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Abstract

Object detection is a key component in autonomous navigation systems that enables
localization and classification of the objects in a road scene. Existing object
detection methods are trained and inferred on a fixed number of known classes
present in road scenes. However, in real-world or open-world road scenes, while
inference, we come across unknown objects that the detection model hasn’t seen
while training. Hence, we propose Open World Object Detection on Road Scenes
(ORDER) to address the aforementioned problem for road scenes. Firstly, we
introduce Feature-Mix to improve the unknown object detection capabilities of an
object detector. Feature-Mix widens the gap between known and unknown classes
in latent feature space that helps improve the unknown object detection. Next, we
identify that the road scene dataset compared to generic object dataset contains a
significant proportion of small objects and has higher intra-class bounding box scale
variations, making it challenging to detect the known and unknown objects. We
propose a novel loss: Focal regression loss that collectively addresses the problem
of small object detection and intra-class bounding box by penalizing more the
small bounding boxes and dynamically changing the loss according to object size.
Further, the detection of small objects is improved by curriculum learning. Finally,
we present an extensive evaluation on two road scene datasets: BDD and IDD. Our
experimental evaluations on BDD and IDD shows consistent improvement over the
current state-of-the-art method. We believe that this work will lay the foundation
for real-world object detection for road scenes.

1 Introduction

Building a robust autonomous navigation system that can reliably maneuver in a real-world scenario is
a challenging task. Object detection [20; 2; 14; 19; 27; 5; 11] plays an important role for autonomous
navigation systems in identifying and localizing objects in a road scene. Current object detection
models are trained on a closed-set, where all the test classes are known at training time [22]. However,
in an open-world setting the test set has objects from unknown categories. Therefore, present object
detectors do not generalize well in an open world setting. Recently, Joseph et al. [10] introduced
Open World Object Detector (ORE) framework that performs open-world object detection. The
performance of ORE was evaluated on generic dataset: MS-COCO [12] and PASCAL-VOC [4].
However, we find that the ORE framework shows poor performance when applied to challenging
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Figure 1: (a): We can observe intra-class and inter-class scale variation prominently in some of the
categories like car and pedestrian category. This issue is prominent in road scene datasets.(b): Shows
the distribution of bounding box area in BDD and IDD, we notice that there are relatively more small
bounding boxes than large bounding boxes.

domains, such as road scene datasets. The challenges include: a) unknown objects are hard to
detect; b) the proportion of small objects (from both known and unknown set) is significant (fig. 1
[b]), and c) the presence of intra-class scale variation (fig. 1 [a]). The problem of intra-class scale
variation is highly pronounced found in road scene datasets. Generic datasets such as MS-COCO and
PASCAL-VOC consist of images captured close to the object resulting in smaller variations in scale.
Similarly, in aerial object detection dataset [28], the objects are captured at distinctly high altitudes
resulting in a consistent intra-class object size.

We propose Open World Object Detection on Road Scenes (ORDER) that addresses the aforemen-
tioned problems. We introduce Feature-Mix, inspired by Open-Mix [30] where we combine multiple
unknown and known class instances to improve unknown object identification. It is important to note
that Open-Mix takes a single instance of known and unknown, hence, it cannot combine multiple
unknown and known class instances that are generally present in road scenes. Feature-Mix overcomes
the limitation of Open-Mix by mixing unknown and known class instances at the feature level, allow-
ing it to mix multiple instances of known and unknown classes. Next, we propose focal regression
loss that handles intra-class variation by including bounding box area and improves small object
detection by penalizing more to small bounding boxes than large ones. We further improve small
object detection by training the ORDER framework in a curriculum manner. Improving the small
object detection and handling the intra-class variation reduces the chances of known class detected
as unknown and improves the known object detection. We validate the performance of ORDER
and the competitive baselines on the Indian Driving Dataset (IDD) [26] and Berkeley Deep Drive
(BDD) [29] datasets. We observe that the ORDER shows state-of-the-art performance on open-world
evaluation metrics: Wilderness Impact (WI) and Absolute Open-Set Error (A-OSE). Additionally,
an extensive ablation study is also performed on ORDER to show the contribution of proposed
components individually.

The key contributions of our work are:

• To the best of our knowledge, ORDER is the first work that addresses open-world object
detection for road scene datasets.

• Introduces Feature-Mix, which is integrated in ORDER that significantly improves the
feature representation of unknowns.

• Identifies and addresses two inherent issues in road scene datasets: intra-class scale variation
by proposing focal regression loss and small object detection by curriculum learning.

2 Related Works

Object Detection: The goal of an object detection model is to predict the bounding boxes and the
class for an object present in an image. The current set of detectors can be divided into two categories:
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Figure 2: Illustration of ORDER framework. f is RoI pooled features consisting of known class
features fk and unknown class features funk that are mixed in Feature-Mix M block. Lclf , LfReg
and Lunk denotes the classification loss, focal regression loss, and feature-mix loss, respectively.

single-stage detectors and two-stage detectors. Two-stage detectors such as Faster R-CNN [20],
R-FCN [2] depend on Region Proposal Network (RPN) that generates the region proposals based
on an objectness score, which are further refined to get desired object bounding box. Whereas
single-stage detectors such as SSD [14], YOLO [19], and SqueezeDet [27] consist of a single network
that can predict the object bounding boxes and classes. There are also several works of object
detection [13; 27; 8] on road scene datasets. We choose the two-stage detector over the single-stage
detector since the former demonstrates better performance.

Open Set Detection: Object detectors trained on fixed set of training and testing classes are not
robust in identifying unknown encountered in real-world. Miller et al. [16] introduced the open-
set object detection for real-world scenarios. They utilized dropout sampling to get the uncertainty
present in the object detector and used it to identify unknown objects. Next, Miller et al. [15] deployed
various merging strategies for Monte Carlo (MC) dropout on object detector and evaluated in open-set
conditions. Recently, Dhamija et al. [3] provided a detailed analysis of object detector performance
in the open-set setting and proposed an evaluation metric Wilderness Impact that quantifies the
performance of object detection model in real-world.

Open World Detection: Joseph et al.[10] introduced the problem of open-world object detection
and proposed Open World Object Detector (ORE). The key idea of ORE is to identify unknown classes
and incrementally learn the distinct unknown classes when the labels of those classes are available.
ORE uses Faster R-CNN as a base detector and improves its ability to identify unknown classes by
adding contrastive clustering and an energy-based classifier. However, the ORE is not designed to
handle intra-class scale variation explicitly, which is prominently present in road scene datasets. Our
proposed framework addresses the issue of scale variation by introducing curriculum-based training
along with a novel Focal Regression Loss (section 3.4). We also improve the feature representation
of unknown by introducing Feature-Mix (see sections 3.3 and 5.5).

3 Methodology

3.1 Problem Setting

We begin the formulation of Open World Object Detection (OWOD) by considering a set of known
classes as Ck and a set of unknown classes Cunk. The known classes will have ground-truth bounding
boxes, whereas unknown classes will be encountered at test time. We train a detection model D on a
set of known classes and simultaneously ensure that unknown class instances are also detected. Next,
the detected set of unknown class instances could be forwarded to a human annotator to obtain the
ground-truth labels. The detection model is incrementally trained on the new ground-truth labels
rather than training the entire model from scratch giving an improved detection model D̂. We continue
the process of the detection model adapting to a new set of classes and detecting unknown class
objects over a lifetime. In the experimental setting, we define the set of classes as task T .
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3.2 ORDER: Open World Object Detection on Road Scenes

ORDER uses Faster-RCNN [7] detector that is molded accordingly to detect known and unknown
objects. It consists of three output heads: Energy Based Classification head, Focal Regression head,
and Feature-Mix head. Energy Based Classification head and Focal Regression head are used to learn
to differentiate between known and unknown features by using Lclf and Lunk. Focal Regression
head learns the object bounding boxes. Figure 2 shows the pipeline of the ORDER framework.
The ORDER framework is inspired from ORE [10], however, it largely differs in terms of novel
components that we introduced to handle the challenges present in road scene datasets. We will
discuss the key novelties of ORDER framework in detail.

3.3 Feature-Mix

Unknown class identification is an essential component of an open-world object detector. In au-
tonomous navigation systems, improving unknown class identification will increase the chances of
avoiding unfavorable situations. We propose a Feature-Mix approach that improves unknown class
identification by incorporating knowledge of known classes. The key intuition behind Feature-Mix is
to mix the features of known and unknown and suppress the activation caused by known features, so
that the latent difference between known and unknown feature is maximized. We begin Feature-Mix
formulation by taking Region of Interest (RoI) pooling output features f consisting of known class
features fk and unknown class features funk. We mix the known and unknown features by:

fmix = λfk + (1− λ)funk, (1)

where, λ is sampled from beta distribution parameterized with α and β. Now, the unknown classifier
Cunk utilizes fmix to identify unknown objects trained by using a loss Lunk given by:

Lunk = −ylog(softmax(Cunk(fmix))), (2)

y = argmax(log(softmax(Cunk(fmix)))) (3)

y represents the ground-truth label. We use a small held-out validation set, as proposed in ORE [10],
consisting of known and unknown data samples to train Feature-Mix.

3.4 Focal Regression Loss

Popular detection methods use Smooth-L1 [20], and Generalized Intersection over Union (GIoU) [21]
loss for bounding box regression. However, these losses do not explicitly incorporate the knowledge
of intra-class scale variation prominent in road scene datasets. We introduce Focal Regression
Loss (LfReg) that addresses the problem of a) detecting small objects by penalizing more for small
bounding boxes b) intra-class variation by including bounding box information. We formulate LfReg
by adding a regulating component (1− IoU)γ

∗
to squared IoU loss, where γ∗ ∈ [0,∞) is a focusing

parameter. LfReg can be denoted as:

LfReg = (1− IoU)γ
∗
‖1− IoU‖22 (4)

γ∗ = γ + log(log(Ârbboxgt)), Ârbboxgt = ArImg/Arbboxgt (5)

Ârbboxgt
and Arbboxgt

represents the inverse-normalized and unnormalized bounding box area,
respectively. Inverse-normalization gives large values for small bounding boxes and small value for
large bounding boxes. .Ârbboxgt

results from dividing image area ArImg by Arbboxgt
. γ∗ consists

of tunable parameter γ and double logarithmic of inverse-normalized bounding box area. We apply
double logarithmic to inverse-normalized bounding box area because a) it prevents overshooting
of γ∗ when inverse-normalized bounding box area is tiny, b) it smoothens out the variation in the
inverse-normalized bounding box area making the training more stable. Note that for small bounding
boxes, the value of γ∗ would be high, resulting in more penalization as compared to large bounding
boxes that are easy to detect.
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3.5 Curriculum Training

Detecting smaller objects [9] is a harder task than detecting object instances with larger sizes. In
autonomous navigation datasets such as BDD and IDD, the proportion of small objects is signifi-
cant fig. 1. As per [24], smaller objects are considered harder to learn than larger objects. Hence,
we adopt a curriculum learning [1; 6] strategy to gradually train the network from easy samples
(large objects) to hard samples (small objects). We divide the training dataset into three sets: Seasy ,
Smedium, and Shard, based on the bounding box area. For an individual task Ti, i ∈ {1, 2, 3}, we
train the detection model in three steps that can be formulated as:

Ti =


Seasy I1; if Arbbox < Areasy
Seasy + Smedium I2; if Arbbox < Armedium
Seasy + Smedium + Shard I3

(6)

I1, I2, and I3 are the number of iterations each group of the sets are trained. Areasy and Armedium
are the area thresholds for selecting large and medium bounding boxes.

4 Experiments and Results

4.1 Datasets Protocol

We adapt the standard evaluation protocol of ORE [10] to demonstrate the efficacy of ORDER. For
a given dataset, we divide it into a set of classes. Each class set is denoted by task Tt, t represents
the time-stamp of the model having access to only classes of Tt. The dataset can be represented as
{T = T1, · · ·Tt, · · · }. At a given time-stamp t, the classes of {Tτ : τ ≤ t} are considered as knowns
and the classes of {Tτ : τ > t} as unknowns. We follow the protocol discussed above discussed to
divide the IDD and BDD datasets into tasks.

The IDD dataset consists of 15 classes. We divide the dataset into three tasks, and each task consists
of 5 classes. The BDD dataset consists of 10 classes. We divide the dataset into three tasks; the first
task consists of 4 classes, and the rest have 3. For each task, we randomly choose the classes to avoid
any bias. The statistics of training and testing instances and the classes for each task are given in
table 1. We take a set of 3K images from each dataset for validation.

4.2 Evaluation Metrics

We use mean Average Precision (mAP) to evaluate the performance of the model on known classes.
The IoU threshold for the mAP is taken as 0.5 in accordance with [23; 18; 10]. Now, to quantify the
performance of a model for unknown identification, we use Wilderness Impact (WI) [3] metric. The
WI measures the model’s sensitivity to unknowns over a range of frequency of frames that may have
unknowns. The WI is equated as:

Wilderness Impact (WI) =
PK
PK∪U

− 1

Here, PK refers to the precision of the model when evaluated on known classes, and PK∪U is the
precision when evaluated on known and unknown classes, measured at a recall level(R) of 0.8 in all
experiments. Ideally, the WI needs to be close to 0, demonstrating that the precision does not change
when unknowns are introduced to the test set. Absolute Open-Set Error (A-OSE) [16] is another
metric that shows the unknown detection performance of a model. It is defined as total number of
unknown objects getting classified as a known object.

4.3 Implementation Details

We use the modified Faster R-CNN with ResNet-50 [7] backbone according to ORE. The shape
parameters α and β are chosen to be 1. The contribution of Lunk in total loss is 0.001 and 0.1 for
IDD and BDD, respectively. The values of hyperparameter γ present in Focal Regression Loss is 0.4
and 0.1 for IDD and BDD, respectively. For the Curriculum training, I1, I2, and I3 values are 36K
for Areasy and 72K for Armedium and Areasy on both IDD and BDD datasets. We train our models
on 4 GPUs with a batch size of 8 images.

5



Table 1: Table shows the division of the datasets into various tasks. For each task the group of classes,
training and testing statistics are shown.

IDD BDD

Task 1 Task 2 Task 3 Task 1 Task 2 Task 3

Categories
person, bicycle, train,

truck, traffic sign

traffic light, bus,

car, rider, trailer

motorcycle, caravan, animal,

autorickshaw, vehicle fallback

pedestrians, motorcycle,

traffic sign, bus

bicycle, train,

traffic light

car, rider,

truck

# training images 23217 25586 25146 61208 40416 69103

# test images 7558 8462 8085 8756 5803 9898

# train instances 103614 155404 122498 345639 195123 734030

# test instances 30025 55204 40831 50270 27938 107825

# unknown instances 96035 40831 0 136763 107825 0

4.4 Results on BDD

We now discuss the results of our experiments on the BDD dataset. As a baseline, we train Faster-
RCNN on the first task and finetune it on consecutive tasks as shown in the first-row of table 2 (top).
The ORE reduces both WI and A-OSE (lower the better) compared to baseline for the first two tasks
of BDD. However, ORE drops in overall mAP by 2 (approx.) compared to baseline for the two tasks
(columns 4 and 9 of table 2 [BDD]). On the contrary, ORDER improves mAP by 0.5 and 1.4 for
the two tasks, reducing WI by 0.015 and 0.013 compared to the baseline. ORDER also reduces the
AOSE by a considerable margin of 9769 and 11385 as compared to the baseline. For Task 3 of BDD,
ORDER attains a massive gain in overall mAP of around 6.36 and 5.95, compared to the baseline
and ORE (last column of table 2 [BDD]).

4.5 Results on IDD

On the IDD dataset, we observe in table 2 (bottom) that the WI is comparable for the three models.
ORDER, however, achieves the best A-OSE for the first two tasks of IDD, reducing it by a margin
of 11186 and 10255 compared to baseline and 2796 and 2628 compared to ORE. ORDER’s overall
mAP is comparable to ORE for Task 1 of IDD and is highest for the remaining tasks (columns 9 and
12 of table 2 [IDD]).

It is also interesting to note that ORDER performs better than ORE for all the columns in table 2
(refer to last two rows of the tables).

5 Discussion and Analysis

5.1 Ablative Study of ORDER

We perform ablative studies to validate the performance of the proposed components of ORDER
qualitatively. Table 3 shows the results on Task 1 of IDD. We observe that using all the proposed
components shows significant improvement on WI, A-OSE, and mAP over the model trained with
only Smooth-L1 loss (row 1 of table 3). It is also essential to infer from the first two rows of table 3 that
the proposed focal regression loss shows significant improvement in mAP compared to Smooth-L1.

5.2 Performance Comparison of Focal Regression Loss

We demonstrate the efficacy of our proposed focal regression loss in better identifying known objects.
We compare the proposed loss with Smooth-L1 [20], GIoU [21], and Least Square IoU [17]. Table 4
(a) shows the mAP on all the losses trained on Task 1 of IDD. We find that Focal Regression Loss
gives the best performance among all the losses.

Note that all the classes are known for Task 3; hence, the two metrics do not hold.
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ORDER ORE [10]

Figure 3: Qualitative comparison: Row a) images are from the IDD dataset, and b) and c) are from
the BDD dataset. The results are inferred from the models trained on Task 2 of the BDD and IDD
datasets. In row a), we observe that ORDER is able to detect smaller objects with high confidence.
It is interesting to note that the highlighted boxes of a) has car instances shows intra-class scale
variation. ORDER handles the intra-class scale variation within the car instance by detecting it on
varying scales. In b) and c), we can see ORDER detects safety-critical classes such as pedestrian
and traffic sign better than ORE. We also notice that ORDER performs better at recognizing
overlapping known and unknown objects and has high confidence in unknown and known predictions.
For easy distinction, the red bounding boxes denote unknown predictions, whereas the green bounding
boxes denote the distinct known classes. The blue and pink boxes represents the cropped region. Best
viewed when zoomed.
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Table 2: Quantitative performance of ORDER on road scene datasets. We notice that ORDER shows
good performance in identifying unknown classes by giving lower Wilderness Impact and Average
Open Set Error and simultaneously performs well in detecting known classes by giving high mean
Average Precision. Best results are highlighted in bold.

BDD

Task IDs (→) Task 1 Task 2 Task 3

WI A-OSE mAP (↑) WI A-OSE mAP (↑) mAP (↑)

(↓) (↓) Current
known

(↓) (↓) Previously
known

Current
known

Both
Previously

known
Current
known

Both

Faster-RCNN [20]
+ Finetuning

0.04563 12628 46.01 0.02351 14738 42.86 18.31 32.34 28.38 37.96 31.26

ORE [10] 0.03244 6186 44.43 0.01807 5028 37.54 18.65 29.44 27.80 40.70 31.67

ORDER 0.02994 2859 46.50 0.00983 3353 40.65 24.89 33.90 34.35 45.25 37.62

IDD

Task IDs (→) Task 1 Task 2 Task 3

WI A-OSE mAP (↑) WI A-OSE mAP (↑) mAP (↑)

(↓) (↓) Current
known

(↓) (↓) Previously
known

Current
known

Both
Previously

known
Current
known

Both

Faster-RCNN [20]
+ Finetuning

0.09559 21539 35.79 0.06279 21134 21.25 27.79 24.52 23.84 23.48 23.72

ORE [10] 0.10702 13149 35.01 0.05999 13507 18.17 26.49 22.33 25.76 22.04 24.52

ORDER 0.09984 10353 35.20 0.06460 10879 20.13 29.88 25.01 25.08 24.48 24.88

Table 3: Ablation study of proposed components in ORDER on Task 1 of IDD. Best results are
highlighted in bold.

Regression Loss Feature Mix Curriculum Training WI A-OSE mAP

Smooth-L1 [20] 7 7 0.10702 13149 35.01

Focal Regression 7 7 0.11021 13084 36.58

Focal Regression 3 7 0.10996 10563 33.90

Focal Regression 3 3 0.09984 10353 35.20

5.3 Sensitivity Analysis of Feature-Mix:

We show the variation in the performance of ORDER by changing the contribution of the feature-mix
in the total loss. Table 4 (b) shows the performance of ORDER on Task 1 of IDD having various loss
weights denoting the fraction of feature-mix loss contributed towards total loss. We find that tuning
the feature-mix weights to 0.001 gives the best performance on almost all the evaluation metrics.

5.4 Qualitative Results

Qualitative results demonstrating the ORDER’s capability to i) handle intra-class scale variations,
ii) detect small objects, and iii) discriminate knowns from unknowns can be seen in fig. 3. We show
the sample results of the model trained on task 2 of IDD and BDD datasets. As shown, ORDER
performs better than ORE for the three different cases. The key observations are that ORE misses
several known objects (especially cars in IDD and pedestrians in BDD) and demonstrates confusion
among detected unknown and known objects (especially traffic signs in BDD). On the contrary,
ORDER performs considerably better for such cases with high confidence. More qualitative results
in appendix A.
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Table 4: (a) Performance of ORDER when trained on various bounding box losses. (b) Sensitivity
analysis of Feature-Mix loss contribution. All the experiments are conducted on the Task 1 of IDD.
Best results are highlighted in bold.

(a)

Loss mAP

Smooth-L1 [20] 34.01

GIoU [21] 32.53

Least Square IoU [17] 32.44

Focal Regression (Ours) 35.20

(b)

Loss weight WI A-OSE mAP

1 0.10153 10088 35.13

0.1 0.10169 10069 35.12

0.01 0.10108 10145 35.14

0.001 0.09985 10353 35.20

ORDER ORE [10]

Figure 4: We show the t-SNE plots of latent features of ORDER and ORE on Task 2 of BDD. Class
label 7 denotes the unknown class, and the remaining classes are known. We can see that ORDER
clearly separates class 7 with 6, whereas in ORE, these classes are intertwined. We can also notice
that the separability between the smaller objects such as 0 (traffic sign) and 4 (traffic light) is better in
ORDER.

5.5 Latent Feature Visualization

We show the visualization of latent features of ORDER and ORE. These features are obtained after
RoI pooling from the model trained on BDD Task 2 and then visualized using t-SNE [25]. Figure 4
shows the clusters formed by latent features belonging to various classes. 7 represents the unknown
class and the rest as known class labels. We can observe the features cluster of ORDER have better
quality compared to ORE and can better differentiate unknown class feature label (7) with the known
class feature (6).

6 Conclusion

This work introduces the ORDER framework designed to handle Open World Object Detection
challenges on road scene datasets. We demonstrate that ORDER outperforms the current state-of-art
open world detector. The key contribution consists of Feature-Mix that improves the unknown
object identification. Further, we handle the intra-class scale variation and small object detection
by proposed Focal Regression Loss and curriculum learning. Currently, ORDER trains on
the tasks that belong to a single road scene dataset. In the future work, we plan to extend
ORDER to be trainable on tasks that belong to multiple road scene datasets captured in different
geographic locations. We hope this work will open doors for further research to make vision mod-
els more robust in real-world scenarios, resulting in safer and reliable autonomous navigation systems.
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A Appendix

Figure 5: The images in row 1,2, and 3 show the result of ORDER on Task 1,2, and 3 respectively.
We can notice that the rider and motorcycle class which are unknown in the results of Task 1, are
subsequently learnt in Task 2 and Task 3. Best viewed when zoomed.
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a)

c)

b)

ORDER ORE [10]

Figure 6: Each row represnts the qualitative results on ORDER and ORE framework. In row b) we
can notice that the bicycle class is not being detected by ORDER whereas it is being detected as
unknown by ORE, which is a mis-detection by both the frameworks. Rows a) and c) shows better
known and unknown detections by ORE.
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