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Abstract. Object detection, semantic segmentation, and instance seg-
mentation form the bases for many computer vision tasks in autonomous
driving. The complexity of these tasks increases as we shift from object
detection to instance segmentation. The state-of-the-art models are eval-
uated on standard datasets such as PASCAL-vVOC and MS-COCOC, which
do not consider the dynamics of road scenes. Driving datasets such as
Cityscapes and Berkeley Deep Drive (BDD) are captured in a structured
environment with better road markings and fewer variations in the ap-
pearance of objects and background. However, the same does not hold
for Indian roads. The Indian Driving Dataset (IDD) is captured in un-
structured driving scenarios and is highly challenging for a model due to
its diversity. This work presents a comprehensive evaluation of state-of-
the-art models on object detection, semantic segmentation, and instance
segmentation on-road scene datasets. We present our analyses and com-
pare their quantitative and qualitative performance on structured driv-
ing datasets (Cityscapes and BDD) and the unstructured driving dataset
(1pD); understanding the behavior on these datasets helps in addressing
various practical issues and helps in creating real-life applications.

Keywords: Object detection, semantic segmentation, instance segmen-
tation

1 Introduction

In computer vision, the granularity of the label increases as we move from object
detection to instance segmentation. We perform classification and localization of
the objects of interest in object detection, but in semantic segmentation, we also
consider the boundary of each object during classification. Further in instance
segmentation, we differentiate each instance of the object during segmentation.
Figure 1 captures the increasing complexity in each of the tasks.

For autonomous driving applications, datasets like Cityscapes [8], BDD [34]
and IDD [27] are collected in structured and unstructured driving conditions
respectively. Academic datasets such as PASCAL-vVOC [9] and MS-COCO [19] are



2 Singh et al.

commonly used for benchmark object detection, semantic segmentation, and
instance segmentation.

Input Image Object Detection Semantic Segmentation Instance Segmentation

Fig. 1. lllustrates popular tasks of computer vision on road scenes. We can notice that
the granularity of the label becomes more complex as we move from Object Detection
to Instance Segmentation. (Best viewed in color and zoomed).

Our contributions in this work comprise of evaluation and analyses of var-
ious state-of-the-art deep learning models on object detection, semantic seg-
mentation, and instance segmentation with structured datasets - Cityscapes [8]
and BDD [34], and an unstructured driving dataset - IDD [27]. We evaluate the
performances with:

(i) four object detectors: Faster R-CNN [25], sSD [20], RetinaNet [18], and YOLOV3 [24],

(ii) three semantic segmentation architectures: PSPNet [37], ERFNet [26], and
DRN [35], and

(iii) three instance segmentation techniques — Mask R-ONN [12], Cascade Mask
R-CNN [4], and Mask Scoring R-CNN [14].

To our knowledge, this is the first comprehensive work to use driving datasets
instead of standard academic datasets such as PASCAL-vOC [9] and Ms-coco [19)],
to perform quantitative and qualitative analyses of various deep learning models
on multiple tasks. Understanding the behavior of state-of-the-art object detec-
tion, semantic segmentation, and instance segmentation techniques on driving
sequences play a vital role in creating real-life applications.

2 Related Work

Object Detection: Existing Deep Convolutional Neural Network (DCNN) based
object detectors are of two categories: (i) two-stage detectors and (ii) one-stage
detectors. The two-stage detectors comprises of a region-proposal step, region
classification and regression step. Some popular works include [11, 10, 25], sev-
eral modified architectures [12,4] have also been developed to improve detection
accuracy. Though two-stage detectors produce high accuracy, they cannot be
used for real-time applications due to their high computation time. In contrast,
one-stage detectors predict boxes from input images directly without a region
proposal step and hence are time efficient, lending their use for real-time appli-
cations. The notable work of Redmon et al. in YOLO [22] laid the foundation
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for several other versions such as YoLov2 [23] and YOLOV3 [24]. Other popular
one-stage object detectors are sSD [20], MT-DSSD [1], RetinaNet [18], M2Det [38],
and RefineDet [36].

Semantic Segmentation: Deep Convolutional Neural Network (DCNN) based
semantic segmentation techniques demonstrate improvements by replacing the
fully-connected layer in image classification network with convolution layers, call-
ing it Fully Convolutional Network (FCN) [21]. Several methods [6, 37] have been
developed to overcome the limitations of FCN [21]. While methods [37, 7, 21] have
been developed by combining multi-scale features to improve the segmentation
performance, another approaches [6, 2] involve semantic segmentation based on
structure prediction. Running DCNNs on mobile platforms (e.g., drones, robots,
and smartphones) requires networks to work in real-time on embedded devices
with space and memory constraints. Some lightweight networks in real-time se-
mantic segmentation do exist [30,26,29] in the literature.

Instance Segmentation: Instance segmentation assigns different labels to each
instance of an object belonging to the same category. Pose estimation, surveil-
lance, robotics, and self-driving cars are areas where instance segmentation plays
a key role. Instance segmentation techniques are of two categories: (i) two-stage,
and (i) one-stage. Some of the latest works for two-stage approaches consti-
tutes Mask R-CNN [12], Cascade Mask R-CNN [4], Mask Scoring R-CNN [14],
CenterMask [16], BCNet [15]. The popular examples of one-stage methods are
PolarMask [32], YOLOACT [3], and SOLO [28].

3 Experiments

3.1 Datasets

We aim to understand the effects of various state state-of-the-art models on di-
verse road scene datasets for our experiments. We considered two structured driv-
ing datasets; Cityscapes and Berkeley DeepDrive (BDD). In these two datasets,
there is low variation in the appearance of objects and also in the background,
the road infrastructure is well delineated with proper markings on the road. The
same assumptions do not hold for Indian driving conditions. For unstructured
driving sequences, we consider the Indian Driving Dataset (IDD) dataset.

Cityscapes [8]: is a large scale dataset with urban scenes collected in 50 different
cities across Europe. It provides 5000 frames of high-quality pixel-level (fine)
annotations and a large set of 20000 weakly (coarse) annotated frames. There
are 30 labeled classes, and each image can consist of multiple instances of each
class.
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Berkeley DeepDrive (BDD) [34]: is a diverse and large-scale dataset of
visual driving scenes. It consists of over 100K video clips. Each video is about
40 seconds long, 720p, and 30 fps. The videos are recorded using mobile phones,
under different weather conditions and are collected from multiple cities in the
United States. The dataset is split into training (70K), validation (10K), and
testing (20K) sets.

Indian Driving Dataset (IDD) [27]: is a dataset of road scenes from un-
structured environments in India. It consists of 10004 images, finely annotated
with 34 classes collected from 182 drive sequences on Indian roads. A four-level
label hierarchy provides varying degrees of complexity. It also has the fallback
class to accommodate unknown road objects.

3.2 Setup

For object detection and instance segmentation, we use the popular frameworks
Detectron2 [31] and mmdetection [5]. The code is written in PyTorch and exe-
cuted on a machine with 4 NvIDIA’s GeForce GTX 1080 Ti GPUs with cupa 10.2,
CUDNN 7.6.5. Each detector model is trained with a batch of 8 images, learning
rate of 0.02, momentum of 0.9, and weight decay factor of 0.0001.

Each instance segmentation model is trained on a base learning rate of 0.01
with other hyper-parameters being the same as the object detection training.
For instance segmentation, we train Mask R-ONN [12] model on a ResNet-50 [13]
backbone with a base learning rate of 0.01 for 24000 iterations. In Cascaded
Mask R-CNN [4] model, we use base learning rate of 0.02 for 27000 iterations.
While Mask Scoring R-CNN [14] model has the backbone of ResNext-101 [33] with
base learning rate of 0.02. We use momentum of 0.9, weight decay of 0.0001, and
batch size of 8 for all models.

In the case of semantic segmentation, we use the hyper-parameters as defined
in the literature of the respective models. We use two NVIDIA’s GeForce ¢TX 1080
TT GPUs in a Xeon server in order to train the models.

3.3 Performance Metric

We evaluate object detection performance with the widely used mean Average
Precision (mAP) [25, 20, 18, 24] metric. We denote AP for bounding box as APy,
and mask as AP,,.sx. We also provide class-wise APy, and AP,,.q. for class-
wise analysis at a threshold of 0.5. For semantic segmentation evaluation, we use
the common metric of mIoU [21,37,26]. For instance segmentation evaluation,
we use the Average Precision (AP) metric [17,12,4]. As in [19], we calculate AP
by varying the Intersection over Union (IoU) threshold from 0.5 to 0.95 with a
step of 0.05.
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4 Results

4.1 Object Detection

Baselines: We choose Faster R-CNN [25] as a two-stage detector, and sSD [20],
YOLOV3 [24], and RetinaNet [18] as one-stage detectors for the object detection
task.

Table 1. Shows results of object detection: Class-wise Average Precision (AP) on
Cityscapes, BDD, and IDD datasets using Faster R-CNN, SSD, YOLOv3, and RetinaNet.
The last row indicates mean Average Precision (mAP). m. cycle: indicates motor-
cycle, t. light: indicates traffic-light, t. sign: indicates traffic-sign, and veh. flbk:
indicates vehicle-fallback. FR, Y3, and RN: indicates Faster R-CNN, YOLOV3, and
RetinaNet, respectively. The bold values indicate the category wise best result among
all the methods on respective datasets.

Cityscapes BDD IDD
Class FR [SSD[ Y3 [ RN || FR [SSD[ Y3 [ RN || FR [SSD[ Y3 [ RN
person |[49.9|30.8 (43.5/51.0(|62.2|45.8 |59.1|65.0(| 55.9|41.6 |50.2|57.2
truck 35.2132.4130.9|38.8|[61.9|59.7|58.7|163.2|[68.4| 61.3 |57.8| 66.8
m. cycle |[36.4|32.4 |34.8|41.0(|45.5| 34.7 |46.0|46.5(|/70.6| 62.8 |63.1| 68.6
rider 55.9137.1(51.3|56.9(|48.3| 33.3|47.7/46.8 |/59.5| 49.0 |54.3|58.1
bus 63.7| 58.3158.3/60.9(61.7| 60.2 [59.4/62.5(|74.1| 69.5 |67.3| 73.5
bicycle |[|47.4|39.7|44.6/50.7| 50.0|39.8 |46.9/51.7|/54.8| 39.3 |41.3]| 52.8
car 67.0]65.0 |66.4/69.8(| 79.4| 75.9 |76.2|80.6||71.0| 65.6 |64.5|71.0
train 40.9|47.6(39.5/45.5( 0.0 | 0.0 |3.3| 0.0 || 0.0 | 0.0 |0.0] 0.0
t. light - - - - ||64.3|53.9(57.1/63.1]/28.5|13.8|25.5|29.4
t. sign - - - - |/69.8]|64.6 |66.5/69.2(39.5|27.6 |27.3| 38.3
caravan - - - - - - - - 0.0 | 0.0 |0.0] 0.0
auto - - - - - - - - ||74.1/66.9(67.9|73.6
trailer - - - - - - - - 0.0 0.0]0.0]0.5
animal - - - - - - - - 1/26.4]20.1{20.2|28.1
veh. flbk| - - - - - - - - (/10.0| 7.9 | 6.7 |10.0

[mAP  [[49.6]42.9]46.2]51.8][54.3] 46.8 [52.1[54.8][42.2[ 35.0 [36.4[41.9 |

Discussion: Table 1 presents object detection results using Faster R-CNN, SSD,
YOLO3, and RetinaNet on Cityscapes, BDD, and IDD datasets. From the table,
we observe that RetinaNet performs better than all other detectors on the struc-
tured driving datasets: Cityscapes and BDD. While Faster R-CNN obtains the best
detection results among all the used models on the unstructured driving dataset:
IDD. In the case of IDD, we also observe that all the used methods completely fail
to detect objects like train, caravan, and trailer (AP very close to 0). It happens
because of fewer amount of annotated images for those categories and unstruc-
tured road conditions. For a similar reason, all the methods obtain less than
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30% AP scores for object categories such as traffic-light, traffic-sign, animal, and
vehicle-fallback. We also observe from the table that all models perform better
on Cityscapes than IDD and BDD datasets for the object category train. This is
because of domain shift and ubiquitous presence of the object in Cityscapes than
on IDD and BDD. We find similar observation for object categories traffic-light
and traffic-sign on which all the used models perform better on BDD than IDD
due to geographic domain shift.

Results on Cityscapes

YOLOV3 RetinaNet

Fig. 2. Presents some qualitative results of object detection on Cityscapes, BDD, and
IDD datasets. (Best viewed in color and zoomed).

We present some qualitative results on few selected frames of Cityscapes,
BDD, and IDD using the models: Faster R-CNN, SSD, YOLOvV3, and RetinaNet in
Figure 2. We choose frames under various complex conditions to establish the
robustness of the used models. In Cityscapes, one of the selected frames is an
empty road with multiple pedestrians walking on the left and right sides of the
road, and another image of dense traffic. We notice that Faster R-CNN, YOLOV3,
and SsD detect accurate boundaries of all motorcycles and cars. But RetinaNet
fails to detect the boundaries of a few cars. In the case of BDD, the selected
frames are of moving cars on the road at nighttime and during snowfall. In
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both cases, YOLOvV3 and $SD detect all cars accurately. While Faster R-CNN and
RetinaNet fail to detect cars that are far away from the camera. In nighttime
scenarios, we notice some false detection of traffic-light and traffic-sign caused
due to headlights of vehicles. Notice that even in such challenging scenarios, all
the models detect all trainable classes. However, Faster R-CNN and RetinaNet
fail to detect a few people accurately due to heavy occlusions caused by crowded
vehicles and the shadows cast by the trees.

4.2 Semantic Segmentation

Baselines: We choose three popular models, PSPNet, ERFNet, and DRN to
benchmark semantic segmentation task on driving sequences.

Discussion: Quantitative score (mloU) produced by the models are given in
Table 2. We train and evaluate a model on various pair-wise combinations of
datasets. From the table, we observe that all models achieve the best perfor-
mance on the Cityscapes dataset. Even the trained model on Cityscapes is often
considered a baseline for the segmentation of driving sequences.

It is also interesting to note that the trained model on Cityscapes does not
generalize well. Using the model trained on Cityscapes to infer on BDD and IDD
(data distribution is different from Cityscapes) resulted in lower performance
(almost half of original). From the table, we also infer that Cityscapes is the
simplest to learn while IDD is slightly more difficult, and BDD is the most difficult
to learn. The trained model on Cityscapes performs poorly on out-of-distribution
data points (i.e., IDD and BDD). The trained model on IDD also performs poorly
on out-of-distribution data (i.e., BDD and Cityscapes), but it is relatively better
than the model trained on Cityscapes. The trained model on BDD performs the
best on out-of-distribution data (i.e., IDD and Cityscapes).

Table 2. Shows quantitative results on semantic segmentation: results of three different
models: PSPNet, ERFNet, and DRN. The model is trained on one dataset but evaluated
on all other three datasets. Values in bold indicates best result among all the methods
on respective test dataset.

Test Set
Cityscapes BDD IDD
Training Set|| PSP [ERF|DRN| PSP |ERF DRN|PSPERF DRN
Net | Net Net | Net Net | Net
Cityscapes 76.99(72.20| 71.35 ||35.06|29.37| 38.72 ||38.46|31.37| 40.30
BDD 43.75(33.95| 50.77 ||47.40|37.84|56.34(/39.70{30.10| 46.19
IDD 42.69 |28.31|46.43 ||39.51|28.89| 41.91 |[62.95]59.39|74.69

Figure 3 shows visual results of semantic segmentation on Cityscapes, BDD,
and IDD datasets using DRN. In the case of Cityscapes, the example images
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Results on Cityscapes

Fig. 3. Presents some qualitative results of semantic segmentation on few selected
frames of Cityscapes, BDD, and IDD datasets using DRN-D 38. (Best viewed in color and
zoomed).

shown are (i) of a road with few moving cars and has adjacent buildings on
both sides, (ii) a road with a single car and dense buildings and trees on both
sides, (iii) a big truck is crossing a road with shadow cast by road side’s trees
and buildings, and (iv) multiple people are crossing a road. DRN produces few
false segmentation for all images. While the example images of BDD are of (i) a
clean road with few moving cars, (ii) a road with many cars and shadow cast by
the roadside adjacent trees, (iii) moving trucks and cars on a road with dense
adjacent big buildings, and (iv) car moving under the tunnel. In this case, DRN
segments well on the first two images. However, due to dense adjacent buildings
and lights in the tunnel, it produces few false segmentation for the third and
fourth images. The selected images from IDD contain (i) a clean road with two
cars, (ii) road with a bus and a truck, overtaking each other, (iii) a road with
dense autos and dense trees on the road’s side, and (iv) road with one moving
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motorcycle. DRN performs reasonably well for all images except the third image
where the performance drops due to dense vehicles and adjacent roadside trees.

4.3 Instance Segmentation

Baselines: We use three popular existing models — Mask R-ONN (MR), Cascade
R-CNN (CR), and Mask Scoring R-CNN (MSR) to benchmark instance segmenta-
tion tasks on driving datasets.

Table 3. Shows results on instance segmentation: Class-wise A Pyop and APy, 45 scores
on Cityscapes, BDD, and IDD datasets. MR, CM, MSR: indicates Mask R-CNN, Cas-
caded Mask R-CNN, and Mask Scoring R-CNN, respectively. Values in bold indicates
the best results among all the methods on respective datasets.

Cityscapes BDD IDD
Class Metric MR[CM[MSR MR[CM[MSR MR[CM[MSR
person APy, (|41.6(32.3| 33.8 |[31.0|37.3| 32.7 ||35.6|31.2| 29.1
AP, q5x(134.0123.9| 25.7 [|25.3132.7| 30.2 [|31.5(27.1| 25.2
truck APy (135.2(23.7| 25.7 ||28.8|34.0| 28.2 ||54.1|52.7| 49.5
AP,45k|1835.7|23.6] 26.8 |[27.9(33.4| 27.9 ||53.1|50.3| 49.6
motorcycle APy (|29.5(18.4| 23.7 ||25.3|28.7| 28.9 |[39.9|38.5| 35.1
AP,q5x]|22.5112.6| 15.5 [|15.5]16.8| 17.8 {|32.2]30.6| 28.2
rider APy (|43.7136.9| 37.6 |[21.0/20.5| 21.6 ||39.5|37.4| 34.3
AP, 0sk(129.2]21.0| 21.8 [|08.8|11.7| 11.8 {|29.4(27.3| 24.4
bus APy, (/60.1|52.5| 42.5 |[30.8|35.5| 27.7 ||49.5|48.1| 43.4
AP, q5k||58.8[49.5| 42.0 [|30.0|35.4| 28.9 (|47.9|45.3| 43.8
bicycle APy (134.7|25.9| 30.4 |[11.5|13.5| 10.7 ||24.3|20.5| 20.4
AP,0sx(122.9]15.7| 15.8 [|05.6|08.3| 07.9 [|14.3|12.1| 11.7
train APy, ||28.8]14.7| 9.5 0.0 0.0| 0.0 - - -
AP, qsk(142.1]125.2| 13.2 || 0.0 | 0.0 | 0.0 - - -
car APy, ||58.4]50.8| 52.6 [|48.0152.4| 47.6 {|54.1|51.9| 48.6
APpask||52.5(44.2| 45.1 ||44.1|48.6| 45.4 ||50.2(|47.1| 45.4
autorickshaw |[APy,. - - - - - - 55.5/53.9| 50.0
APpask| - | - - - |- - ||52.4]48.9] 47.1
vehicle-fallback|APyo. - - - - - - 04.5/03.8| 02.8
APmask| - | - - -] - - ||03.9]03.2| 02.5
Average APy (|41.5(31.9| 31.9 |[24.5|27.7| 24.6 ||39.7|37.5| 34.8
AP, qsk|137.2126.9| 25.7 {|19.7(23.3| 21.2 {|34.9|32.4| 30.9

Discussion: Table 3 shows the class-wise APy, and AP,k scores on Cityscapes,
BDD, and IDD datasets. We notice that for all object categories, Mask R-CNN ob-
tains the best AP_box and AP_mask scores among all methods for Cityscapes
and 1DD. While Cascade Mask R-CNN obtains the best APy, and AP,,.s, scores
for majority of object classes (except motorcycle and rider) in case of BDD. For
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Cityscapes, Mask Scoring R-CNN produces the worse APy, and AP, sk scores
which are 9.5% and 11.4% lower than that of Mask R-CNN.

Results on Cityscapes

Ground Truth Mask R-CNN Cascade Mask R-CNN Mask Scoring R-CNN

Fig. 4. Shows some qualitative results on instance segmentation showing both mask
and bounding boxes of a few selected frames from Cityscapes, BDD, and IDD datasets.
(Best viewed in color and zoomed).

For motorcycle and train object categories of Cityscapes, the performances
of the two techniques — Cascade Mask R-CNN and Mask Scoring R-CNN drops
more than 10% compared to Mask R-CNN. In BDD, we notice that for the object
category car, all methods obtain APy, and AP, scores more than 44%.
We also notice that Cascade Mask R-CNN obtains the best average AP, and
AP,,.sk and Mask R-CNN obtains the worse results among the used methods.
In case of IDD, we notice that the APy, score is higher (more than 39%) for
commonly found road objects such as autorickshaw, truck, bus, and car. While
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the AP,,qsk score for person and rider classes is very alike due to similar looking
visual features. Among the object categories, all methods achieve the lowest
APy, and AP, s for vehicle-fallback. MR obtains the best APy, and AP, qsk
scores compared to other techniques. While MSR produces the worse average
APy, and AP, scores which are 4.8% and 4%, respectively less than MR.

From the table, we also observe that the performances of all methods are
worse on BDD as compared to Cityscapes and IDD. This is because sequences
of BDD are captured under several complex conditions. The quantitative results
highlight that BDD is more complex than IDD and Cityscapes for instance seg-
mentation. While IDD is more complex than Cityscapes for the same task.

Figure 4 shows the qualitative results of a few randomly selected frames.
Images of the first and second rows are from Cityscapes. Both images show
multiple cars moving on the left and right sides of the road. From the figure, we
notice that Mask R-CNN produces better results on overlapping cars. However,
both Cascade Mask R-CNN and Mask Scoring R-CNN fail to segment instances
of a car far away from the camera. The image in the third row shows a crowded
traffic junction and multiple pedestrians are crossing the road in BDD. We notice
that Cascade Mask R-CNN can accurately segment instances of small pedestrians
than Mask R-CNN and Mask Scoring R-CNN. Images of the fourth row present
multiple moving cars on a road, with shadows cast by roadside trees. In this case,
Mask Scoring R-CNN obtains the best results. Images of fifth and sixth rows are
taken from IDD and include multiple overlapping vehicles of varying scales on a
road with dense buildings on both sides. In both the cases, Mask R-CNN produces
better results than Cascade Mask R-CNN and Mask scoring R-CNN.

5 Summary

In this work, we used various state-of-the-art models for object detection, se-
mantic segmentation, and instance segmentation tasks and evaluate their char-
acteristics on structured and unstructured driving datasets: Cityscapes, BDD,
and IDD. To our knowledge, this work is the first comprehensive report on anal-
yses of models for tasks with driving datasets. All the methods performed sig-
nificantly better on object category train in Cityscapes than on BDD and IDD
in the object detection task. Due to the unstructured nature, object detection
tasks on IDD performed lower compared to Cityscapes and BDD. Cityscapes is
the easiest dataset for object detection tasks among the three datasets being
used. In semantic segmentation, we notice that all models perform better on
Cityscapes than on BDD and IDD. We also notice that the DRN model performs
consistently well across all the driving datasets compared to other models. In
instance segmentation, we observe that Mask R-CNN performs better than all
other models on Cityscapes and IDD, while Cascade Mask R-CNN performs bet-
ter for the majority of the object categories of BDD. Looking at the complexity
of the dataset for different tasks, we notice that for instance segmentation and
semantic segmentation tasks, BDD is a more complex dataset than Cityscapes
and IDD.
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A further study on identifying and addressing the problems inherent in road

scene datasets can help in a better generalization. An empirical study on domain
adaptation and domain generalization can be performed to further understand
the behavior of the models in different geographic and environmental settings.

Acknowledgements: This work was partly funded by IHub-Data at ITIT-
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