
Interactive Learning for Assisting Whole Slide
Image Annotation

Ashish Menon, Piyush Singh, P. K. Vinod, and C. V. Jawahar

International Institute of Information Technology, Hyderabad, India
ashish.menon@research.iiit.ac.in, piyush.singh@research.iiit.ac.in,

vinod.pk@iiit.ac.in, jawahar@iiit.ac.in

Abstract. Owing to the large dimensions of the histopathology whole
slide images (WSI), visually searching for clinically significant regions
(patches) is a tedious task for a medical expert. Sequential analysis of
several such images further increases the workload resulting in poor di-
agnosis. A major impediment towards automating this task using deep
learning models is that it requires a huge chunk of laboriously annotated
data in the form of WSI patches. Our work suggests a novel CNN-based,
expert feedback-driven interactive learning technique to mitigate this is-
sue. The proposed method seeks to acquire labels of the most informative
patches in small increments with multiple feedback rounds to maximize
the throughput. It requires the expert to query a patch of interest from
one slide and provide feedback to a set of unlabelled patches chosen
using the proposed sampling strategy from a ranked list. The experi-
ments on a large patient cohort of colorectal cancer histological patches
(100K images with nine classes of tissues) show a significant reduction
(≈ 95%) in the amount of labelled data required to achieve state-of the-
art results when compared to other existing interactive learning methods
(35%− 50%). We also demonstrate the utility of the proposed technique
to assist a WSI tumor segmentation annotation task using the ICIAR
breast cancer challenge dataset (≈ 12.5K patches per slide). The pro-
posed technique reduces the scanning and searching area to about 2%
of the total area of WSI (by seeking labels of ≈ 250 informative patches
only) and achieves segmentation outputs with 85% IOU. Thus our work
helps avoid the routine procedure of exhaustive scanning and searching
during annotation and diagnosis in general.
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1 Introduction

Histopathology is considered the gold standard for cancer diagnosis [21, 6]. A
histopathologic Whole Slide Image (WSI) represents a digitized image of a tissue
sample characterized by a large size of up to 109 pixels at maximum resolution.
A significant bottleneck in WSI diagnosis is locating certain classes of tissues
[1] or regions of prognostic importance within the WSI. Hence it becomes essen-
tial to automate the detection of such regions using deep learning models. The
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requirement of large amounts of annotated data for deep learning models and
their robustness to adapt to different datasets is an issue of concern. Thus, a
model that interactively learns with minimal expert involvement without having
labelled data upfront would be an appropriate solution.

1.1 Why patch level analysis of WSI?

Interactive learning methods proposed in the past had experts providing feed-
back as pen strokes on specialized devices or drawing regions of interest by
carefully delineating tissue regions [14], marking nuclei and cellular level details
[16] on the WSI. These methods needed continuous involvement of the patholo-
gist in correcting the model’s prediction to obtain nuclei and cellular level fea-
tures used as input for an ML model. With the advancements in deep learning
and its capability to obtain powerful representations, recent focus has shifted to
analysing WSI tiles(patches). Recent approaches have shown the effectiveness of
patch level analysis of a WSI to detect regions of prognostic values such as sur-
vival prediction [24, 8], mutation prediction [13, 5], tumor grading and staging
[22, 12]. Several medical imaging challenges have provided patch-level annotated
datasets highlighting regions of biological relevance [2, 3, 18] to facilitate patch
analysis using deep learning methods.

1.2 Related Work

Interactive learning methods for patch labelling include active learning-based
techniques to acquire the most informative samples for training, thereby reduc-
ing the need for large amounts of annotated data. One such technique selects
the most informative samples from a relatively smaller cohort of patients with
5000 patches [10] using a variational drop-out-based uncertainty sampling [20].
At each step 160 most informative images were selected to be reviewed by the ex-
pert. This method achieved a scale reduction of 45% in the training set. A novel
method of identifying the most informative patches was proposed [23] using
conditional random fields in a spatially adaptive manner. This method showed
a scale reduction in the training set by 38.0%. These approaches often required
large batches of patches to be reviewed, which can be an overhead to the ex-
pert and the overall workflow. A deep active learning work for biomedical image
segmentation [25] proposed a framework combining fully convolutional networks
and active learning to determine the most representative and uncertain areas
for annotation. They obtained state-of-the-art segmentation performance using
only 50% of training data for gland segmentation in Colon histology images, with
gland segmented image patches of a WSI as ground truth. An attention gated
FCN (ag-FCN) and distribution-discrepancy based active learning algorithm [11]
was demonstrated for gland segmentation. This work achieved state-of-the-art
results using 50% training data and beat the state-of-the-art using full train-
ing data. DeepScribble [4] proposed an interactive segmentation method that
corrects the segmented boundaries from deep neural networks with user interac-
tions. This method used two networks, one trained with annotated WSI patches
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generated an initial segmentation output. While the other refines the segmenta-
tion iteratively based on user inputs.

1.3 Our Contribution

Most of the previously mentioned interactive learning have used uncertainty
based criteria to select the most informative samples. These methods have re-
ported using patches or have used carefully delineated tumorous subregions of
a WSI (gland segmentation). We select the most informative samples using dis-
tance metric learning combined with a classifier approach in our proposed tech-
nique. We also demonstrate the utility of our method in helping annotation
(tumor segmentation) of an unannotated WSI. The key contributions of the
proposed technique include
(i) Put forward a novel method of sampling from a ranked list of patches to
pick the most informative samples to be labelled, resulting in a significant scale
reduction in the training set (95% − 97%) to achieve state-of-the-art results.
(ii) Demonstrate the utility of an ImageNet pre-trained model (last few layers
trainable) without any architectural modification for this task, thereby resulting
in quick and memory-efficient training
(iii) Assisting annotation of large WSI for a segmentation task by obtaining seg-
mentation mask predictions with minimal expert efforts
(iv) Our method can also give segmentation predictions on multiple WSI using
a single slide understudy without going through all the slides.

2 Proposed interactive learning technique

Our method is developed by assuming that there is a database of patches of un-
diagnosed or unseen slides. An expert is ready to search for clinically important
patches of one such slide and provide feedback to a set of patches chosen by a
deep learning model. The proposed strategy of sampling from a ranked list is
used to select these patches. Based on the expert requirement, the patches chosen
for feedback could be the patches from the same slide or patches from multiple
slides. The feedback input can either be relevant/irrelevant or explicit class la-
bels of the patches and thus avoids complex expert interactions at the cellular
and nuclei level details as seen in the previous interactive learning strategies [16].

Inspired by the idea of [19], our work demonstrates the utility of pre-trained
CNNs for this task. When finetuned with the proposed sampling strategy, the
last few layers of an ImageNet pre-trained model representation generalize well
on unseen data within a minimal number of expert feedback rounds (less la-
belled data). The major steps of the proposed work is explained in the following
subsections, before which we will introduce the following frequently used terms.
Retrieval: nearest neighbour retrieval using the deep learning representations
with images ranked in the increasing order of their distance from the query image
in the higher dimensional space. Session: for every query, there is a session that
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consists of r rounds of review. Review: the step where we obtain relevance feed-
back (0/1) or explicit class labels by presenting to the expert a set of K samples.
Sampling from ranked list: to obtain the most informative samples to be
reviewed at each review step. Finetuning: the trainable layers of the ImageNet
pre-trained ResNet-18 model (layer4.1) is finetuned with the samples reviewed.
Two models are trained, one for retrieval and the other for classification using a
triplet loss with hard negative mining and cross-entropy loss respectively.

Query Slide
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2. User Input 3. Retrieval Module

P1(0,0) P1(0,256) P1(0,512)
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Fig. 1. Block diagram of the proposed technique. 1.Database: The unannotated WSI
are stored in the form of features (R(512×512×7)) extracted from an ImageNet pretrained
ResNet-18. 2.User Input: Highlights a rectangular patch of interest on the WSI
as the input. 3.Retrieval Module: Nearest neighbour retrieval powered by FAISS
[7].4.Interaction: The expert provides feedback either as relevant/irrelevant or as ex-
plicit class label. Sampling from the ranked list ensures that the feedback is provided
for the most informative samples. 5.Finetuning: ResNet18 used as a feature extractor
and as classifier are trained using the samples reviewed.
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2.1 Assisting WSI annotation

In this paper, we perform the task of annotating tumorous regions of multiple
WSIs as a use case of the proposed interactive learning technique. The underlying
assumption is that the group of patches deemed relevant to the query patch
or provided with a specific class label by the expert are closely clustered in a
higher-dimensional space. We pose the annotation task to be equivalent to a
WSI patch classification using a deep learning model. The goal is to achieve
a satisfactory annotation with as few feedback sessions as possible. Towards
this, we propose a novel sampling strategy by sampling from a ranked list of
patches from the search database, ranked based on the Euclidean distance to
the query in a higher dimensional space learnt by another deep learning model
using a distance metric learning approach. Both models used for classification
and distance metric learning are trained using the same set of reviewed samples
across feedback sessions.

The annotation starts by querying a patch of interest from the WSI. Nearest
neighbour retrieval is performed using an ImageNet pre-trained ResNet-18 rep-
resentation (R512) to obtain a ranked list of patches from the search database
arranged in the increasing order of their distance to the query patch. This is fol-
lowed by sampling K patches from the ranked list, review and finetuning. The
same steps are repeated for the subsequent rounds using the finetuned model
representation and a refined query for retrieval. Query refinement is performed
by assuming that the original query lies far from the cluster of relevant images in
the feature space [19]. It is important to note that the retrieval is performed by
leaving out the already reviewed samples from the database at each step. A new
query would mark the beginning of the next session, and the same procedure is
carried forward. Finetuning is done at every round/session using the data accu-
mulated from the start till that particular round. Each session is restricted to
‘r’ rounds of review; the model presents K samples to be reviewed by the expert
for every round. Thus the expert ends up having to review r × K images per
query. At the end of N sessions, we would have N × r×K reviewed images with
true labels.

2.2 Sampling Strategy

It is important to provide the most informative samples (samples that are not
obvious for the model) for review during the interactive feedback. A strategy of
sampling from a ranked list is proposed to pick such samples at every review
step. We experiment on the following sampling strategies: random, top-K and
front-mid-end sampling to pick K samples from the front middle and the end of
the ranked list. The Closest Negative Farthest Positive(CNFP) sampling
uses predictions of a classifier trained on the samples reviewed till (k−1)th step,
to pick the K/2 closest negatives and K/2 farthest positives from the ranked
list. Finally, we also investigate a hybrid scheme, which uses the combination
of CNFP and front-mid-end. Entropy-based sampling, which is a standard
uncertainty measure for sampling by using the entropy of classifier prediction
and choosing the samples with the highest entropy for review.
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Algorithm 1: Pseudocode for retrieval and annotation using the pro-
posed interactive learning technique. S:Images of Search database,
Q:Images of Query database, M:Number of images in the search
database, N:Number of images in the query database, fret:Pre-trained
deep learning model used for retrieval, fcl:Pre-trained deep learn-
ing model used for classification r:Number of feedback rounds/steps,

K:Number of images to be reviewed per step, f̂:model that has learnt
the new feature space

Input: Query image Qsample , deep learning models fret, fcl, number of
feedback rounds r, number of images to be reviewed per step K

Output: Y = {yi}Mi=1 ; // labels for image in the database

for Qsample in Q do
q = fret(Qsample), s = fret(S) ; // embedding computation (R512)

Ŝ = retrieval(q, s) ; // ranked list of images from search database

for i← 1 to r do

ŜK = SAMPLE(Ŝ,K)
S0i , S1i = feedback(ŜK)
S0.append(S0i) , S1.append(S1i)
f̂ret ← train(fret, S0, S1, Q)
f̂cl ← train(fcl, S0, S1, Q)
S ← {S} − {ŜK}; q ← f̂ret(Q); q ← mean(q, f̂ret(S1i))
Ŝ = retrieval(q, f̂ret(S))

end

end
if annotation then

Ŷ = f̂cl(S) ; // Prediction step using classifier

Algorithm 2: Sampling strategy. S represents unannotated set of Im-
ages, s represents the sampling strategy, K represents number of images
to sample, M indicates number of images in the list

Input: Set of Images S , Sampling strategy s, number of samples K, number
of images in the list M

Output: SK ; // K number of samples

if s == top− k then
SK ← {Si}Ki=1

if s == front−mid− end then
Nfront = dM/3e; Nend = bM/3c; Nmid = M −Nfront −Nend

SK ← {Si}
Nfront

i=1 ∪ {Si}M/2+Nmid/2

i=M/2−Nmid/2
∪ {Si}Mi=M−Nend

if s == CNFP then

S
′
← S[:: −1] ; // Reversed ranked list

S1 ← {S
′
i 3 fcl(S

′
i) == 1}Mi=1, S0 ← {Si 3 fcl(Si) == 0}Mi=1

Sk ← {S1i}
i=K/2
i=1 ∪ {S0i}

i=K/2
i=1
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3 Implementation

3.1 Dataset and Database Formation

To validate and demonstrate our work, we use two publicly available datasets.

CRC dataset[9]: Consists of 100,000 non overlapping image patches from
H&E stained slides of human colorectal cancer (CRC). All images are 224× 224
pixels. It consists of the following tissue classes cancer-associated stroma STR,
colorectal adenocarcinoma epithelium TUM, adipose ADI, mucus MUC, smooth
muscle MUS, debris DEB, lymphocytes LYM, background BACK, normal
colon mucosa NORM. These were extracted from 86 cancer tissue slides. The
prognostic importance of some of these tissues was demonstrated in predicting
the overall survival prediction of colorectal cancer patients [8]. Due to the avail-
ability of ground truth patch labels, a pseudo feedback [19] technique was used
to automate the manual feedback. We created a query database of 10 random
patches from each class to simulate querying a patch of interest. The remaining
patches formed the search database.

Table 1. The dataset distribution of the CRC dataset.

Class Labels MUC MUS NORM STR TUM ADI BACK DEB LYM

Search DB 8886 13526 8753 10436 14307 10397 10556 11502 11547

Held out test set 1035 592 741 421 1233 1338 847 339 634

Query DB 10 10 10 10 10 10 10 10 10

ICIAR BACH challenge dataset[18]: is used to demonstrate the appli-
cation of the proposed technique towards slide annotation. ICIAR dataset is
composed of H&E stained Breast cancer histology microscopy and WSI. It pro-
vides annotations of pixel coordinates belonging to 4 different classes normal,
benign, invasive, insitu for 10 WSIs. We group the insitu, invasive and be-
nign classes as tumor class. Patches of 256× 256 were extracted from these WSI
using a sliding window approach with no overlap at the maximum magnification
resolution. A patch was labelled as tumor if at least 50% of it consisted of the
annotated pixels. Noisy and background patches are filtered out [24] during the
patch extraction process. Patches with the fractal structure were rejected by
considering only those patches with at least ten connected components present
in their binarized format. During annotation of a given slide, 10 random tumor
patches from it formed the query database, and the remaining patches of the
slide formed the search database. The search database can contain patches of
one slide or could be expanded to contain patches of multiple slides based on
the use case. This step expands the annotation or finds tumorous patches across
multiple slides using a single slide under study.
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3.2 Classification and Metric Learning

An ImageNet pre-trained ResNet-18 was used as the base model. We first save
the image features obtained from the frozen layers (upto layer4.0, R512×7×7),
which are fed as input to the respective trainable modules during training. So
the database consists of images features instead of images. Benefits of this setup
include quick and memory efficient training, avoid overfitting, and non-linearity
introduced during training by layer 4.1. The images were normalized using the
mean and standard deviation calculated across all the RGB channels on the
entire dataset before obtaining the features.

The trainable module for the metric learning consisted of layer4.1 and the
global average pooling (GAP) layer of ResNet-18. Thus the metric learning out-
put would be an R512 embedding. The trainable module for the classification
step consisted of layer4.1, Global Average pooling layer (GAP), followed by the
fully connected layer with N neurons as output. Depending on the type of feed-
back, N could vary from 2 to the number of classes under analysis. Thus the
classifier output would be an RN embedding.

Every session consists of 5 rounds of review, with 5 images reviewed per
round for the ICIAR dataset annotation and 10 images reviewed per round
for the CRC dataset. If the type of feedback is relevant/irrelevant, two sets of
images are maintained, a relevant set and an irrelevant set. Relevant set consists
of those reviewed patches that share the same label as the queried patch, and
the irrelevant set consists of patches otherwise. We used 50 training epochs and
an Adam optimizer with a learning rate of 0.0001 for the metric learning and
the classification steps. The metric learning was performed using triplet loss
with hard triplet mining following the implementation suggested in [15] with
the margin for triplet loss set to 0.2. The classifier was trained using the cross-
entropy loss function. FAISS [7] was used for the nearest neighbour retrieval
using Euclidean distance.

4 Results and Discussion

4.1 Evaluation on CRC dataset

We validate the efficacy of the proposed approach on a held-out test set of 7180
patches from slides belonging to 50 patients that had no overlap with patients of
the training set. Fig. 2 indicates that the proposed interactive learning technique
can achieve results for classification and retrieval in par with [17] with fewer la-
belled data. This was obtained using a standard ImageNet pre-trained ResNet-18
(with weights frozen up to layer4.1) for finetuning without additional architec-
tural modification. Among all the proposed sampling strategies, the CNFP sam-
pling strategy (Ref. 2.2) gives the best result. The state-of-the-art performance
was obtained within 80 sessions which evaluates to an average of requiring 10
query images from each class and providing feedback to 4000 patches (≈ 4.34% of
the labelled samples per class). The proposed CNFP sampling technique also per-
forms better than the standard entropy-based sampling technique, a commonly
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Fig. 2. Held out test set: Performance of proposed interactive learning technique
across feedback sessions on the heldout test set of the CRC dataset [9] in comparison
to baseline methods [17] that were trained using all the annotated data. The image on
the left is the accuracy, the image on the right is the macro averaged perfect P@10
score.

used sampling strategy in the active learning literature. This demonstrates the
efficiency and relevance of the proposed interactive learning over learning from
a fully annotated dataset available upfront.

4.2 Evaluation on ICIAR dataset

The segmentation masks are obtained from the patch label predictions of the
classifier by assigning the colour code (green represents tumor and black rep-
resents normal patch). Patch locations lost during the patch extraction process
are assigned black by default. Fig. 3 indicates the performance of the proposed
technique in the segmentation annotation task.

We notice that the annotation performance using CNFP sampling strat-
egy (Ref. 2.2) increases with prolonged interaction, whereas the performance

Fig. 3. Annotation performance: across feedback sessions using different sampling
strategies on the ICIAR dataset. The image on the left is the slide wise macro averaged
patch classification F1 score and the image on the right is the slide wise macro averaged
Jaccard index score.
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Fig. 4. Annotation output of a sample slide across feedback sessions using different
sampling strategies on the ICIAR challenge dataset. The CNFP sampling strategy per-
forms the best with segmentation output being less noisy and closest to the groundtruth

using other sampling strategies saturates. The CNFP sampling strategy (Ref.
2.2) achieves an average F1 score of 0.94 and an average Jaccard index score
(represents the amount of overlap with the ground truth segmentation mask)
of 0.85 within 10 sessions per slide. This includes providing 10 random tumor
query patches and reviewing 250 patches (≈ 2% of total patches per slide). It
is important to note that though the entropy-based sampling strategy shows a
similar trend, its performance is poor during the initial sessions. Fig. 4 shows
the segmentation output of a sample slide using the proposed interactive learn-
ing technique. The improvement of segmented output using different sampling
strategies over feedback sessions is shown. We can observe that the CNFP sam-
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Fig. 5. Inter Slide Annotation: Annotation results across slides with a single slide
under review using the CNFP sampling strategy. The segmentation output results show
that the proposed method is robust to the queried slide and is able to find anomalous
patterns existing across multiple slides

pling strategy (Ref. 2.2) performs better than the other sampling strategies by
obtaining a segmentation output with a Jaccard index of (≈ 0.98) at the end of
10 sessions.

Fig. 5 shows the inter slide annotation results. Here the patches sampled for
feedback belong to a slide different from the one understudy. The technique can
be useful to help annotate multiple slides concurrently using patches queried
from one slide. The segmentation results shown here are the results across 10
feedback sessions. From a diagnostic viewpoint, this could be helpful to search
across multiple slides for anomalous patterns present in a slide that was already
diagnosed.
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Fig. 6. Ablation Studies: Showing the effect of layers used for finetuning the model
and query refinement on the final results using the CRC dataset [9]

4.3 Ablation Studies

We analysed two aspects for the ablation purpose on the final results. The layers
used for finetuning and the effect of query refinement. Fig.6 shows the results of
the ablation study performed on the CRC dataset [9].

For the finetuning experiment, we compared the performance obtained by
finetuning layer4.0 of ResNet-18 and finetuning layer4.1 of ResNet-18. The model
finetuned from layer4.0 reached the desired accuracy faster (20 sessions earlier)
than the one finetuned from layer4.1. However, the number of trainable parame-
ters resulting in finetuning from layer4.0 is about 78% more than layer4.1. This
would increase both the time duration between every feedback session and mem-
ory for training. Hence we chose layer4.1 by prioritising the efficiency and time
over the number of feedback sessions taken to achieve the desired accuracy.

We also analysed the effect of query refinement on the final results. It was
observed that experiments without query refinement initially had good accu-
racy, but it saturates within 50 feedback sessions. The experiments performed
using query refinement had a low initial accuracy but continued to increase over
feedback sessions.

5 Conclusion

We propose expert feedback-driven interactive learning, which effectively reduces
the requirement of large amounts of patch-level annotated images for a deep-
learning-based WSI analysis. Our technique also assists WSI tumor(anomalous)
region annotations and WSI diagnosis with minimal expert involvement. The
proposed technique requires multiple rounds of expert feedback on informative
patches selected using a novel method of sampling from a ranked list of patches.
Experimentation results show that the proposed technique required only 5% of
the total annotated patches to achieve state-of-the-art results. Experimentation
on WSI annotation shows that the proposed technique reduces the expert efforts
by requiring feedback of only 250 patches which is about 2% of total patches
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per slide, to obtain segmentation outputs with 85% IOU. Inter slide annotation
results also show that the proposed technique can annotate anomalous regions
across multiple slides using a single slide under review. These annotated data can
further be refined and used to build AI models aimed at being used as potential
prognostic and diagnostic tools.
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