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Abstract—Localizing page elements/objects such as tables,
figures, equations, etc. is the primary step in extracting in-
formation from document images. We propose a novel end-
to-end trainable deep network, (CDeC-Net) for detecting tables
present in the documents. The proposed network consists of a
multistage extension of Mask R-CNN with a dual backbone having
deformable convolution for detecting tables varying in scale with
high detection accuracy at higher IoU threshold. We empirically
evaluate CDeC-Net on the publicly available benchmark datasets
with extensive experiments.

Our solution has three important properties: (i) a single
trained model CDeC-Net‡ that performs well across all the
popular benchmark datasets; (ii) we report excellent perfor-
mances across multiple, including higher, thresholds of IoU; (iii)
by following the same protocol of the recent papers for each
of the benchmarks, we consistently demonstrate the superior
quantitative performance. Our code and models are publicly
available at https://github.com/mdv3101/CDeCNet for enabling
reproducibility of the results.

Keywords— Page object, table detection, Cascade Mask R-CNN,
deformable convolution, single model.

I. INTRODUCTION

Rapid growth in information technology has led to an exponential
increase in production and storage of digital documents over the
last few decades. Extracting information from such a large corpus
is impractical for humans. Hence, useful information could be lost
or not utilized over time. Digital documents have many other page
objects (such as tables and figures) beyond the text. These page
objects also show wide variations in their appearance. Therefore any
attempt to detect page objects such as tables need to be generic
and applicable across a wide variety of documents and use cases.
In this paper, we are interested in the detection of tables. It is well
known [1]–[11] that the localisation of tables and other page element
is challenging due to the high degree of intra-class variability (due
to different layouts of the table, inconsistent use of ruling lines). The
presence of inter-class similarity (graphs, flowcharts, figures having
large number of horizontal and vertical lines which resembles to
table) adds further challenges.

Table detection is still a challenging problem in the research
community. This is an active area of research [3]–[11]. However, we
observe that most of these attempts develop different table detection
solutions for different datasets. We argue that this may be the time to
consider the possibility of a single solution (say a trained model) that
works across wide variety of documents. We provide a single model
CDeC-Net‡ trained with IIIT-AR-13K dataset [12] and evaluate on
popular benchmark datasets. Table I shows the comparison with the
state-of-the-art techniques for respective datasets. We observe from
the table that our single model CDeC-Net‡ performs better than state-
of-the-art techniques for ICDAR-2019 (cTDaR) [13], UNLV [14], and
PubLayNet [9] datasets. In case of ICDAR-2013 [15], ICDAR-POD-
2017 [16], Marmot [17], and TableBank [7], single model CDeC-

Net‡ obtains comparable results to the state-of-the-art techniques. By
following the same protocol of the state-of-the-art papers, we also
report superior performance consistently across all the datasets, as
presented in Table III and will discuss later in this paper.

Dataset Method Score
R↑ P↑ F1↑ mAP↑

ICDAR-2013 DeCNT [3] 0.996∗ 0.996∗ 0.996∗ -
CDeC-Net‡ (our) 0.942 0.993 0.968 0.942

ICADR-2017 YOLOv3 [18] 0.968 0.975 0.971 -
CDeC-Net‡ (our) 0.899 0.969 0.934 0.880

ICADR-2019 TableRadar [13] 0.940 0.950 0.945 -
CDeC-Net‡ (our) 0.930 0.971 0.950 0.913

UNLV GOD [10] 0.910 0.946 0.928 -
CDeC-Net‡ (our) 0.915 0.970 0.943 0.912

Marmot DeCNT [3] 0.946 0.849 0.895 -
CDeC-Net‡ (our) 0.779 0.943 0.861 0.756

TableBank Li et al. [7] 0.975 0.987 0.981 -
CDeC-Net‡ (our) 0.970 0.990 0.980 0.965

PubLayNet M-RCNN [9] - - - 0.960
CDeC-Net‡ (our) 0.975 0.993 0.984 0.978

TABLE I: Illustrates comparison between our single model
CDeC-Net‡ and state-of-the-art techniques on existing bench-
mark datasets. We create the single model CDeC-Net‡ by
training CDeC-Net with IIIT-AR-13K and fine-tuning with
training set of respective datasets. *: indicates the authors
reported 0.996 in table however in discussion they mentioned
0.994.

Early attempts in localizing tables are based on meta-data ex-
traction and exploitation of the semantic information present in the
tables [19]–[21]. However, the absence of meta-data in the case
of scanned documents makes these methods futile. In recent years,
researchers employ deep neural networks [1]–[11] in an attempt to
provide a generic solution for localizing page objects, specifically
tables from document images. Siddiqui et al. [3] provide state-of-
the-art performance on many benchmark datasets by incorporating
deformable convolutions [22] in their network. However, even their
work is limited by the ability to provide a single model that achieves
state-of-the-art performance on all the existing benchmark datasets.
In general, the existing deep learning models are trained on a single
IoU threshold, commonly 0.5, following the practice followed in
computer vision literature. It leads to a noisy table detection at a
higher threshold value during evaluation. It is a drawback of the
existing table detection techniques. Liu et al. discuss in [23] that
generally, a CNN based object detector uses a backbone network to
extract features for detecting objects. These backbones are usually
designed for the image classification task and are pre-trained on either
ImageNet [24] or MS-COCO [25] datasets. Hence, directly employing
them to extract features for table detection [1]–[11] may result in
sub-optimal performance. Training a more powerful backbone is also



expensive. It is a major bottleneck of these existing table detection
techniques.

To address the issues mentioned above, we propose a composite
deformable cascade network, called as CDeC-Net, to detect tables
more accurately present in document images. The proposed CDeC-
Net consists of a multi-stage object detection architecture, cascade
Mask R-CNN [26]. The cascade Mask R-CNN network is composed
of a sequence of detectors trained with increasing IoU thresholds
to address the problem of noisy detection at higher threshold.
Inspired by [23] we use composite backbone, which consists of
multiple identical backbones having composite connections between
neighbor backbones, in CDeC-Net to improve detection accuracy. We
also incorporate deformable convolution [22] in the backbones to
model geometric transformations. We extensively evaluate CDeC-Net
on publicly available benchmark datasets — ICDAR-2013, ICDAR-
POD-2017, UNLV, Marmot, ICDAR-2019 (cTDaR), TableBank, and
PubLayNet under various existing experimental environments. The
extensive experiments show that CDeC-Net achieves state-of-the-art
performance on all existing benchmark datasets except ICDAR-2017.
We also achieve high accuracy and more tight bounding box detection
at higher IoU threshold than the previous benchmark results.

We summarise our main contributions as follows:
• We present an end-to-end trainable deep architecture, CDeC-Net

which consists of Cascade Mask R-CNN containing composite
backbones with deformable convolution to detect tables more
accurately in document images.

• We provide a single model trained on IIIT-AR-13K and achieve
very close competitive results to the state-of-the-art techniques
on all existing benchmark datasets (Refer Table I).

• We achieve state-of-the-art results on publicly available bench-
mark datasets except ICDAR-2017 (Refer Table III).

II. RELATED WORK

Table detection is an essential step towards document analysis.
Over the times, many researchers have contributed to the detection
of tables in documents of varying layouts. Initially, the researchers
have proposed several approaches based on heuristics or meta-data
information to solve this particular problem [19], [21], [27]–[32].
Later, the researchers explore machine learning, more specifically
deep learning, to make the solution generic [1]–[11].

A. Rule Based Approaches
The research on table detection in document images was started in

1993. In the beginning, Itonori [19] proposed a rule-based approach
that led to the text-block arrangement and ruled line position to
localize the table in the documents. At the same time, Chandran and
Kasturi [27] developed a table detection approach based on vertical
and horizontal lines. Following these, several research works [21],
[28]–[32] have been done for table detection using improved heuristic
rules. Though these methods perform well on the documents having
limited layouts, they need more manual efforts to find a better
heuristic rule. Moreover, rule-based approaches fail to obtain generic
solutions. Therefore, it is necessary to employ machine learning
approaches to solve the table detection problem.

B. Learning Based Approaches
Statistical learning approaches have been proposed to alleviate

the problems mentioned earlier in table detection. Kieninger and
Dengel [33] applied an unsupervised learning approach for the table
detection task. This method significantly differs from the previous
rule-based approaches [21], [28]–[32] as it uses a clustering of
given word segments. Cesarini et al. [34] used a supervised learning
approach using a hierarchical representation based on the MXY tree.
This particular method detects the table with different features by
maximizing the performance on a particular training set. Later, the
solution of the table detection problem is formulated using various

machine learning problems such as (i) sequence labeling [35], (ii)
SVM with various hand-crafted features [36], and (iii) ensemble
of various models [37]. Learning methods improve table detection
accuracy significantly.

Dataset Category Label Training Validation Test
Set Set Set

ICDAR-2013 1: T 170 238
ICDAR-POD-2017 3: T, F, and E 1600 817
UNLV 1: T 424
Marmot 1: T 2K
ICDAR-2019 (cTDaR) 1: T 1200 439
TableBank-word1 1: T 163K 1K 1k
TableBank-LaTeX1 1: T 253K 1K 1k
TableBank-both1 1: T 417K 2K 2k
PubLayNet1 5: T, F, TL, TT, and LT 340K 11K 11K
IIIT-AR-13K 5: T, F, NI, L, and S 9K 2K 2k

TABLE II: Statistics of datasets. T: indicates table. F: indicates
figure. E: indicates equation. NI: indicates natural image. L:
indicates logo. S: indicates signature. TL: indicates title. TT:
indicates text. LT: indicates list.

The success of deep convolutional neural network (CNN) in the
field of computer vision, motivates researchers to explore CNN for
localizing tables in the documents. It is a data-driven method and
has advantages — (i) it is robust to document types and layouts, and
(ii) it reduces the efforts of hand-crafted feature engineering in CNN.
Initially, Hao et al. [38] used CNN to classify tables like structure
regions extracted from PDFs using heuristic rule into two categories
- table and non-table. The major drawbacks of this method are (i)
use of the heuristic rule to extract table like region, and (ii) work
on only non-raster PDF documents. The researchers explore various
natural scene object detectors — Fast R-CNN [39] in [5], Faster R-
CNN [40] in [1]–[9], Mask R-CNN [41] in [8]–[11], YOLO [42] in [11]
to localize page objects more specifically tables in the document
images. All these methods are data-driven and do not require any
heuristics or meta-data to extract table like region similar to [38].

Gilani et al. [1] used Faster R-CNN to detect tables in the
document images. Instead of the original document image, distance
transformed image is taken as input to easily fine-tune the pre-
trained model to work on various types of document images. In
the same direction, the transformed document image is taken as
input to Faster R-CNN model for detecting tables [6]; and figures
and mathematical equations [8] present in document images. Saha et
al. [10] experimentally established that Mask R-CNN performs better
than Faster R-CNN for detecting graphical objects in the document
images. Zhong et al. [9] also experimentally established that Mask
R-CNN performs better than Faster R-CNN for extracting semantic
regions from the documents. The performance of Faster R-CNN is
reduced when documents contain large scale variate tables. Siddiqui
et al. [3] incorporated deformable CNN in Faster R-CNN to adapt
the different scales and transformations which allows the model to
detect scale variate tables accurately. Sun et al. [4] combined the
corner information with the detected table region by Faster R-CNN to
refine the boundaries of the detected tables to reduce false positives.
It is observed that every detection method is sensitive to a certain type
of object. Vo et al. [5] combine outputs of two object detectors —
Fast R-CNN and Faster R-CNN in order to exploit the advantages of
the two models for page object detection. Due to the limited number
of images in the existing training set, it is challenging to train such a
detection model for table detection. Fine-tune is one solution to such
a problem. In [11], the authors discuss the benefit of fine-tuning from
a close domain on four different object detection models — Mask R-
CNN [41], RetinaNet [43], SSD [44] and YOLO [42]. The experiments

1Ground truth bounding boxes are annotated automatically.



Fig. 1: Illustration of the proposed CDeC-Net which is compose of cascade Mask R-CNN with composite backbone having
deformable convolution instead of conventional convolution.

highlight that the close domain fine-tuning approach avoids over-
fitting, solves the problem of having a small training set and improves
detection accuracy.

C. Related Datasets
Various benchmark datasets — ICDAR-2013 [15], ICDAR-POD-

2017 [16], UNLV [14], Marmot [17], ICDAR-2019 (cTDaR) [13],
TableBank [7], PubLayNet [9], and IIIT-AR-13K [12] are publicly
available for table detection tasks. Table II shows the statistics of
these datasets. Among them, ICDAR-2013, UNLV, Marmot, ICDAR-
2019, TableBank are popularly used for table detection while ICDAR-
POD-2017, PubLayNet, and IIIT-AR-13K datasets for various page
object (including table) detection task. We use all datasets for our
experiments.

III. CDEC-NET: COMPOSITE DEFORMABLE CASCADE
NETWORK

The success of deep convolution neural networks (CNN)s for
solving various computer vision problems inspire researchers to
explore and design models for detecting tables in document im-
ages [1]–[11]. All these deep models provide high table detection
accuracy. However, the previous table detection models suffer from
the following shortcomings — (i) all existing table detection networks
use a backbone to extract features for detecting tables, which is
usually designed for image classification tasks and pre-trained on
ImageNet dataset. Since almost all of the existing backbone networks
are originally designed for the image classification task, directly
applying them to extract features for table detection may result in sub-
optimal performance. A more powerful backbone is needed to extract
more representational features and improve the detection accuracy.
However, it is very expensive to train a deeper and powerful backbone
on ImageNet and get better performance. (ii) CNNs have limitations
to model large transformation due to the fixed geometric structures of
CNN modules — a convolution filter samples the input feature map
correspond to a fixed location, a pooling layer reduces the spatial
resolution at a fixed ration and a RoI into a fixed spatial bin, etc.
This leads to a lack of handling geometric transformations. (iii) All
these table detectors use the intersection over union (IoU) threshold
to define positives, negatives, and finally, detection quality. They
commonly use a threshold of 0.5, which leads to noisy (low-quality)
detection and frequently degrades higher thresholds’ performance.
The major hindrance in training a network at a higher IoU threshold
is the reduction of positive training samples with increasing IoU
threshold. All these issues are also a bottleneck of CNNs based object
detection techniques [39]–[41] in natural scene images.

Over the time, various solutions [22], [23], [26] are proposed
to handle the above stated problems for object detection in natural
images. Lie et al. [23] proposed CBNet which comprises of stack-
ing multiple identical backbones by creating composite connections

between them. It helps in creating a more powerful backbone for
feature extraction without much additional computational cost. Dai
et al. [22] introduced deformable convolution in the object detection
network to make it more scale-invariant. It captures the features using
a variable receptive field and makes detection independent of the fixed
geometric transforms. Cai and Vasconcelos [26] proposed a multi-
stage object detection architecture in which subsequent detectors are
trained with increasing IoU thresholds to solve the last problem.
One detector’s output is fed as an input to the subsequent detector,
maintaining the number of positive samples at higher thresholds.

Inspired by the solutions provided by [22], [23], [26] for issues
discussed earlier in natural scene images, we propose a novel ar-
chitecture CDeC-Net for detecting tables accurately in the document
images. It is composed of Cascade Mask R-CNN with a composite
backbone having deformable convolution filters instead of conven-
tional convolution filters. Figure 1 displays an overview of our
proposed architecture for table localization in document images. We
discuss each component of CDeC-Net in detail:

A. Cascade Mask R-CNN

Cai and Vasconcelos [26] proposed Cascade R-CNN which is a
multi-stage extension of Faster R-CNN [40]. Cascade Mask R-CNN
has a similar architecture as Cascade R-CNN, but along with an
additional segmentation branch, denoted by ’S’, for creating masks
of the detected objects. CDeC-Net comprises of a sequence of three
detectors trained with increasing IoU thresholds of 0.5, 0.6, and 0.7,
respectively. The proposals generated by RPN network are passed
through ROI pooling layer. The network head takes ROI features
as input and makes two predictions — classification score (C) and
bounding box regression (B). The output of one detector is used as a
training set for the next detector. The deeper detector stages are more
selective against close false positives. Each regressor is optimized for
the bounding box distribution generated by the previous regressor,
rather than the initial distribution. The bounding box regressor trained
for a certain IoU threshold, and it tends to produce bounding boxes of
higher IoU threshold. It helps in re-sampling an example distribution
of higher IoU threshold and uses it to train the next stage. Hence, it
results in a uniform distribution of training samples for each stage of
detectors and enabling the network to train on higher IoU threshold
values.

B. Composite Backbone

We use a dual backbone based architecture [23] which creates a
composite connection between the parallel stages of two adjacent
ResNeXt-101 backbones (one is called assistant backbone and other
is called lead backbone). The assistant backbone’s high-level output
features are fed as an input to the corresponding lead backbone’s



stage. In a conventional network, the output (denoted by xl) of
previous l-1 stages is fed as input to the l-th stage, given by:

xl = F l(xl − 1), l ≥ 2. (1)

where F l(.) is a non-linear transformation operation of l-th stage.
However, our network takes input from previous stages as well as
parallel stage of assistant backbone. For a given stage l of lead
backbone(bl), input is a combination of the output of previous
l-1 stages of lead backbone and parallel l-th stage of assistant
backbone(ba), given by:

xl
bl = F l

bl(x
l−1
k + g(xl

ba)), l ≥ 2, (2)

where g(.) represents composite connection. It helps the lead back-
bone to take advantage of the features learned by the assistant
backbone. Finally, the output of the lead backbone is used for further
processing in the subsequent network.

C. Deformable Convolution
The commonly used backbone, ResNeXt architectures, has conven-

tional convolution operation, in which the effective receptive field of
all the neurons in a given layer is the same. The grid points are
generally confined to a fixed 3×3 or 5×5 square receptive fields. It
performs well for layers at the lower hierarchy. Still, when the objects
appear at the arbitrary scales and transformations, generally at the
higher-level, the convolution operation does not capture the features
well. We replace the fixed receptive field CNN with deformable
CNN [22] in each of our dual backbone architectures. The grid is
deformable as a learnable offset can move each grid point. In a
conventional convolution, we sample over the input feature map x
using a regular grid R, given by

y(p0) =
∑
pn∈R

w(pn)x(p0 + pn). (3)

Whereas in a deformable convolution, for each location po on the
output feature map y, we augment the regular grid using the offset
∆pn such that {∆pn|n = 1, ..., N}, where N = |R|, given by

y(p0) =
∑
pn∈R

w(pn)x(p0 + pn + ∆p). (4)

Deformable convolution is operated on R but with each point
augmented by a learnable offset ∆p. The offset value, ∆p, is itself a
trainable parameter. It enables each neuron to alter its receptive field
based on the preceding feature map by creating an explicit offset.
It makes the convolution operation agnostic for varying scales and
transformations. The deformable convolution is shown in Figure 2.

Fig. 2: Illustration of the deformable convolution.

D. Implementation Details
We implement CDeC-Net in Pytorch using MMdetection tool-

box [45]. We use NVIDIA GeForce RTX 2080 Ti GPU with 12 GB
memory for our experiments. We use pre-trained ResNeXt-101 (with
blocks 3, 4, 23 and 3) on MS-COCO [25] with FPN as the network
head. We train CDeC-Net with document images scaled to 1200 ×
800, while maintaining the original aspect ratio, as the input. We
use 0.00125 as an initial learning rate with a learning rate decay at
25 epoch and 40 epoch. We use 0.0033 as warmup schedule for first
500 iterations. CDeC-Net is trained for 50 epochs. However, for larger
datasets such as PubLayNet and Tablebank, the model is trained for
8 epochs in total with learning rate decay at 4 epoch and 6 epoch.
In case of fine-tuning, we use 12 epochs in total. We use three IoU
threshold values — 0.5, 0.6, and 0.7 in our model. We use 0.5, 1.0
and 2.0 as anchor ratio with a single anchor scale of 8. The batch
size of 1 is used for training our models.

IV. EXPERIMENTS

A. Evaluation Measures
Similar to the existing table localization tasks [1]–[11] in document

images, we also use recall, precision, F1, and mean average precision
(mAP) to evaluate the performance of CDeC-Net. For fair comparison,
we evaluate the proposed CDeC-Net on same IoU threshold values as
mentioned in the respective existing papers. We perform multi-scale
testing at 7 different scales (with 3 smaller scales, original scale, and
3 larger scales). We select detection output as final result if it presents
in at least 4 test cases out of 7 scales. It helps in eliminating the false
positives and provide consistent results.

B. Comparison with State-of-the-Arts on Benchmark Datasets

Dataset Method Score
R↑ P↑ F1↑ mAP↑

ICDAR-2013 DeCNT [3] 0.996 0.996 0.996 -
CDeC-Net (our) 1.000 1.000 1.000 1.000

ICADR-2017 YOLOv3 [18] 0.968 0.975 0.971 -
CDeC-Net (our) 0.924 0.970 0.947 0.912

ICADR-2019 TableRadar [13] 0.940 0.950 0.945 -
CDeC-Net (our) 0.934 0.953 0.944 0.922

UNLV GOD [10] 0.910 0.946 0.928 -
CDeC-Net (our) 0.925 0.952 0.938 0.912

Marmot DeCNT [3] 0.946 0.849 0.895 -
CDeC-Net (our) 0.930 0.975 0.952 0.911

TableBank Li et al. [7] 0.975 0.987 0.981 -
CDeC-Net (our) 0.979 0.995 0.987 0.976

PubLayNet M-RCNN [9] - - - 0.960
CDeC-Net (our) 0.970 0.988 0.978 0.967

TABLE III: Illustrates comparison between CDeC-Net and
state-of-the-art techniques on the existing benchmark datasets.

Comparison with current state-of-the-art techniques on various
benchmark datasets is shown in Table III. We observe from the table
that CDeC-Net outperforms state-of-the-art techniques on ICADR-
2013, UNLV, Marmot, TableBank, and PubLayNet datasets. For
ICDAR-2019, CDeC-Net obtains very close performance to the state-
of-the-art techniques. In case of ICDAR-2017 dataset, the perfor-
mance of CDeC-Net is 2.4% lower than the state-of-the-art method.

Tables IV-VII presents the comparative results between the pro-
posed CDeC-Net and the existing techniques on various benchmark
datasets under the existing experimental environments. In most of the
cases, CDeC-Net performs better than the existing techniques. The
cascade Mask R-CNN in CDeC-Net leads to significant reduction in
number of false positives, which is evident from the high precision



Method Training Fine-tuning Test IoU Score
Dataset #Image Dataset #Image Dataset #Image R↑ P↑ F1↑ mAP↑

DeCNT [3] D1 4808 - - ICDAR-2013 238 0.5 0.996∗ 0.996∗ 0.996∗ -
CDeC-Net (our) D1 4808 - - ICDAR-2013 238 0.5 1.000 1.000 1.000 1.000
GOD [10] Marmot 2K - - ICDAR-2013 238 0.5 1.000 0.982 0.991 -
CDeC-Net (our) Marmot 2K - - ICDAR-2013 238 0.5 1.000 0.981 0.991 0.995
F-RCNN [9] PubLayNet 340K ICADR-2013 170 ICADR-2013 238 0.5 0.964 0.972 0.968
M-RCNN [9] PubLayNet 340K ICADR-2013 170 ICADR-2013 238 0.5 0.955 0.940 0.947 -
CDeC-Net (our) PubLayNet 340K ICADR-2013 170 ICADR-2013 238 0.5 0.968 0.987 0.977 0.959
YOLOv3+A+PG [18] ICDAR-2017 1.6K - - ICADR-2013 238 0.5 0.949 1.000 0.973 -
CDeC-Net (our) ICDAR-2017 1.6K - - ICADR-2013 238 0.5 1.000 1.000 1.000 1.000
Khan et al. [46] Marmot 2K ICDAR-2013 204 ICDAR-2013 34 0.5 0.901 0.969 0.934 -
TableNet+SF [47] Marmot 2K ICDAR-2013 204 ICDAR-2013 34 0.5 0.963 0.970 0.966 -
DeepDeSRT [2] Marmot 2K ICDAR-2013 204 ICDAR-2013 34 0.5 0.962 0.974 0.968 -
CDeC-Net (our) Marmot 2K ICDAR-2013 204 ICDAR-2013 34 0.5 1.000 1.000 1.000 1.000
M-RCNN [11] Pascel VOC 16K ICDAR-2013 178 ICDAR-2013 60 0.6 0.770 0.140 0.230 -
RetinaNet [11] Pascel VOC 16K ICDAR-2013 178 ICDAR-2013 60 0.6 0.580 0.560 0.570 -
SSD [11] Pascel VOC 16K ICDAR-2013 178 ICDAR-2013 60 0.6 0.680 0.540 0.600 -
YOLO [11] Pascel VOC 16K ICDAR-2013 178 ICDAR-2013 60 0.6 0.580 0.920 0.750 -
CDeC-Net (our) Pascel VOC 16K ICDAR-2013 178 ICDAR-2013 60 0.6 0.844 1.000 0.922 0.844
M-RCNN [11] TableBank-LaTeX 199K ICDAR-2013 178 ICDAR-2013 60 0.6 0.970 0.700 0.810 -
RetinaNet [11] TableBank-LaTeX 199K ICDAR-2013 178 ICDAR-2013 60 0.6 0.770 0.830 0.800 -
SSD [11] TableBank-LaTeX 199K ICDAR-2013 178 ICDAR-2013 60 0.6 0.680 0.620 0.650 -
YOLO [11] TableBank-LaTeX 199K ICDAR-2013 178 ICDAR-2013 60 0.6 0.650 1.000 0.780 -
CDeC-Net (our) TableBank-LaTeX 199K ICDAR-2013 178 ICDAR-2013 60 0.6 0.933 1.000 0.967 0.933
Kavasidis et al. [48] Custom dataset 45K - - ICDAR-2013 238 0.5 0.981 0.975 0.978 -
PFTD [49] - - - - ICADR-2013 238 0.5 0.915 0.939 0.926 -
Tran et al. [50] - - - - ICDAR-2013 238 0.5 0.964 0.952 0.958 -

CDeC-Net‡ (our) IIIT-AR-13K 9K - - ICDAR-2013 238 0.5 0.942 0.993 0.968 0.942

TABLE IV: Illustrates comparison between the proposed CDeC-Net and state-of-the-art techniques on ICDAR-2013 dataset.
A: indicates anchor optimization, PG: indicates post-processing technique, SF: indicates semantic features, D1: indicates
Marmot+UNLV+ICDAR-2017, *: indicates the authors reported 0.996 in table however in discussion they mentioned 0.994.
CDeC-Net‡: indicates a single model which is trained with IIIT-AR-13K dataset.

Method Training Fine-tuning Test IoU Score
Dataset #Image Dataset #Image Dataset #Image R↑ P↑ F1↑ mAP↑

TableRadar [13] ICDAR-2019 1200 - - ICDAR-2019 439 0.8 0.940 0.950 0.945 -
NLPR-PAL [13] ICDAR-2019 1200 ICDAR-2019 439 0.8 0.930 0.930 0.930 -
Lenovo Ocean [13] ICDAR-2019 1200 - - ICDAR-2019 439 0.8 0.860 0.880 0.870 -
CDeC-Net (our) ICDAR-2019 1200 - - ICDAR-2019 439 0.8 0.934 0.953 0.944 0.922
TableRadar [13] ICDAR-2019 1200 - - ICDAR-2019 439 0.9 0.890 0.900 0.895 -
NLPR-PAL [13] ICDAR-2019 1200 - - ICDAR-2019 439 0.9 0.860 0.860 0.860 -
Lenovo Ocean [13] ICDAR-2019 1200 - - ICDAR-2019 439 0.9 0.810 0.820 0.815 -
CDeC-Net (our) ICDAR-2019 1200 - - ICDAR-2019 439 0.9 0.904 0.922 0.913 0.843
M-RCNN [11] Pascel VOC 16K ICDAR-2019 (archive) 599 ICDAR-2019 (archive) 198 0.6 0.640 0.600 0.620 -
RetinaNet [11] Pascel VOC 16K ICDAR-2019 (archive) 599 ICDAR-2019 (archive) 198 0.6 0.660 0.860 0.740 -
SSD [11] Pascel VOC 16K ICDAR-2019 (archive) 599 ICDAR-2019 (archive) 198 0.6 0.350 0.310 0.330 -
YOLO [11] Pascel VOC 16K ICDAR-2019 (archive) 599 ICDAR-2019 (archive) 198 0.6 0.910 0.950 0.930 -
CDeC-Net (our) Pascel VOC 16K ICDAR-2019 (archive) 599 ICDAR-2019 (archive) 198 0.6 0.962 0.981 0.971 0.949
M-RCNN [11] TableBank-LaTeX 199K ICDAR-2019 (archive) 599 ICDAR-2019 (archive) 198 0.6 0.850 0.760 0.810 -
RetinaNet [11] TableBank-LaTeX 199K ICDAR-2019 (archive) 599 ICDAR-2019 (archive) 198 0.6 0.740 0.910 0.820 -
SSD [11] TableBank-LaTeX 199K ICDAR-2019 (archive) 599 ICDAR-2019 (archive) 198 0.6 0.350 0.350 0.350 -
YOLO [11] TableBank-LaTeX 199K ICDAR-2019 (archive) 599 ICDAR-2019 (archive) 198 0.6 0.950 0.950 0.950 -
CDeC-Net (our) TableBank-LaTeX 199K ICDAR-2019 (archive) 599 ICDAR-2019 (archive) 198 0.6 0.924 0.984 0.954 0.909
CDeC-Net‡ (our) IIIT-AR-13K 9K - - ICDAR-2019 439 0.8 0.625 0.871 0.748 0.551
CDeC-Net‡ (our) IIIT-AR-13K 9K ICDAR-2019 1200 ICDAR-2019 439 0.8 0.930 0.971 0.950 0.913

TABLE V: Illustrates comparison between the proposed CDeC-Net and state-of-the-art techniques on ICDAR-2019 dataset.
CDeC-Net‡: indicates a single model which is trained with IIIT-AR-13K dataset.



Method Training Fine-tuning Test IoU Score
Dataset #Image Dataset #Image Dataset #Image R↑ P↑ F1↑ mAP↑

GOD [10] Marmot 2K UNLV 340 UNLV 84 0.5 0.910 0.946 0.928 -
CDeC-Net (our) Marmot 2K UNLV 340 UNLV 84 0.5 0.925 0.952 0.938 0.912
Gilani et al. [1] UNLV 340 - - UNLV 84 0.5 0.907 0.823 0.863 -
CDeC-Net (our) UNLV 340 - - UNLV 84 0.5 0.906 0.914 0.910 0.861
Arif and Shafait [6] private 1019 - - UNLV 427 0.5 0.932 0.863 0.896 -
CDeC-Net (our) private 1019 - - UNLV 427 0.5 0.745 0.912 0.829 0.711
DeCNT [3] D4 4622 - - UNLV 424 0.5 0.749 0.786 0.767 -
CDeC-Net (our) D4 4622 - - UNLV 424 0.5 0.736 0.852 0.794 0.657
M-RCNN [11] Pascel VOC 16K UNLV 302 UNLV 101 0.6 0.580 0.290 0.390 -
RetinaNet [11] Pascel VOC 16K UNLV 302 UNLV 101 0.6 0.830 0.810 0.820 -
SSD [11] Pascel VOC 16K UNLV 302 UNLV 101 0.6 0.640 0.660 0.650 -
YOLO [11] Pascel VOC 16K UNLV 302 UNLV 101 0.6 0.950 0.910 0.930 -
CDeC-Net (our) Pascel VOC 16K UNLV 302 UNLV 101 0.6 0.805 0.961 0.883 0.788
M-RCNN [11] TableBank-LaTeX 199K UNLV 302 UNLV 101 0.6 0.830 0.660 0.740 -
RetinaNet [11] TableBank-LaTeX 199K UNLV 302 UNLV 101 0.6 0.830 0.810 0.820 -
SSD [11] TableBank-LaTeX 199K UNLV 302 UNLV 101 0.6 0.660 0.720 0.690 -
YOLO [11] TableBank-LaTeX 199K UNLV 302 UNLV 101 0.6 0.950 0.930 0.940 -
CDeC-Net (our) TableBank-LaTeX 199K UNLV 302 UNLV 101 0.6 0.894 0.991 0.943 0.889
CDeC-Net‡ (our) IIIT-AR-13K 9K UNLV 424 0.5 0.770 0.96 0.865 0.742
CDeC-Net‡ (our) IIIT-AR-13K 9K private 1019 UNLV 427 0.5 0.776 0.958 0.866 0.750

TABLE VI: Illustrates comparison between the proposed CDeC-Net and state-of-the-art techniques on UNLV dataset. D4:
indicates ICDAR-2013+ICDAR-2017+Marmot. CDeC-Net‡: indicates a single model which is trained with IIIT-AR-13K dataset.

Method Training Fine-tuning Test IoU Score
Dataset #Image Dataset #Image Dataset #Image R↑ P↑ F1↑ mAP↑

Li et al. [7] TableBank-LaTeX 253K - - TableBank-Word 1K 0.5 0.956 0.826 0.886 -
TableBank-LaTeX 1K 0.5 0.975 0.987 0.981 -
TableBank-both 2K 0.5 0.962 0.872 0.915 -

CDeC-Net (our) TableBank-LaTeX 253K - - TableBank-Word 1K 0.5 0.868 0.873 0.871 0.762
TableBank-LaTeX 1K 0.5 0.979 0.995 0.987 0.976
TableBank-both 2K 0.5 0.924 0.934 0.929 0.898

M-RCNN [11] TableBank-LaTeX 199K - - TableBank-LaTeX 1K 0.6 0.980 0.960 0.940 -
RetinaNet [11] TableBank-LaTeX 199K - - TableBank-LaTeX 1K 0.6 0.860 0.980 0.920 -
SSD [11] TableBank-LaTeX 199K - - TableBank-LaTeX 1K 0.6 0.970 0.960 0.965 -
YOLO [11] TableBank-LaTeX 199K - - TableBank-LaTeX 1K 0.6 0.990 0.980 0.985 -
CDeC-Net (our) TableBank-LaTeX 199K - - TableBank-LaTeX 1K 0.6 0.978 0.995 0.986 0.974
CDeC-Net‡ (our) IIIT-AR-13K 9K TableBank-LaTeX 1K 0.6 0.779 0.961 0.870 0.759
CDeC-Net‡ (our) IIIT-AR-13K 9K TableBank-LaTeX 199K TableBank-LaTeX 1K 0.6 0.970 0.990 0.980 0.965

TABLE VII: Illustrates comparison between the proposed CDeC-Net (our) and state-of-the-art techniques on TableBank dataset.
CDeC-Net‡: indicates a single model which is trained with IIIT-AR-13K dataset.

values. Table IV presents the obtained results under various experi-
mental settings for ICDAR-2013. We observe that for all experimental
settings, CDeC-Net obtains the best results. In case of ICDAR-2019,
CDeC-Net performs only 0.1% F1 score lower than state-of-the-art
technique - TableRadar [13] at IoU threshold 0.8. At higher threshold
value 0.9, CDeC-Net performs significantly (1.8% greater F1 score)
better than the state-of-the-art technique - TableRadar [13]. For all
other experimental settings, CDeC-Net also obtain the best results. For
UNLV dataset, CDeC-Net performs (2.7% F1 score) better than the
state-of-the-art method - DeCNT [3]. For TableBank dataset, CDeC-
Net performs significantly better that state-of-the-art technique - Li
et al. [7].

C. Effect of IoU Threshold on Table Detection
We evaluate the trained CDeC-Net on the existing benchmark

datasets under varying IoU thresholds to test robustness of the
proposed network. Our experiments on various benchmark datasets
shows that CDeC-Net gives consistent results over varying IoU thresh-
olds. Table VIII highlights that in case of ICDAR-2019 datasets, the

CDeC-Net consistently obtains high detection accuracy under varying
thresholds (in range 0.5-0.9). Our model also obtains consistent
results (in range of 0.5-0.8) on ICDAR-2013 and UNLV datasets. Only
at threshold 0.9, there is a performance drop on ICDAR-2013 and
UNLV datasets.

IoU Performance on Various Benchmark Datasets
Threshold ICDAR-2013 ICDAR-2019 UNLV

R↑ P↑ F1↑ R↑ P↑ F1↑ R↑ P↑ F1↑
0.5 1.000 1.000 1.000 0.946 0.987 0.966 0.770 0.960 0.865
0.6 1.000 1.000 1.000 0.939 0.980 0.959 0.758 0.944 0.851
0.7 0.987 0.987 0.987 0.936 0.977 0.956 0.734 0.915 0.825
0.8 0.942 0.942 0.942 0.930 0.971 0.950 0.663 0.826 0.744
0.9 0.660 0.660 0.660 0.895 0.934 0.915 0.496 0.618 0.557

TABLE VIII: Illustrates the performance of CDeC-Net under
varying IoU thresholds.



D. Qualitative Results
A visualization of detection results2 on ICDAR-2013, ICDAR-

POD-2017, UNLV (first row, left to right), ICDAR-2019 (cTDaR),
PubLayNet and TableBank (second row, left to right) obtained by
CDeC-Net is shown in Figure 3. The figure highlights that the CDeC-
Net properly detects complex table with high confidence score.

Fig. 3: Illustration of complex table detection results. Blue
and Green colored rectangles correspond to ground truth and
predicted bounding boxes using CDeC-Net. First and Second
Rows: show examples where CDeC-Net accurately detects the
tables. Third Row: shows examples where CDeC-Net fails to
accurately detect the tables.

Third row of Figure 3 shows some examples where CDeC-Net
model fails to properly detect the tables. In the first image, it detects
two false positives that are visually similar to tables. The second and
third images contain multiple closely spaced tables where CDeC-Net
detects them as a single table.

E. Results of Single Model
Tables IV-VII presents the comparative results between the pro-

posed CDeC-Net and the existing techniques on various benchmark
datasets under the existing experimental environments. The last
row of each table presents obtained results using our single model
CDeC-Net‡ trained with IIIT-AR-13K dataset, fine-tuned with training
images and evaluated on test images of the respective datasets.
Table IV highlights that our single model CDeC-Net‡ attains very
close results to our best model CDeC-Net on ICDAR-2013 dataset. In
case of ICDAR-2019, our single model CDeC-Net‡ obtains the best
performance at IoU threshold 0.8. In case of UNLV and TableBank
datasets, the performance of single model CDeC-Net‡ are very close
to our best performing model CDeC-Net.

Figure 4 presents the visual results obtained using our single
model CDeC-Net‡ and our best model CDeC-Net. We select the
best model under various existing experimental environments. First
row of Figure 4 shows examples where single model CDeC-Net‡

2More detailed results are given in supplementary material

Fig. 4: Illustration visual results of the state-of-the-art CDeC-
Net model and single CDeC-Net‡ model. Blue, Green, and Red
colored rectangles correspond to ground truth and predicted
bounding boxes using state-of-the-art CDeC-Net and single
CDeC-Net‡ model respectively. First Row: shows examples
where CDeC-Net‡ detects table accurately and CDeC-Net fails
to detect table accurately. Second Row: shows examples
where CDeC-Net detects table accurately and CDeC-Net‡ fails
to detect table accurately.

performs better than the best model CDeC-Net. In those examples,
our best model CDeC-Net predicts single bounding box for multiple
tables. While single model CDeC-Net‡ accurately predicts bounding
box corresponding to each table present in the document. The
second row of Figure 4 presents examples where our best model
CDeC-Net accurately detects all tables present in the documents.
While our single model CDeC-Net‡ fails to predict bounding boxes
corresponding to tables present in the documents.

F. Ablation Study

Models Score
R↑ P↑ F1↑ mAP↑

Cascade Mask R-CNN with ResNeXt-101 0.987 0.975 0.981 0.975
as backbone
Cascade Mask R-CNN with composite 0.987 0.981 0.984 0.973
ResNeXt-101 as backbone
Cascade Mask R-CNN with composite 1.000 1.000 1.000 0.995
ResNeXt-101 having deformable convolution
as backbone (i.e., CDeC-Net)

TABLE IX: Illustrates the performances of various models.
All models are tested on ICDAR-2013 dataset with 0.5 as
IoU threshold. Cascade Mask R-CNN with composite ResNeXt-
101 having deformable convolution as backbone i.e., CDeC-Net
obtains best results as compared to other models. We select
CDeC-Net as our final model.

We perform a series of experiments to check the effectiveness of
the proposed method. We train three models on Marmot dataset and
evaluate on ICDAR-2013. Our baseline model — cascade Mask R-
CNN achieves F1 score of 0.981 at IoU threshold 0.5. We incorporate
the dual backbone in the baseline model and obtain an F1 score
of 0.984. Again we incorporate deformable convolution instead of
convolution in the dual backbone and call it as CDeC-Net, which
attains the best F1 score 1.000. This particular experiment highlights



the utility of incorporating the key components — dual backbone
and deformable convolution into the baseline model Cascade Mask R-
CNN. We finally select CDeC-Net as our final model for table detection
task.

V. CONCLUSION

We introduce a CDeC-Net, which consists of a cascade Mask R-
CNN with a dual backbone having deformable convolution to detect
tables present in documents with high accuracy at higher IoU thresh-
old. The proposed CDeC-Net achieves state-of-the-art performance for
most of the benchmark datasets under various existing experimental
environments and significantly reduces the false positive detection
even at the higher IoU threshold. We also provide a single model
CDeC-Net‡ for all benchmark datasets, which obtains very close
performance to the state-of-the-art techniques. We expect that our
single model sets a standard benchmark and improves table detec-
tion accuracy and other page objects– figures, logos, mathematical
expressions, etc. We extend the current framework for future work
to a more challenging table structure recognition task.
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