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Abstract. Few-shot learners aim to recognize new categories given only
a small number of training samples. The core challenge is to avoid over-
fitting to the limited data while ensuring good generalization to novel
classes. Existing literature makes use of vast amounts of annotated data
by simply shifting the label requirement from novel classes to base classes.
Since data annotation is time-consuming and costly, reducing the label
requirement even further is an important goal. To that end, our pa-
per presents a more challenging few-shot setting with almost no class
label access. By leveraging self-supervision to learn image representa-
tions and similarity for classification at test time, we achieve compet-
itive baselines while using almost zero (0-5) class labels. Compared
to existing state-of-the-art approaches which use 60,000 labels, this
is a four orders of magnitude (10,000 times) difference. This
work is a step towards developing few-shot learning methods that do
not depend on annotated data. Our code is publicly released at https:
//github.com/adbugger/FewShot.3
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1 Introduction

Few-shot learners [39,33,10] aim to learn novel categories from a small number
of examples. Since getting annotated data is extremely difficult for many natural
and man-made visual classes [20], such systems are of immense importance as
they alleviate the need for labelled data.

Few-shot learning literature is extremely diverse [41] with multiple classes of
approaches. Meta-learning [10,30,29] is a popular class of methods which use ex-
perience from multiple base tasks to learn a base learner which can quickly adapt
to novel classes from few examples. There has been immense progress using the
meta-learning frameworks [11,43,16,16,27,1]. While extremely popular, such ap-
proaches are computationally expensive, require that the base tasks be related
to the final task, and need many training class labels for the base tasks. Other
approaches focus on combining supervised and unsupervised pipelines [12,34,4]
and others alleviate the data requirement by generating new labelled data using

3 This work was supported by the IMPRINT program.
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Fig. 1. Label-free Few-shot Classification: Proposed setting (Best viewed in color)

hallucinations [17]. Recent methods [40,5] have also established strong baselines
with computationally extremely simple training pipelines and classifiers. How-
ever, these methods either do not address the label requirement, or cannot be
easily extended to new network architectures. This work is a step towards de-
veloping few-shot learning methods that do not depend on annotated data.

Recent work in contrastive learning [21,19,5] has shown that it is possible
to learn useful visual representations without class labels by learning image
similarity over multiple augmented views of the same data, paired with a suitable
training strategy and a loss function. We leverage SimCLR [5] and MoCo [19] to
develop training methods with restricted label access. Since image similarity is
an effective pre-training task for few-shot [22], we perform image classification
using image similarity as shown in Figure 2. We perform test time classification
by choosing the key image most similar to the input to be classified. The network
is thus completely unaware of any class label information.

Our key contributions are as follows:

– A new challenging label-free few-shot learning setup.

– An easy to adapt, computationally and conceptually simple, end to end label
free pipeline.

– Competitive performance using almost zero class labels. Compared to the
approximately 60, 000 class labels used by existing state-of-the-art, this is a
four orders of magnitude improvement.

– We examine classification quality and the impact of limited label information
in our ablations.
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Fig. 2. General overview of our pipeline. Left: Self-supervised training to learn con-
trastive representations without labels. See Algorithm 1 for further details. Right:
Image classification using image similarity for few-shot classification without using la-
bels. Images are encoded using the model learned in the training phase. Further details
in Algorithm 2. (Best viewed in color)

2 Related Work

There is a great diversity of few-shot learning literature [41]. In this section we
discuss motivating works from related fields.

2.1 Related Perspectives

Metric learning methods “learn to compare”. By learning image similarity, a
model can use similarity to label instances of novel classes by comparing with
known examples. It is also an effective pre-text task for few-shot learning [22].
These models learn by conditioning predictions on distance metrics such as cosine
similarity [39], Euclidean distances [33], network based [36], ridge regression [3],
convex optimization based [25], or graph neural networks [32]. Regularization
techniques such as manifold mixup [26], combined with supervised pipelines,
also improve accuracies.

Self supervised methods remove the need for annotated data by using a su-
pervisory signal from the data itself. A number of pretext tasks such as predicting
image coloration [24,44], predicting image patch positions [28,9], and predicting
image rotations [15] are used in the literature. Combining self-supervision with
supervised approaches [12,34,4] has also resulted in improved accuracies over
few-shot tasks. Finally, [5,19,37,21] learn contrastive representations by apply-
ing simple transforms on input images and predicting image similarity. By learn-
ing to predict image similarity in the presence of distortions, the network can
effectively distill information, making it suitable for quick adaptation on novel
classes. We leverage two recent contrastive approaches in our work: SimCLR [5]
and MoCo [19].
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3 Approach: Few-Shot Learning with almost No Labels

Since learning image similarity is useful for few-shot tasks [22], we focus on learn-
ing contrastive representations during our training phase. This allows us to ignore
the labels completely, unlike [22]. Following a contrastive learning approach, we
first apply two different data augmentations to an input image, generating two
augmented images. The task for our neural network f(·) is to learn image repre-
sentations such that the encoding of two augmented images generated from the
same input are as similar as possible. Algorithm 1 presents a detailed description
of one training epoch, and Figure 2 presents a visual overview.

Given an input minibatchM a stochastic augmentation module A generates
two minibatches, one of the query images Mq

A, and the other of the key images
Mk
A by performing two different image transforms. For a given query image, q

the key image generated from the same input is denoted k+, and k− otherwise.
Pairs of query and key generated from the same input (q, k+) are denoted positive
and negative (q, k−) otherwise.

Encoder networks f(·) and g(·) are used to learn representations of key and
query images respectively. Note that depending on the setting, these networks
may be the same. Network f(·) is used for downstream test time tasks. After
computing the encoded representations Rk of the key, and Rq of the query, the
networks are trained to maximize the representation similarity for positive pairs,
and minimize for negative pairs. This is achieved by minimizing the following
contrastive loss in Eqn 1

L(Rq, Rk+ , {Rk−}) = − log
exp s(Rq, Rk+)/τ

exp s(Rq, Rk+)/τ +
∑
Rk−

exp s(Rq, Rk−)/τ (1)

where τ is a temperature hyperparameter, and s(·, ·) is a similarity function.

SimCLR Base In this setting, we treat augmented minibatches of key and
query images on an equal footing with no distinction. Starting from an input
minibatch of N images, there are 2N positive pairs and 2N(2N − 2) negative
pairs. The same network f(·) is used to embed both keys and queries. A cosine
similarity function is used in the contrastive loss (Eqn 1), s(x,y) = xTy/|x||y|.
This setup is referred to as Ours S in our results.

MoCo Base This setting decouples the number of negative samples from the
batch size. Once the key and query images have been generated from the input,
the few-shot task is formulated as a dictionary lookup problem. The dictionary
consists of key images, and the unknown image to be looked up is the query. The
keys are encoded using a momentum encoder, which maintains the set of positive
and negative samples per query. The query (non-momentum) encoder is used
for downstream few-shot tasks. This setting uses a dot product as the similarity
function for contrastive loss s(x,y) = xTy and is referred to as Ours M in our
results.
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Algorithm 1: Overall Training Methodology

Input: Augmentation Module A(·)
Input: Encoders f(·) g(·)
Input: Constrastive Loss Module L(q, k+, {k−})
Data: Training dataset Dtr

Result: Trained network f(·)
for minibatchM in Dtr do

Mq
A,M

k
A = A(M) ; // get augmented minibatches

{Rq} = f(Mq
A) ; // encode query representations

{Rk} = g(Mk
A) ; // encode key representations

for query Rq in {Rq} do
Rk+ = ChoosePositive(Rq, {Rk}) ; // positive key image

{Rk−} = ChooseNegative(Rq, {Rk}) ; // negative key images

L(Rq, Rk+ , {Rk−}) ; // minimize contrastive loss

UpdateParams(f , g) ; // update network parameters

end

end
return f

3.1 Testing Framework

We present our general testing framework and provide details of the specific test
time classifiers used for our experiments. The testing phase consists of multiple
few-shot tasks, following accepted practice [40]. Each C-way K-shot task consists
of K key images, and Q query images from C novel classes each. Using the C ∗K
key images, the trained network must classify the C ∗Q query images.

Given the set of key images {k}, a query image q to be classified, and the
trained network f(·) from the training phase, a classifier Cf matches q with its
most similar key image kj . The classification is deemed correct if q and kj have
the same label, as determined by a separate verifier since the classifier does not
have access to labels. See Algorithm 2 for a concise representation of our testing
framework.

Inspired by [6,40], we study the use of two different test time classifiers:
the 1-Nearest Neighbor classifier (1NN) from SimpleShot [40] and a soft cosine
attention kernel (Attn) adapted from Matching Networks [39].

The 1NN classifier chooses the key image which minimizes the Euclidean
distance between the key and the query image under consideration.

Cf (q, {k}) = arg min
j
|f(q)− f(kj)|2 (2)

The Attn classifier chooses the key image corresponding to each query using an
attention mechanism that provides a softmax over the cosine similarities. Unlike
Matching Networks [39], we take an arg max instead of a weighted average over
the labels of the key image set since the classifier has no access to the probability
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Algorithm 2: Test Phase: N -way, K-shot Task

Input: Trained Encoder f
Input: Classifier Cf
Input: Similarity Function s(x,y)
Data: N ×Q query images: {(qi, yqi)}
Data: N ×K test images: {(ki, yki)}
Result: Accuracy on task
correct← 0;
foreach query image qi do

// return index of most similar key since classifier has no

label access

l = Cf (qi, {kj});
if yqi == ykl then correct = correct + 1;

end
return correct/(N ×Q)

distribution over the labels, or the number of labels.

Cf (q, {k}) = arg max
j

a{k}(q, kj)

a{k}(q, kj) =
exp c(f(q), f(kj))∑
i exp c(f(q), f(ki))

c(x,y) =
x · y
|x| · |y|

(3)

We introduce the effect of limited label information in the multi-shot setting
as part of our ablation studies. Inspired by ProtoNets [33] and MatchNets [39],
we compute class centroids as representatives for classification. Since computing
class centroids requires label information, we present those experiments as part
of our ablation studies separately in Section 4.3.

4 Experiments

4.1 Experimental Setup

We describe the experimental setup in this section, including datasets, evaluation
strategy, and hyperparameters for reproducibility.

Datasets We use experiments on three popular few-shot image classification
benchmarks.

The miniImageNet dataset [39] is a subset of ImageNet [8] and is a common
few-shot learning benchmark. The dataset contains 100 classes and 600 examples
per class. Following [30], we split the dataset into 64 base classes, 16 validation
classes, and 20 novel classes. Following [39], we resize the images to 84 × 84
pixels via rescaling and center cropping.
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Table 1. Average accuracy (in %) on the miniImageNet dataset. 1Results from [2],
which did not report confidence intervals. 2AmDimNet [4] used extra data from the
ImageNet dataset for training the network used to report mini-Imagenet numbers.
3Results from our experiments adapting the published training code from [42]. Ours
was implemented here using Ours S pipeline and Attn classifier. See Table 4 for more
pipeline and classifier variants.

Approach
Setting

Labels Used
1-shot 5-shot

Fully Supervised

MAML [10] 49.6 ± 0.9 65.7 ± 0.7 50,400
CloserLook [6] 51.8 ± 0.7 75.6 ± 0.6 50,400
RelationNet [36] 52.4 ± 0.8 69.8 ± 0.6 50,400
MatchingNet [39] 52.9 ± 0.8 68.8 ± 0.6 50,400
ProtoNet [33] 54.1 ± 0.8 73.6 ± 0.6 50,400
Gidaris et al. [13] 55.4 ± 0.8 70.1 ± 0.6 50,400
TADAM [29] 58.5 ± 0.3 76.7 ± 0.3 50,400
SimpleShot [40] 62.8 ± 0.2 80.0 ± 0.1 38,400
Tian et al. [38] 64.8 ± 0.6 82.1 ± 0.4 50,400
S2M2 [26] 64.9 ± 0.2 83.2 ± 0.1 50,400
Gidaris et al. [12] 63.77 ± 0.45 80.70 ± 0.33 50,400

Semi Supervised Antoniou et al. [2]1 33.30 49.18 21,600
With Finetuning AmDimNet [4]2 77.09 ± 0.21 89.18 ± 0.13 21,600

Semi Supervised Wu et al. [42]3 32.4 ± 0.1 39.7 ± 0.1 0
And Label Free BoWNet [14] 51.8 70.7 0

Ours 50.1 ± 0.2 60.1 ± 0.2 0

Table 2. Average accuracy (in %) on the CIFAR100FS dataset. 1Results from [25].
2Results from our experiments adapting the published training code from [42]. Ours
was implemented here using Ours S pipeline and Attn classifier. See Table 4 for more
pipeline and classifier variants.

Approach
Setting

Labels Used
1-shot 5-shot

Fully Supervised

MAML [10]1 58.9 ± 1.9 71.5 ± 1.0 48,000
RelationNet [36]1 55.0 ± 1.0 69.3 ± 0.8 48,000
ProtoNet [33]1 55.5 ± 0.7 72.0 ± 0.6 48,000
R2D2 [3]1 65.3 ± 0.2 79.4 ± 0.1 48,000
MetaOptNet [25] 72.8 ± 0.7 85.0 ± 0.5 60,000
Tian et al. [38] 73.9 ± 0.8 86.9 ± 0.5 48,000
S2M2 [26] 74.8 ± 0.2 87.5 ± 0.1 48,000
Gidaris et al. [12] 73.62 ± 0.31 86.05 ± 0.22 48,000

Semi Supervised Wu et al. [42]2 27.1 ± 0.1 31.3 ± 0.1 0
And Label Free Ours 53.0 ± 0.2 62.5 ± 0.2 0

Table 3. Avg accuracy (in %) on FC100 dataset. 1Results from [25]. 2Results from our
experiments adapting published training code from [42]. Ours was implemented here
using Ours S pipeline and Attn classifier. See Table 4 for more pipeline and classifier
variants.

Approach
Setting

Labels Used
1-shot 5-shot

Fully Supervised

ProtoNet [33]1 35.3 ± 0.6 48.6 ± 0.6 48,000
TADAM [29]1 40.1 ± 0.4 56.1 ± 0.4 48,000
MTL [35] 45.1 ± 1.8 57.6 ± 0.9 60,000
MetaOptNet [25] 47.2 ± 0.6 62.5 ± 0.6 60,000
Tian et al. [38] 44.6 ± 0.7 60.9 ± 0.6 48,000

Semi Supervised Wu et al. [42]2 27.4 ± 0.1 32.4 ± 0.1 0
And Label Free Ours 37.1 ± 0.2 43.4 ± 0.2 0
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Table 4. An ablation study of multiple classifiers on various backbones. Average accu-
racy and 95% confidence intervals are reported over 10,000 rounds. The ‘-C’ classifiers
use class labels to compute the centroids per class. Best results per dataset and few-shot
task are in bold.

Train Test
miniImagenet CIFAR100 FC100

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Ours S

1NN 48.7 ± 0.2 59.0 ± 0.2 52.0 ± 0.2 61.7 ± 0.2 36.0 ± 0.2 42.6 ± 0.2
Attn 50.1±0.2 60.1 ± 0.2 53.0±0.2 62.5 ± 0.2 37.1±0.2 43.4 ± 0.2

1NN-C - 64.6±0.2 - 65.8±0.2 - 47.2±0.2
Attn-C - 63.6 ± 0.2 - 63.8 ± 0.2 - 46.0 ± 0.1

Ours M

1NN 29.7 ± 0.1 39.0 ± 0.1 26.7 ± 0.1 31.1 ± 0.2 28.1 ± 0.1 33.2 ± 0.2
Attn 36.0 ± 0.2 45.2 ± 0.1 27.9 ± 0.1 32.3 ± 0.2 30.4 ± 0.1 35.2 ± 0.2

1NN-C - 45.1 ± 0.2 - 32.4 ± 0.2 - 34.9 ± 0.2
Attn-C - 48.4 ± 0.2 - 32.4 ± 0.1 - 35.6 ± 0.2

We also perform experiments on a subset of the CIFAR-100 [23] dataset,
as in [29]. This dataset consists of 100 image classes in total with each class
having 600 images of size 32 × 32 pixels. Following the setup in [29], we split
the classes into 60 base, 20 validation, and 20 novel classes for few-shot learning.
This dataset is referred to as CIFAR-100FS in our experiments.

We also use the FC100 [29] (FewShot CIFAR100) dataset for our experi-
ments. The 100 classes of the CIFAR-100 [23] dataset are grouped into 20 su-
perclasses to minimize information overlap. The train split contains 60 classes
belonging to 12 superclasses, the validation and test splits contain 20 classes
belonging to 5 superclasses each. Q (as in Section 3.1) is chosen to be 15 across
all datasets.

Evaluation Protocol We follow a standard evaluation protocol following ear-
lier literature in the field [31,40]. The classifier is presented with 10,000 tasks and
average accuracy is reported. Given a test set consisting of C novel classes, we
generate an N -way K-shot task as follows. N classes are uniformly sampled from
the set of C classes without replacement. From each class, K key and Q = 15
query images are uniformly sampled without replacement. The classifier is pre-
sented with the key images and then used to classify the query images. Following
prior work [40], we focus on 5-way 1-shot and 5-way 5-shot benchmarks.

Models and Implementation Details All experiments use a ResNet-50 [18]
backbone. SimCLR [5] pre-training is done for 500 epochs with a learning rate
of 0.1, Nesterov momentum of 0.9, and weight decay of 0.0001 on the respective
datasets. Data augmentations of RandomResizedCrop and ColorDistortion were
found to achieve the best results. The augmentations use default hyperparame-
ters from [5].

MoCo [19] pre-training is done for 800 epochs over the respective training
sets using the default parameters from MoCo-v2 [7]. Downstream tasks use the
query (non-momentum) encoder network.
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4.2 Results

Tables 1, 2 and 3 present our results on the miniImageNet, CIFAR100FS and
FC100 datasets respectively. For a more comprehensive comparison, we also
adapt the work presented in Wu et al. [42] to include another unsupervised
method in these results. Accuracies are averaged over 10,000 tasks and reported
with 95% confidence intervals. Note that we report the number of labels used
by each method in each of the above tables. The number of labels used by the
methods are computed as follows: if the network trains by performing gradient
updates over the training labels, we count the labels in the training set; if the
network fine-tunes over the test labels or uses test labels to compute class rep-
resentations, we count the labels in the test set; if the network uses training and
validation data to report results, we count training and validation labels. Unless
otherwise specified in the respective works, we assume that the validation set is
not used to publish results, and that the train and test pipelines are the same.

Our method achieves strong baselines on the benchmarks while using ex-
tremely limited label information, as can be seen in the comparison with Wu et
al. [42] which operates in the same setting. These are the only two methods across
all benchmark datasets that use almost no label information. BowNet [14] op-
erates in a similar setting and performs well on the mini-Imagenet benchmark
by computing cluster centres in the representation space as a visual vocabulary.
Other methods are provided for comparison and the label count is calculated
accordingly. The supervised methods use tens of thousands of labels, which can
be very expensive depending on a particular domain. Our methodology seeks to
provide a pathway to solving problems in such settings with no annotation cost
whatsoever.

A higher number of input images increases the classification accuracy, as
seen in our 5-way-5-shot tasks. The best results are achieved over the challeng-
ing miniImageNet dataset, followed by CIFAR100FS and FC100 datasets. This
is expected as FC100 is a coarse-grained classification task and is specifically
constructed to have dissimilar classes.

In Section 3.1, we proposed the use of two test-time classifiers: 1NN and
Attn. We report ablation studies on their performances in Table 4. While the
1NN classifier achieves strong baselines (in line with previous work [5]), the
Attn classifier consistently improves accuracies by 2-10%, with more impres-
sive gains in the multi-shot setting. This suggests that using different distance
measures in the representation space is a valid area for future inquiry.

4.3 Ablation Studies

In this section, we explore different variations of our pipeline and investigate the
effect on performance across datasets. Table 4 presents the results.
What if we had labels? To investigate the effect of introducing labels at test
time, we introduce centroid versions of our classifiers: 1 Nearest Neighbours
Centroid (1NN centroid), and Soft Cosine Attention Centroid (Attn centroid),
in the multi-shot setting. Following [33,40,39], the centroid versions of these



10 Aditya Bharti, Vineeth N. B., and C.V. Jawahar

Fig. 3. Visualizing a few examples from the miniImagenet test set using the Ours S
pipeline. Far Left: One labelled example visualized per class. Middle: Few correctly
classified examples from the test set. Right: Mis-classified examples. Similarity in
texture and coarse object category are contributing factors for mis-classification.

classifiers compute class representatives as the centroids of the key images pro-
vided at test time. Few-shot classification is then done by comparing each query
image against each class centroid, essentially treating the class representative
(or exemplar) as the new key image for that class. Using label information to
compute class centroids increases performance by 2-4%.

Qualitative Analysis: Figure 3 presents a few qualitative examples from our
results on the miniImageNet dataset using our Ours S pipeline. In the second
row, we observe that the network fails on a fine-grained classification task. It
classifies a dalmatian image (black and white polka-dotted dog) as a husky.
Since both categories are dog breeds, they are closely related and pose a difficult
few-shot problem. However, when the classes are coarse-grained and fairly well-
separated, our method shows that one can achieve reasonable performance with
limited label information.

5 Conclusion

We present a new framework for few-shot classification extremely limited label
information using computationally simple pipelines. This is more challenging
than existing work which uses label information at various points during train-
ing or inference. By learning contrastive representations using self supervision,
we achieve competitive baselines while using almost no labels, which is orders
of magnitude fewer labels than existing work. In our ablation studies, we present
a qualitative analysis of our classifier and investigate the effect of limited label
information. Our results indicate that the choice of self-supervised training task
and distance function in the representation space are interesting lines of future
inquiry. We also show that using limited label information to compute class rep-
resentatives at test time is beneficial. This suggests that clustering quality has
a direct impact on performance. The objective was to achieve a reasonable per-
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formance using few-shot classification with limited label information. We believe
this work is an important first step towards label-free few-shot learning methods.
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