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Abstract

We investigate Referring Image Segmentation (RIS),
which outputs a segmentation map corresponding to the
given natural language description. To solve RIS effi-
ciently, we need to understand each word’s relationship
with other words, each region in the image to other re-
gions, and cross-modal alignment between linguistic and
visual domains. Recent methods model these three types
of interactions sequentially. We argue that such a modu-
lar approach limits these methods’ performance, and joint
simultaneous reasoning can help resolve ambiguities. To
this end, we propose a Joint Reasoning (JRM) module and
a novel Cross-Modal Multi-Level Fusion (CMMLF) mod-
ule for tackling this task. JRM effectively models the refer-
ent’s multi-modal context by jointly reasoning over visual
and linguistic modalities (performing word-word, image
region-region, word-region interactions in a single module).
CMMLF module further refines the segmentation masks by
exchanging contextual information across visual hierarchy
through linguistic features acting as a bridge. We present
thorough ablation studies and validate our approach’s per-
formance on four benchmark datasets, and show that the
proposed method outperforms the existing state-of-the-art
methods on all four datasets by significant margins.

1. Introduction

Fundamental computer vision tasks related to localiza-
tion, like detection and segmentation, aim to grant com-
puters’ visual abilities comparable to humans. Tradition-
ally, these tasks have dealt with a pre-defined set of cate-
gories, making them difficult to scale and limit their practi-
cal use. Substituting the pre-defined categories with natural
language expressions is a logical extension to counteract the
above problems. Indeed, this is how humans interact with
objects in their environment by referring them with linguis-
tic queries. For example, the phrase “the kid running after

“anywhere, not on the people”

“store on left, next to hats, with blanket draped in front”

Original Image CMPC Our Approach Ground Truth

Figure 1. Comparison of the proposed approach with CMPC [8].
In both the examples CMPC fails at the first stage itself, where it
completely misses the actual referred entity. Our approach per-
forms the exhaustive forms of interactions in a single step and
identifies the correct referred entity. Best viewed in color and un-
der zoom.

the butterfly” requires localizing only the child running af-
ter the butterfly and not the other kids. Formally, the task
of localizing objects based on natural language expression
is known as Visual Grounding. Existing works approach
the grounding problem either by predicting a bounding box
around the referred object or by predicting a segmentation
mask corresponding to the referred object. In this paper, we
focus on the latter approach, as a segmentation mask can ef-
fectively pinpoint the exact location and capture the actual
shape of the referred object. The task is formally known as
Referring Image Segmentation (RIS).

RIS task requires understanding both visual and linguis-
tic modalities at an individual level, specifically word-word
and region-region interactions. Additionally, a joint under-
standing of both modalities is required to identify the re-
ferred object from the linguistic expression and localizing it
in the image. For instance, to ground a sentence “whatever
is on the truck”, it is necessary to understand the relation-
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ship between words as grounding just the individual words
will not work. Similarly, region to region interactions in vi-
sual modality help group semantically similar regions, ex:
all regions belonging to the truck. Finally, to identify the
referent regions, we need to transfer the distinctive infor-
mation about the referent from the linguistic modality to
the visual modality; this is taken care of by the cross-modal
word-region interactions. The current state-of-the-art meth-
ods [8, 9, 7] take a modular approach to the RIS task, where
these interactions happen in parts, sequentially.

Different methods differ in how they model these inter-
actions. Huang et al. [8] first perform a region-word align-
ment (cross modal interaction). The second stage takes
these region word alignments as input and selects the final
relevant regions by reasoning over the entire linguistic ex-
pression. The reasoning step exploits the relationship and
attributes corresponding to the referent in the textual ex-
pression. For example, for the sentence “The man holding
a white Frisbee”, the first stage will localize all instances
of “man” and “Frisbee,” and the second stage would select
the correct instance of the “man” associated with a “white
Frisbee”. They use a Graph Convolutional Network for re-
lational reasoning. Hui et al. [9] uses the dependency tree
structure of the referring expression for the reasoning stage
instead. Hu et al. [7] take a slightly different approach; in-
stead of selecting the relevant region for each word, they
select a relevant combination of words for each region. The
second stage selects the relevant regions corresponding to
referent based on the affinities with other regions. The prob-
lem with these approaches is that they model different forms
of interactions in different stages. As a result, errors in the
first stage of interaction limit the performance of subsequent
ones (bottom row of Figure 1). The sequential interactions
are also limited by design, as some RIS instances ideally
require to model these interactions simultaneously (top row
of Figure 1).

In this paper, we propose to perform all three forms of
interactions simultaneously. We propose a Joint Reasoning
Module (JRM) which jointly models inter-modal interac-
tions and intra-modal interactions between the visual and
linguistic modalities. Inter-modal interactions handle the
cases for identifying the semantically similar words and re-
gions in both modalities. Intra-modal interactions are used
to transfer the contextual information between modalities to
identify the referential context. Additionally, we propose a
novel CMMLF module to exchange contextual information
for referent across modalities and visual hierarchies and re-
fine the referred object’s segmentation mask.

We motivate the benefits of simultaneous interaction
over the sequential interactions in Figure 1. We use the best
performing CMPC [8] which first perceives all entities from
the expression and individually aligns them in the visual do-
main. A reasoning step then follows. In both examples,

CMPC fails at the first stage of entity perception. For the
prediction in the top row (Figure 1), the sentence is to be
understood as a whole, since referred entity is not explicitly
mentioned in the expression. CMPC identifies “people” as
the only present entity and ends up giving a wrong predic-
tion. Similarly, in the second row (Figure 1), the expression
is “store on left, next to hats with blanket draped in front”.
Both the scene and expression used are complex, as a lot
of closely cluttered objects are there in the scene, and the
language used to describe the referent uses complex rela-
tions between linguistic words. The first stage of CMPC
predicts “hats” and “blankets” as entities and completely
misses the actual referred object “store”. In both cases, our
approach with exhaustive interactions is able to understand
the essence of the textual expression and reason about the
referred object in the visual modality. Overall, our work
makes the following contributions:-

1. We propose a Joint Reasoning Module (JRM) to
jointly reason over regions; words, and region-word
features. Joint Reasoning allows each modality to fo-
cus on semantic information common to both modali-
ties to identify the referred object.

2. We propose Cross-Modal Multi-level Fusion
(CMMLF) module, which allows contextual in-
formation to be exchanged across visual hierarchies
through linguistic features, enabling common seman-
tic information for referent to be aggregated from
different visual hierarchies and result in a refined
segmentation mask.

3. We present thorough quantitative and qualitative ex-
periments to demonstrate the efficacy of our approach
and show notable performance gains against current
state-of-the-art methods on four RIS benchmarks.

2. Related Work
2.1. Semantic Segmentation

In semantic segmentation, the goal is to predict a label
for each pixel in the image. Introduction of Fully Convo-
lution Networks [14] led to a significant breakthrough in
Semantic Segmentation. FCN replaces the fully connected
layer in classification networks with convolutional layers
and introduces skip connection for generating dense predic-
tions for pixel-wise labels. DeepLab and its variants [2, 3]
introduce atrous Convolution to enlarge the receptive field
of convolutional filters and aggregate multi-scale context
using atrous spatial pyramid pooling. PSPNet [29] per-
forms region-based context aggregation through pyramid
pooling to extract multi-scale context. DANet [4] utilizes
channel and position attention to adaptively integrate local
features with their global dependencies. Recent works like
ResNeSt [28] and HRNet-OCR [23] use attention-based ap-
proaches to combine information across feature map groups



and to combine multi-scale predictions, respectively. The
task of RIS is a more generalized and natural variant of se-
mantic segmentation where natural language referring ex-
pressions replace the predefined set of object categories.

2.2. Referring Expression Comprehension

Referring Expression Comprehension (REC) aims to lo-
calize the entities in the image referred to by the refer-
ring expression. In the REC task, the localization is per-
formed using bounding box proposals. Existing approaches
in REC can be categorized into two groups based on the
model pipeline, (1) two-stage methods and (2) one-stage
methods. In the two-stage methods, the first stage utilizes
a pre-trained object detector to generate candidate bound-
ing boxes for the given image, and the second stage selects
the bounding box relevant to the object referred by the natu-
ral language expression. All the existing two-stage methods
differ in their approaches for selecting the relevant bound-
ing box proposal in the second stage. Earlier works like [6]
used a scoring function on candidate boxes based on text
query, and [20] use an attention mechanism for selecting
the bounding box. Recent Works like [24] use cross-modal
attention to model relations between language and vision
modalities, followed by Graph Convolutional Network to
perform relational reasoning to select the correct bounding
box. In contrast to two-stage methods, one-stage methods
combine the proposal generation network with the proposal
selection network to create an end-to-end trainable net-
work. [25] performs single-stage localization by augment-
ing the object detector with textual features. ZSGNet [21]
combines the detector network and the grounding network
and predicts classification scores and regression parameters
for the candidate bounding boxes.

2.3. Referring Image Segmentation

Bounding Box based methods in REC are limited in
their capabilities to capture the inherent shape of the re-
ferred object and are known to struggle with multi-scale
objects. Referring Image Segmentation (RIS) task was pro-
posed to alleviate the problems associated with REC tasks.
RIS task was first introduced in [5], where they generate
the referent’s segmentation mask by directly concatenat-
ing visual features from CNN with tiled language features
from LSTM. Later works like [13], perform sequential rea-
soning over individual words and visual regions through a
convolutional multi-modal LSTM. [11] proposed Recurrent
Refinement Networks (RRN) to generate refined segmen-
tation masks by incorporate multi-scale semantic informa-
tion from the image. Since each word in expression makes
a different contribution to identify the desired object, [22]
model visual context for each word separately using query
attention. [26] uses a self-attention mechanism to capture
long-range correlations between visual and textual modali-

ties. Recent works [7, 8, 9] utilize cross-modal attention to
model multi-modal context, [9] use dependency tree struc-
ture and [8] use coarse labelling for each word in the ex-
pression for selective context modelling. Most of the exist-
ing works capture only a subset of multi-modal interactions
to model the context for referent. In this work, we con-
currently and comprehensively model the intra-modal and
inter-modal interactions across visual and linguistic modal-
ities.

3. Method
Given an image and a natural language referring expres-

sion, the goal is to predict a pixel-level segmentation mask
corresponding to the referred entity described by the expres-
sion. The overall architecture of the network is illustrated
in Figure 2. Visual features for the image are extracted us-
ing a CNN backbone, and linguistic features for the refer-
ring expression are extracted using a LSTM. A Joint Rea-
soning Module (JRM) simultaneously aligns visual regions
with textual words and jointly reasons about both modali-
ties to identify the multi-modal context relevant to the refer-
ent. JRM is applied to hierarchical visual features extracted
from CNN backbone since hierarchical features are better
suited for segmentation tasks [26, 1, 7]. A novel Cross-
Modal Multi-Level Fusion (CMMLF) is applied to effec-
tively fuse JRM’s multi-level output and produce a refined
segmentation mask for the referent. We describe the feature
extraction process in the next section, and both JRM and
CMMLF modules are described in the subsequent sections.

3.1. Feature Extraction

Our network takes an image and a natural language ex-
pression as input. We extract hierarchical visual features
for an image from a CNN backbone. All hierarchical vi-
sual features are transformed to the same spatial resolution
and channel dimension through pooling and convolution op-
erations. Final visual features for each level are of shape
RCv×H×W , with H , W and Cv being the height, width and
channel dimension of the visual features. Final visual fea-
tures are denoted as {V2, V3, V4}, corresponding to layers
2, 3 and 4 of the CNN backbone. For ease of readabil-
ity, we denote the visual features as V . We first initialize
each word with a pre-trained word-embedding for the lin-
guistic expression, which are then passed as input to the
LSTM encoder. The hidden feature of LSTM at ith time
step li ∈ RCl , is used to denote the word feature for the ith

word in the expression. The final linguistic feature of the
expression is denoted as L = {l1, l2, ..., lT }, where T is the
number of words in the referring expression.

3.2. Joint Reasoning Module

In this section, we describe the Joint Reasoning Mod-
ule (JRM). To successfully segment the referent, we need



Figure 2. The proposed network architecture.

to identify the semantic information relevant to it in both
the visual and linguistic modalities. This requires iden-
tifying region-region, word-word, and region-word pairs
with similar contextual information. We model JRM as a
multi-modal transformer encoder to capture the inter-modal
and intra-modal interactions between visual and linguistic
modalities. JRM is illustrated in Figure 3.

Hierarchical visual features V ∈ RCv×H×W and lin-
guistic word-level features L ∈ RCl×T are passed as input
to JRM, with Cv = Cl = C. We add separate positional
embeddings to visual and linguistic features. For the vi-
sual features, we add spatially aware positional embedding
SV of shape RC×H×W , and for linguistic features, we add
length aware positional embeddings Sl of shape RC×T .

V p = V + Sv (1)
Lp = L+ Sl (2)

Here, V p and Lp are the same shape as V and L, respec-
tively. Following this, we flatten the spatial dimensions of
visual features V p and perform a length-wise concatena-
tion with the linguistic features Lp to get a multi-modal
feature M of shape RC×(HW+T ). M is passed as input
to the multi-modal transformer encoder. The self-attention
mechanism in the encoder captures region-region and word-
word interactions to identify similarly related regions and
similarly related words. Further, region-word interactions
help in reasoning about the referent by selecting regions and
words with similar semantic context relevant to the refer-
ent. The output of JRM is a multi-modal feature X with
cross-modal contextual information for the referent. X is
the same shape as M . We compute X for all hierarchical
visual features {V2, V3, V4}, resulting in hierarchical cross-
modal output {X2, X3, X4}.

Figure 3. Joint Reasoning Module

3.3. Cross Modal Multi-level Fusion

Since features from different hierarchies in the CNN cap-
ture different aspects of the image, the input to JRM will
differ in the visual information, as a result visual contex-
tual information captured in Xi’s will be different. In order
to predict a refined segmentation mask for the referent, we
need to aggregate the relevant contextual information from
all hierarchies effectively. We propose a novel cross-modal
multi-level fusion (CMMLF) module to address this.

The input to CMMLF module are the multi-modal
features Xis from JRM. Since each Xi has shape of
RC×(HW+T ), they contain contextual information from



Figure 4. Cross Modal Multi Level Fusion Module

both modalities. First, we separate the visual and linguis-
tic context from Xis to get visual features with linguistic
context Xv

i ∈ RC×HW , and linguistic features with visual
context X l

i ∈ RC×T . X l
i is averaged along the length di-

mension to result in a global visually attended linguistic fea-
ture Xi

lavg
.

Because of the hierarchical visual features, the visual
context captured by each Xi

lavg
is different. We utilize

this aspect to use these linguistic features as a bridge to
exchange visual information with other hierarchies. We
take visual features from one hierarchy and concatenate it
with linguistic part attended at the other hierarchies. More
specifically, we take ith layer output’s visual part Xv

i and
concatenate it with tiled textual part Xj

lavg
of a different jth

layer along channel dimension. The concatenation is done
separately with each of the remaining two layers. The full
procedure is described in Figure 4.The visual contextual in-
formation is aggregated in the following way:-

Λij = σ(Conv([Xi
v;Xj

lavg
])) (3)

Y i = Xi
v +

∑
j∈{2,3,4}/{i}

Λij �Xi
v (4)

Here Λij ∈ RC×H×W are similarity weights between the
ith and jth level hierarchies, and Y i ∈ RC×H×W is a re-
fined multi-modal feature with visual context from other hi-
erarchies. Finally, Y i’s are fused by stacking them along
new dimension, resulting in R3×C×H×W dimensional vec-
tor, which is passed through 3-D Convolution to aggregate
visual information from multiple levels to result in final re-
fined multi-modal feature Y .

3.4. Mask Generation

Finally, Y is passed through Atrous Spatial Pyramid
Pooling (ASPP) decoder and Up-sampling convolution to
predict final segmentation mask S. Pixel-level binary cross-
entropy loss is applied to predicted segmentation map S and
the ground truth segmentation mask G to train the entire
network end-to-end.

4. Experiments
4.1. Experimental Setup

We conduct experiments on four Referring Image Seg-
mentation datasets: UNC [27], UNC+ [27], G-Ref [15] and
Referit [10]. We describe each dataset separately.

UNC: The UNC dataset contains 19,994 images taken
from MS-COCO [12] with 142,209 referring expressions
corresponding to 50,000 objects. Referring Expressions for
this dataset contain words indicating the location of the ob-
ject. Two or more objects of the same object category ap-
pear in each image.

UNC+: THE UNC+ dataset is also based on images
from MS-COCO. It contains 19,992 images, with 141,564
referring expressions corresponding to 50,000 objects. Un-
like UNC, this dataset does not contain words that indicate
the object’s location, and the expression describes the object
based on their appearance and context within the scene.

G-Ref: Like UNC and UNC+, G-Ref is also curated
using images from MS-COCO. It contains 26,711 images,
with 104,560 referring expressions for 50,000 objects. Each
image contains 2 to 4 objects of the same category. G-
Ref contains longer sentences with an average length of 8.4
words; compared to G-Ref, other datasets have an average
sentence length of less than 4 words.

Referit: Referit dataset comprises of 19,894 images col-
lected from IAPR TC-12 dataset. It includes 130,525 ex-
pressions for 96,654 objects. The expressions are shorter
compared to other datasets. The foreground regions consist
of objects and stuff (e.g., sky, mountains, and ground).

4.2. Implementation details

We adopt DeepLabv3+ [3] with Resnet-101 as a back-
bone for image feature extraction. Like previous works [26,
1, 7], our CNN backbone is pre-trained on Pascal VOC, and
its parameters are fixed during training. For multi-level fea-
tures, we extract features from layers 2, 3 and 4 of the CNN
backbone. We conduct experiments with images at spatial
resolutions of 448 × 448 and 576 × 576. At 448 × 448
resolution, H = W = 14 and at 576 × 576 resolution,
H = W = 18. We use GLoVe embeddings [17] pre-trained
on Common Crawl 840B tokens to initialize word embed-
ding for words in the expressions. The maximum num-
ber of words in the linguistic expression is set to 25. We
use LSTM for extracting textual features. The network is
trained using Adam optimizer with weight decay (AdamW)
with batch size set to 50; the initial learning rate is set to
2.5e−4 and weight decay of 5e−4 is used. The initial learn-
ing rate is gradually decreased using polynomial decay with
a power of 0.5.

Evaluation Metrics: Following previous works [26, 1,
7], we evaluate the performance of our model using over-
all Intersection-over-Union (overall IoU) and Precision@X



Method UNC UNC+ G-Ref Referit
val testA testB val testA testB val test

LSTM-CNN [5] - - - - - - 28.14 48.03
KWAN [22] - - - - - - 36.92 59.09
DMN [16] 49.78 54.83 45.13 38.88 44.22 32.29 36.76 52.81
ASGN [19] 50.46 51.20 49.27 38.41 39.79 35.97 41.36 60.31
RRN [11] 55.33 57.26 53.95 39.75 42.15 36.11 36.45 63.63

CMSA [26] 58.32 60.61 55.09 43.76 47.60 37.89 39.98 63.80
STEP [1] 60.04 63.46 57.97 48.19 52.33 40.41 46.40 64.13
BRIN [7] 61.35 63.37 59.57 48.57 52.87 42.13 48.04 63.46
LSCM [9] 61.47 64.99 59.55 49.34 53.12 43.50 48.05 66.57
CMPC [8] 61.36 64.53 59.64 49.56 53.44 43.23 49.05 65.53

JRNet* 448× 448 64.31 68.13 60.48 52.00 56.44 43.96 48.72 68.03
JRNet* 576× 576 65.76 69.33 60.93 53.97 60.06 45.49 49.49 68.58

Table 1. Comparison with State-Of-the-Arts on Overall IoU metric, ∗ indicates results without using DenseCRF post processing

as metrics. Overall IoU metric calculates the ratio of the
intersection and the union computed between the predicted
segmentation mask and the ground truth mask over all test
samples. Precision@X metric calculates the percentage of
test samples having IoU greater than the threshold X , with
X ∈ {0.5, 0.6, 0.7, 0.8, 0.9}.

4.3. Comparison with State of the Art

We evaluate our method’s performance on four bench-
mark datasets and present the results in Table 1. Like
previous works, we use the Overall IoU metric to com-
pare the performance against other state-of-the-art meth-
ods. At 576 × 576 input resolution, we outperform the
existing methods by significant margins and achieve state-
of-the-art numbers on all four datasets. Our method also
achieves superior performance on three of the dataset at the
448 × 448 resolution. Most previous methods present re-
sults after post-processing the segmentation maps through a
Dense Conditional Random Field (Dense CRF). In contrast,
the presented results of our approach are without any such
post-processing.

The expressions in UNC+ avoid using positional words
while referring to objects; instead, they are more descriptive
about the object’s attributes and relationships. Substantial
performance gains on the UNC+ dataset at all splits show-
cases the effectiveness of utilizing comprehensive interac-
tions simultaneously across visual and linguistic modalities.
Similarly, our approach gains 1.46-1.88% over the next best
performing method LSCM [9] on the Referit dataset, re-
flecting its ability to ground unstructured regions (e.g., the
sky, free space). We also achieve solid performance gains
on the UNC dataset at both resolutions, indicating that our
method is able to resolve among multiple instances of the
same type of objects and effectively locate the referred one.

The performance gains on the G-Ref dataset are
marginal, achieving an improvement of 0.33% over CMPC.

G-Ref is a relatively complex dataset with longer and ver-
bose referring expressions (the average sentence contains
more than 8 words). The results suggest scope for bet-
ter modeling of the longer sentences. We experimented
with contextual embeddings like ELMo [18] instead of the
GLoVe; however, that did not improve the performance.

Our approach also achieves the highest gains on
Precision@X metric on all datasets, specifically for X =
0.9. Our best performing model (with two encoder lay-
ers in JRM at resolution 576 × 576) gives 18.31% score in
Precision@0.9 metric, compared to 12.89 of CMPC, achiev-
ing an improvement of 5.41%. More comprehensive eval-
uation results on Precision@X metric are presented in the
supplementary material.

4.4. Ablation Studies

We perform ablation studies on the UNC dataset’s vali-
dation split to validate the effectiveness of different modules
in the proposed architecture. All methods are evaluated on
Precision@X and Overall IoU metrics and the results are il-
lustrated in Table 2 and Table 3. All ablations are performed
at an input resolution of 448 × 448. The feature extraction
process described in Section 3.1 is used for all ablation stud-
ies. ASPP + ConvUpsample decoder is also common to all
the experiments.

The baseline model involves direct concatenation of vi-
sual features with the tiled textual feature to result in multi-
modal feature of shape R(Cv+Ct)×H×W . This multi-modal
feature is passed as input to ASPP + ConvUpsample de-
coder. The baseline model achieves a better Overall IOU
score than some of the older methods like DMN [16] and
ASGN [19].

CMMLF without JRM: “Only CMMLF” network dif-
fers with baseline method only on the fusion process of hi-
erarchical multi-modal features. Introducing the CMMLF
module over baseline results in 4.83 % improvement on the



Method prec@0.5 prec@0.6 prec@0.7 prec@0.8 prec@0.9 Overall IoU
Baseline 61.47 54.01 43.74 27.47 7.21 54.70

Only CMMLF 68.44 61.58 52.10 35.63 9.71 59.53
Only JRM 72.56 66.58 57.91 40.73 12.82 62.16

JRM+ConvLSTM 75.27 69.49 60.87 42.95 13.35 63.30
JRM+Conv3D 74.07 68.74 60.50 43.14 13.58 63.16

JRNet w/o Glove 74.23 68.42 59.77 42.47 13.66 62.19
JRNet w/o P.E. 74.18 68.36 59.71 43.15 13.36 63.07

JRNet 76.52 71.66 63.43 45.70 15.69 64.31

Table 2. Ablation Studies on Validation set of UNC, JRNet is the full architecture with both JRM and CMMLF modules. We use single
encoder layer for all experiments using JRM. The input image resolution is 448× 448 in each case.

Figure 5. Qualitative results comparing baseline against JRNet.

Split JRM layers
n=1 n=2 n=3 n=4

val 64.25 64.31 63.59 63.36
testA 67.45 68.13 67.33 66.93
testB 60.07 60.48 59.73 59.35

Table 3. Results on Overall IoU metric by varying the number of
encoder layers in JRM on the UNC dataset.

Overall IoU metric and an improvement of 2.5 % on the
prec@0.9 metric (illustrated in Table 2), indicating that the
CMMLF module results in refined segmentation masks.

JRM without CMMLF: Similarly, the “Only JRM” net-
work differs from the baseline method in the way different
types of visual-linguistic interactions are captured. We ob-
serve significant performance gains of 7.46 % over the base-
line, validating our claim that joint reasoning helps identify
the referent.

JRM + X: We replace CMMLF module with other multi-
level fusion techniques like ConvLSTM and Conv3D. Com-

paring the performance of JRM+ConvLSTM with JRNet
(JRM+CMMLF), we observe that CMMLF is indeed effec-
tive at fusing hierarchical multi-modal features (Table 2).
For JRM+Conv3D, we stack multi-level features along a
new depth dimension resulting in 3D features, and perform
3D convolution on them. The same filter is applied to dif-
ferent level features that result in each level feature con-
verging on a common region in the image. JRM+Conv3D
achieves a similar performance as JRM+ConvLSTM while
using fewer parameters. Using Conv3D achieves higher
Precision@0.8 and Precision@0.9 than ConvLSTM, sug-
gesting that it leads to more refined maps. It is worth noting
that CMMLF also uses Conv3D at the end, and the addi-
tional gains of JRNet over JRM+Conv3D suggest the bene-
fits of hierarchical information exchange in CMMLF.

Glove and Positional Embeddings: We verify Glove em-
beddings’ significance by replacing it with one hot embed-
ding. We also validate the usefulness of Positional Embed-
dings (P.E.) by training a model without them. Both vari-
ants observe a drop in performance (Table 2), with the drop



“the right half of the sandwich on the left”

(a) Original Image (b) Only CMMLF module (c) Only JRM module (d) JRNet (e) Ground Truth

Figure 6. We present qualitative results corresponding to combinations of proposed modules. In (b) we show results when only CMMLF
module is used, (c) result with only JRM module being used, (d) output mask when both JRM and CMMLF modules are used

“top bowl” “left plate on top” “left plate on bottom” “front bowl” “right bowl” “empty plates in center”

Figure 7. Output predictions for anchored image with varying linguistic expressions.

being more significant in the variant without Glove embed-
dings. These ablations suggest the importance of capturing
word-level semantics and positional-aware features.

# of encoder layers in JRM: In Table 3, we present abla-
tions on the UNC dataset by varying the number of encoder
layers in JRM. We use the full model (JRNet) and find that
a two-layer encoder gives the best performance on all UNC
dataset splits. Increasing the number of layers deteriorates
the performance gradually.

4.5. Qualitative Results

Figure 5 presents qualitative results comparing the base-
line model against JRNet. JRNet is able to localize heav-
ily occluded objects (Figure 5 (a) and (b)) and reason on
the overall essence of the highly ambiguous sentences (e.g.
“person you cannot see”, “right photo not left photo”) and
ground them. It is able to distinguish among multiple in-
stances of the same type of object based on attributes and
appearance cues (Figure 5 (b), (c), and (e)). In contrast,
the baseline model struggles to segment the correct instance
and confuses it with other similar objects (e.g., fails to dis-
tinguish among different animals, bowls, and the two refrig-
erators). Figure 5 (d) and (f) illustrate the ability of JRNet
to localize unstructured non-explicit objects like “dark area”
and “blue thing”. The potential of JRNet to perform relative
positional reasoning is highlighted in Figure 5 (b), (e), and
(f).

To further highlight the contribution of both JRM and
CMMLF modules, we present qualitative results with net-
works trained using “Only CMMLF”, “Only JRM” and JR-
Net in Figure 6. “Only CMMLF” network does not involve
any reasoning; however, it manages to predict the left sand-

wich with refined boundaries. “Only JRM” network is able
to understand the concept of “the right half of the sandwich”
and leads to much better output; however, the output mask
bleeds around the boundaries, and an extra small noisy seg-
ment is also seen. The full model benefits from the reason-
ing in “JRM,” and when combined with CMMLF, it further
facilitates information exchange across hierarchies and pre-
dicts a correct and refined mask as output.

In Figure 7, we anchor an image and make predictions
by varying the natural language expression. Our approach
is able to correctly segment all of the instances, clearly high-
lighting the flexibility and adaptability of the proposed JR-
Net model.

5. Conclusion
In this work, we tackled the task of Referring Image Seg-

mentation. We proposed to solve this problem by compre-
hensively capturing interactions between different words in
the linguistic expression, different regions of the image, and
cross-modal interactions between words and image regions,
in a single step. Furthermore, we introduced a novel fusion
module, CMMLF, that fuses hierarchical multi-modal fea-
tures by effectively exchanging and aggregating the contex-
tual information relevant to the referent. We present thor-
ough quantitative and qualitative experiments to demon-
strate the efficacy of our method. The proposed JRNet
achieves substantial gains over the state-of-the-art on all the
four commonly used RIS benchmarks.
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1. Detailed analysis on Precision@X

In this section, we present comprehensive results on
Precision@X metric. We first compare against the existing
approaches on Precision@X metric on UNC dataset and
then present results of JRNet on Precision@X across all
datasets.

In Table 1, we compare the performance of recent state-
of-the-art methods on Precision@X metric. Other methods
provide Precision@X metric results only on UNC dataset’s
validation split in their ablation studies and results on other
datasets are not available. Hence the comparisons are lim-
ited to UNC’s validation split. For other papers, we di-
rectly pick the results presented in their ablation section. As
illustrated in Table 1, our approach achieves significantly
higher Precision@X score for all values of X at both reso-
lutions. At Precision@0.8 the performance improvement is
11.57% (30% relative improvement over the best perform-
ing CMPC). At Precision@0.9 our method achieves 6.16%
improvement over CMPC (52% relative improvement, in-
creasing to 19.05 from 12.89). The relative improvement
over other methods increase with higher values of X in
Precision@X , clearly illustrates the ability of our network
to provide more refined segmentation maps, compared to
the previous state-of-the-art methods.

In table 2, we present JRNet’s performance on all four
datasets on the Precision@X metric. High numbers at
prec@0.5 metric indicate that our approach is able to local-
ize the referent on a large number of cases (e.g. the correct
referent is localized in more than 73% of cases across all
splits of UNC dataset).

2. Comparison at different Resolution

We understand that our input image resolution is higher
than existing methods. For a fair comparison, we train
the current best performing method CMPC [8] at higher
resolutions. In Table 3 and Table 4, we compare our ap-
proach against CMPC trained at different image resolutions
of 448 × 448 and 576 × 576, respectively. Our method
consistently outperforms CMPC on both resolutions across

all metrics by significant margins. Interestingly, our net-
work trained at 448 × 448 resolution beats CMPC trained
at 576 × 576 resolution at almost all metrics by good mar-
gins. This indicates our approach’s capability to effectively
utilize additional visual semantic information at higher res-
olution. When comparing on Precision@X metric, we ob-
serve that the performance gap between CMPC and JRNet
increases with increase in X , while comparing the models
trained at the same resolution.

We would like to point out that, despite higher resolution
of input images, the feature map resolution of visual fea-
tures in our approach is very low compared to other meth-
ods. Our approach utilizes feature maps that are down-
sampled by a factor of 32 from original image resolution,
compared to other methods that down-sample the visual fea-
tures only by factor of 8. We observed that using higher res-
olution feature map for the same image resolution results in
increased training time with insignificant improvement in
performance.

There is a small typo in Table1 of results section of our
main paper. Lower values are reported for our method in
the Overall IoU results for UNC’s testB split. They change
from 60.48% to 60.98% for JRNet at 448 × 448 resolution
and from 60.93% to 61.93% for JRNet at 576× 576 resolu-
tion.

3. Qualitative Results
In this section, we present additional qualitative results

for JRNet model on variety of image-expression pairs.
In Figure S1, we present results where JRNet success-

fully grounded the referring expression in the image. JRNet
is able to identify fine grained distinctive information about
the referent from the referring expression, and utilize it to
correctly localize the referent in complex visual scenes in
(c), (d), (f) and (j). Specifically in (c), (d) and (j), JRNet is
able to identify the correct person from large group of peo-
ple based on the combination of person’s attribute (“dark
hair”), attributes of person’s clothing (“green sleeves”, “no
shirt” etc) and its location with respect to other objects in the
image (“by the wall”). Additionally, JRNet localizes objects

1



Method prec@0.5 prec@0.6 prec@0.7 prec@0.8 prec@0.9 Overall IoU
CMSA [26] 66.44 59.70 50.77 35.52 10.96 58.32
STEP [1] 70.15 63.37 53.15 36.53 10.45 60.04

BRINet [7] 71.83 65.05 55.64 39.36 11.21 61.35
LSCM [9] 70.84 63.82 53.67 38.69 12.06 61.47
CMPC [8] 71.27 64.44 55.03 39.28 12.89 61.36

JRNet (448 x 448) 76.52 71.66 63.43 45.70 15.69 64.31
JRNet (576 x 576) 77.72 72.21 65.07 50.85 19.05 65.37

Table 1. Comparison with other methods at precision@X metric.

Dataset Split prec@0.5 prec@0.6 prec@0.7 prec@0.8 prec@0.9 Overall IoU

UNC
val 77.82 72.99 65.34 50.73 20.03 65.76

testA 81.74 77.49 70.19 54.97 18.82 69.33
testB 72.66 66.59 58.64 46.32 21.92 62.12

UNC+
val 64.68 59.90 53.21 40.31 14.38 53.97

testA 71.72 67.32 60.06 46.99 15.01 60.06
testB 53.65 48.76 41.68 31.15 12.80 45.49

G-ref val 56.29 48.60 38.76 25.72 7.46 49.49
Referit test 66.07 58.84 49.15 35.44 16.68 68.58

Table 2. Evaluation Results on Precision@X metric for JRNet at 576× 576 resolution.

Method Split prec@0.5 prec@0.6 prec@0.7 prec@0.8 prec@0.9 Overall IoU

CMPC
val 74.24 67.97 58.52 40.76 11.53 62.84

testA 78.84 72.91 62.61 44.98 11.24 65.78
testB 70.06 62.02 52.26 37.68 13.48 60.14

JRNet (ours)
val 76.51 71.66 63.42 45.69 15.69 64.31

testA 81.19 76.45 68.14 49.35 14.44 68.13
testB 71.42 65.96 57.17 43.33 17.48 60.98

Table 3. Comparison with CMPC at 448× 448 resolution on UNC dataset

Method Split prec@0.5 prec@0.6 prec@0.7 prec@0.8 prec@0.9 Overall IoU

CMPC
val 74.40 67.63 58.63 43.27 14.92 63.13

testA 78.25 72.65 63.77 47.32 14.56 66.00
testB 69.53 62.10 52.28 39.25 14.77 60.33

JRNet (ours)
val 77.72 72.21 65.07 50.85 19.05 65.37

testA 81.72 77.14 69.82 55.33 18.58 68.88
testB 73.11 66.42 58.50 45.98 21.15 61.93

Table 4. Comparison with CMPC at 576× 576 resolution on UNC dataset

which are out of focus and are partially visible, ex: (b), (e),
(g) and (h). We would like to point out that in these cases,
rather than merely picking the most prominent objects, our
network effectively incorporates the information from tex-
tual expression in visual domain to identify the less promi-
nent correct object. In (a) and (i), the referring expressions
refer to unstructured regions in image, our network predicts
these regions with refined boundaries. In (k) and (l) of Fig-
ure S1, the referred objects occupy extremely small region
in the image space and JRNet is able to accurately locate
them.

In Figure S2, we present some failure cases of our ap-
proach. Our approach mostly fails in cases when either the
referring expression or the visual scene is ambiguous in (a),

(c) and (e), the visual scene is heavily cluttered in (b) and
(d), or when common sense reasoning is required like (f).
For example: the expression in (a), “chair at the end of ta-
ble on the left” is itself ambiguous and non-specific, as there
are two chairs at the end of table on left side. Similarly, in
(b) their are multiple keyboards with a mouse on top and
our method predicts one of the keyboards on the left with a
partial black mouse on the top. In (d), the plant branch on
the left is barely visible and also a lot of clutter is present. It
is noteworthy, that in each case, JRNet predicts a well seg-
mented and refined output and the class predictions are also
correct (an umbrella, a chair, a bottle, a keyboard etc.).



(a) “the wall behind the second boy from left” (b) “the blurry image of a person walking behind a man eating a hotdog”

(c) “guy wearing green long sleeves and blue denim pants” (d) “guy with blue shirt and red shorts with dark hair standing by wall”

(e) “next to the baby eating is a person wearing pants and boots” (f) “monitor that does not have black sticker but still has stickers everywhere else”

(g) “elephant that you can see most of its back” (h) “the reflection in the mirror of the person taking a picture of the donut”

(i) “court not net” (j) “person without a shirt on, sitting down by the old man in blue”

(k) “the towel on the counter to the right of the man’s head” (l) “tiny spot, plant hanging from the ceiling”

Image Prediction Ground Truth Image Prediction Ground Truth

Figure S1. Qualitative examples where JRNet successfully localized the referred object.



(a) “chair at the end of table on the left” (b) “the keyboard on left with the black mouse on top”

(c) “the umbrella over the man wearing glasses on his head” (d) “most visible bottle closest to the little piece of plant”

(e) “yellow cake with chocolate triangle out of it, not closest to edge” (f) “chair that the person at the computer would be sitting at”

Image Prediction Ground Truth Image Prediction Ground Truth

Figure S2. Qualitative examples where JRNet failed to localize the referred object.


