecture which generates
sign language pose sequences along with the secondary task of
generating the text translations for the given speech input.

3.2.2. Speech Encoder

Our network starts with a speech encoder SE used to learn con-
textual embeddings from the input speech segment. We use
melspectrograms representation of speech S with 80 mel fre-
quency bins. We project the input melspectrogram of shape
Ts × 80 where Ts is the number of STFT time steps into a
dense continuous space using a linear layer. Following this,
a standard positional encoding is applied similar to [20]. We
then use N multi-head self-attention layers with M heads and
also a position-wise feed-forward layer. Each of the two sub-
layers has residual connections and layer normalization. Our
speech encoder produces outputs of dimension dmodel and the
final embedding is represented by Z = {z1, z2, ..zn}.

3.2.3. Pose Decoder

The task of the pose decoder PD is to attend to the learned
context from the speech encoder and the previous time steps to
generate pose at the current time step. Input to pose decoder
is the masked pose sequence of dimension m × 151. Pose pi
for every ith frame is initially projected to a dense continu-
ous space using a linear layer. To guide the generation process
without the special symbol denoting the start and end of the
sequence as done while handling discrete vocabulary, we add
a counter in the range of 0 − 1 to every frame’s pose similar
to [2]. We then use positional encoding and N masked multi-
head self-attention layers with M heads which produce embed-
dings of dimension dmodel. This is followed by N multi-head
cross-modal attention layers attending to speech embeddings
modeling the translation between speech and pose. Finally, a
position-wise feed-forward layer followed by a dense layer is
used to generate the predicted pose p̂i for ith frame given as,

p̂i = PD(p̃i−1|z1:n, p̃1:i−2) (1)

Here, z1:n represents the contextual embedding of the speech
input segment S obtained from the speech encoder, p̃i−1 is the
pose embedding for pose frame i − 1. The predicted pose is
used to calculate the regression loss for the network given as,

LReg =
1

m

m∑
i=1

(pi − p̂i)2 (2)

3.2.4. Text Decoder

The text decoder TD is similar to a classical transformer de-
coder block for discrete vocabulary. The input to this block
is the masked text translations of length Q. It uses position-
ally encoded input tokens at time step i to decode the subse-

Figure 4: We fuse the two modalities with a cross-modal dis-
criminator, allowing the network to correlate between poses
and speech time-steps. This fused representation is used to per-
form a binary classification to classify “match” or “no-match”.

quent tokens in the sequence until an end-of-sequence token is
produced. It also consists of masked multi-head self-attention
blocks followed by cross attention with the speech context em-
beddings and then non-linear point-wise feed-forward layers.

hi = TD(t̃i−1|z1:n, t̃1:i−2) (3)
where hi is the output embedding from the text decoder, t̃i−1

represents the word embedding for spoken language token ti−1

at (i − 1)th time step and z1:n represents the contextual em-
bedding of the speech input S. The output at every time step hi

is then used to get a softmax probability over the target vocab-
ulary V . A cross entropy loss given in equation 4 is computed
and back-propagated over the network.

LXent = 1−
Q∏

i=1

V∑
j=1

p(tji )p(t̂
j
i |hi) (4)

Here, Q is the sentence length, the V is the target vocabulary,
p(tji ) is the ground truth probability and p(t̂ji |hi) is the pre-
dicted probability for the ith token to be tj .

3.2.5. Cross-Modal Discriminator

We introduce a matching network which is used as a cross-
modal CM discriminator. This network is used to match the
speech segments and the corresponding sign pose sequences.
Figure 4 shows the design of our cross-modal matching net-
work. It consists of separate speech and pose embedding lay-
ers which first learn a high dimensional embedding of input
speech and pose sequence. We have multiple self attention
blocks to learn attention aware representations for each modal-
ity which are then fused using a multi-headed cross attention
block. The cross attention fusion of two modalities learns to
embed speech encoding into the pose space and learns the re-
lationship between them. The cross-modal attention block is
followed by a position-wise feed-forward layer and a few self-
attention blocks. Finally, a fully-connected layer with sigmoid
non-linearity is used to obtain a probability signifying “match”
or “no-match”. In our experiments, we show the effectiveness
of cross-modal discriminator in improving the network’s per-
formance.

3.2.6. Joint Training of Transformer with Cross-Modal Dis-
criminator

We train the multi-task transformer with cross-modal dis-
criminator jointly in a conditional generative adversarial net-
work [22] setting to produce more realistic pose sequences. Our
proposed multi-task transformer acts as a generator G, and the
cross-modal matching network acts as a discriminator D, and
they compete in a min-max game given by the objective func-
tion,



Table 2: We report scores from various baseline approaches
along with our proposed network. We can see that our network
outperforms other baselines in the text to sign language and
speech to sign language settings. Since [10] was trained on
Phoenix 14T [15] dataset in the original paper, we also report
the scores on the same data as a reference (last row).

Dataset Approach Task DTW↓ PCK↑

ISL dataset Saunders et al. [10] Text to SL 16.26 40.14
ISL dataset LSTM + attention Speech to SL 17.37 39.30
ISL dataset Ours w/o multi-tasking Speech to SL 16.71 41.60
ISL dataset Ours w/o discriminator Speech to SL 14.94 49.40
ISL dataset Ours Speech to SL 14.05 53.30

Phoenix 14T [15] Saunders et al. [10] Text to SL 11.44 38.12

min
G

max
D
LGAN (G,D) = E[logD(X|Y )]

+ E[log(1−D(G(X̂|Y )] (5)

where, X̂ represents the generated pose sequence,X represents
the target pose sequence, and Y represents the ground truth in-
put speech. Thus, the overall loss for the network is given as a
weighted sum of losses in Equations 2, 4 and 5,

LTotal = λRegLReg + λXentLXent + λGANLGAN (6)

where λReg is the regression loss weight, λXent is the recogni-
tion loss weight, and λGAN is the weight for adversarial loss.

3.3. Implementation details

We have implemented all our models using the PyTorch frame-
work [23]. In all the transformer layers, we use an embedding
size of dmodel = 512, N = 2 layers and number of heads
M = 8. We use Xavier initialization and Adam optimizer with
an initial learning rate of 10−3 for training the transformer and
the cross-modal discriminator. We also use data augmentation
like predicting multiple-frame poses at each time step as done
by [2]. We predict 10 frames at every time step to penalize
the network heavily for producing mean poses. We have set
λReg = 1, λGAN = 10−4, λXent = 10−3 in our experiments.

4. Results and Evaluation
We evaluate the quality of the generated sign language pose
sequences from different models using Dynamic Time Warp-
ing (DTW) and Probability of Correct Keypoints (PCK) scores.
DTW finds an optimal alignment between two time series by
non-linearly warping them. Lower DTW corresponds to better
pose generations. On the other hand, PCK is used in several
pose detection and generation works [24], [25]. It evaluates the
probability of pose key points to be close to the ground truth key
points up to a threshold of α = 0.2. Higher PCK corresponds
to better pose generations.

We start by comparing with the state-of-the-art text to sign
language model [10] trained on the proposed ISL dataset as
shown graphically in Figure 5. Since ours is the first work
to deal with speech to sign language generation, we do not
have directly comparable networks for the given task. Thus,
we also establish several baselines for the first time, as shown
in Table 2. Our first proposed baseline is a modified speech-
to-text [26] network consisting of an LSTM seq2seq network
with an attention mechanism. We modified the network for
the regression task of generating pose key points instead of

Figure 5: We show a graphical comparison between the gener-
ated outputs from the state-of-the-art text to sign language and
our speech to sign language models. We can observe that the
poses generated by our model are closer to the ground-truth
pose sequence indicating its superiority.

Table 3: Quantitative evaluation for speech to sign language
generation using different discriminators.

Approach DTW↓ PCK↑

Ours w/o discriminator 14.94 49.40
Ours with conv. disc 15.07 45.41

Ours with pose-only disc 15.34 43.76
Ours 14.05 53.33

character probabilities. This network serves as a comparison
between the RNN based approach and our transformer-based
method. We observe that using an LSTM-based network leads
to mean pose being generated at each time step, severely im-
pacting the outcome. We also train a single task network by
removing the text decoder block from our architecture. As evi-
dent from Table 2, incorporating an auxiliary task of generating
text sequences from speech helps in the main task of sign lan-
guage generation. Finally, we also evaluate the importance of
the cross-modal discriminator by training a model without the
discriminator. As seen from Table 2, our network with cross-
modal discriminator achieves significantly better metric scores
(DTW:14.05, PCK:53.33) compared to the best available text
to sign language model [10] and other speech to sign language
baselines. Since [10] was originally trained on the Phoenix
14T [15] dataset, we also report the reference scores for the
reader in the same table.

To highlight the importance of the cross-modal matching
network, we perform an ablation experiment with other dis-
criminators. We use a 1D convolutional discriminator to clas-
sify generated pose sequence as real or fake, similar to the
one proposed by Saunder et al. in [10]. As seen in Table 3,
other types of discriminators are detrimental for the network
and work poorer than the “without” discriminator setup.

5. Conclusion
In this work, we introduce the task of translating the spoken
language to sign language pose sequences to make way for two-
sided communication between the hearing impaired and the rest
of the world. We propose a new ISL dataset with speech modal-
ity and avoid the expensive gloss annotations. We are the first to
achieve state-of-the-art results for the task of speech to sign lan-
guage generation using a multi-task transformer network cou-
pled with a cross-modal discriminator. Our work paves the way
for future research in speech to sign language generation that
may one day result in real-time sign language translation.
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