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Abstract

Object detection has been at the forefront for higher level

vision tasks such as scene understanding and contextual

reasoning. Therefore, solving object detection for a large

number of visual categories is paramount. Zero-Shot Ob-

ject Detection (ZSD) – where training data is not available

for some of the target classes – provides semantic scala-

bility to object detection and reduces dependence on large

amount of annotations, thus enabling a large number of ap-

plications in real-life scenarios. In this paper, we propose

a novel multi-space approach to solve ZSD where we com-

bine predictions obtained in two different search spaces. We

learn the projection of visual features of proposals to the

semantic embedding space and class labels in the seman-

tic embedding space to visual space. We predict similar-

ity scores in the individual spaces and combine them. We

present promising results on two datasets, PASCAL VOC

and MS COCO. We further discuss the problem of hubness

and show that our approach alleviates hubness with a per-

formance superior to previously proposed methods.

1. Introduction

Object detection consists of both identifying and localiz-

ing the objects in an image. It has numerous applications in

many domains, including robotics, self-driving cars, med-

ical imaging, and surveillance. Object detection has con-

sequently met with great successes over the last few years

[31, 14, 15, 16, 22, 30, 29, 6]. However, the performance of

such models is largely limited to the fully supervised do-

main, viz. detecting classes fully present in the training

data. Hence, current state-of-the-art models lack the impor-

tant property of semantic scalability, by virtue of which a

model trained on a set of classes can identify classes which

Figure 1. The semantic and visual spaces in a dataset yield com-

plementary information to learn better well-separated embeddings

in a transformed semantic space.

are not in the training set, but are semantically related and

can occur in the wild.

For the problem of image classification, there has been

a significant amount of effort in recent years to scale up

the models semantically [12]. Such efforts, described as

zero-shot recognition (ZSR), often use word embeddings

learned from large text corpora in an unsupervised manner

[1, 2, 11], semantic attributes [19, 18] or concept ontolo-

gies [24] as label embeddings to help recognition of unseen

classes. While commendable progress has been made, ZSR

solves the basic task of image-level classification for unseen

classes, where a dominant object is present in an image.

It cannot scale to tasks like scene understanding where a

sound reasoning of all objects in an image is required. There

is an impending need to solve a more complex problem such

as Zero-Shot Object Detection (ZSD) where instances of un-

seen objects are not only recognized but also localized. In
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this paper, we propose a new solution to ZSD, where very

limited work has been done so far, and which can be use-

ful for several mainstream applications that involve scene

understanding.

In ZSD, we recognize and localize instances of objects

that were not present during training. We refer to the classes

present in the training set as seen classes, and the rest as un-

seen classes. Contemporary deep learning models for object

detection [31, 14, 16] employ a background class to discern

between foreground and background proposals, which im-

proves the results as it suppresses proposals which contain

background elements such as sky, vegetation and roads, and

rewards proposals which contain the object(s) of interest.

Unlike ZSR, ZSD has an additional task of defining the back-

ground class embedding which is non-trivial as background

proposals may contain unseen classes. This issue exacer-

bates other issues inherited from ZSR such as hubness [32]

(discussed in Section 5) which occurs when some of the tar-

get classes are the nearest neighbours for most of the region

proposals.

There has been limited work so far on ZSD [38, 7, 28, 5],

and all of them focus on similarity between embeddings

in the semantic space. In this paper, we propose a new

methodology for ZSD that leverages the use of the two

spaces used in contemporary object detection frameworks:

the visual and semantic. We define the space spanned by

semantic label embeddings or word vectors [26] as the se-

mantic space, while the space spanned by image features

of region proposals as the visual space. As seen in Fig-

ure 1, ‘car’ and ‘train’ classes have poor separation in vi-

sual space but are very well separated in semantic space.

Similarly, ‘dog’ and ‘background’ are poorly separated in

semantic space(as shown in the red box) but clearly dis-

tinguishable in visual space. We combine both the spaces

in a multi-space approach and exploit the complementary

information from both spaces, enabling the learning of a

better transformed semantic embedding with well separated

classes. We carefully leverage this property of complemen-

tarity by learning transformed semantic and visual spaces,

procuring and combining similarity scores from both spaces

while minimizing the correlation between the visual space

and the transformed visual space. The resultant multi-space

approach discriminates among classes effectively. We pro-

pose our methodology within the framework of the widely

used region-based object detection networks, in particular

the Faster R-CNN [31] framework. We present our results

on two datasets: PASCAL VOC [8] and MS COCO [21], and

show that the proposed approach yields state-of-the-art re-

sults for the ZSD task. We also adapt two common works

on ZSR, viz. DeViSE [11] and ConSE [25] to ZSD as base-

lines, and provide quantitative evaluation of these methods

in comparison to ours. We compare them to the multi-space

approach and show superior results for both datasets. We

also show that using our proposed multi-space model alle-

viates hubness. In summary, our key contributions in this

work are:

• We propose a novel multi-space approach which lever-

ages both visual and semantic spaces for ZSD. We note

that a multi-space approach has not been studied for

ZSR either, and this is the first such effort to the best of

our knowledge.

• In addition to using loss terms on each of the above

mentioned spaces, we also introduce a cross-modal

consistency loss based on minimizing the correlation

between representations from the two spaces.

• We show that the proposed approach leads to state-

of-the-art ZSD results, both quantitative and qualita-

tive, on the PASCAL VOC and MS COCO datasets, and

study the performance of variants of our methodology

on these datasets.

• We show that the proposed method can provide a so-

lution to the hubness problem in ZSD by combining

scores from semantic and visual spaces.

The remainder of our paper is organized as follows. Sec-

tion 2 reviews the related work followed by Section 3 which

describes the proposed approach in detail. Experimental re-

sults are presented in Section 4, discussions and analysis in

Section 5, followed by conclusions in Section 6.

2. Related Work

Object Detection: There have been significant de-

velopments in object detection over the last few years.

Girshick et al. [15] proposed R-CNN (Region-based Con-

volutional Neural Network) that classifies each region pro-

posal using a deep CNN. Girshick et al. [14] proposed

Fast R-CNN that extracts convolutional features for region

proposals before further processing, and Ren et al. [31]

improved upon this method by making this approach,

including the region proposals, learnable end-to-end.

Dai et al. [6] proposed R-FCN (Regional Fully Convolu-

tional Network), introducing position-sensitive RoI pool-

ing that shares almost all computations for an image.

He et al. [16] proposed Mask R-CNN for object detection

as well as instance segmentation Redmon et al. [30, 29] and

Liu et al. [22] introduced the YOLO and SSD framework re-

spectively to predict detection and classification probabil-

ities using a single deep neural network. We use Faster

R-CNN[31] as the base architecture for our ZSD method,

considering its wide use as an accurate method.

Zero-Shot Recognition/Learning: ZSR can be broadly

categorized into two approaches: semantic attribute-based

and semantic embedding-based. A semantic attribute

[9] refers to the characteristics possessed by a class,

for e.g., color, shape or annotations such as ‘has head’.

Lampert et al. [19, 18] proposed attribute-based classifica-

tion that identifies objects based on a high-level description
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Figure 2. Architecture for multi-space zero-shot object detection. (a) Visual space approach with learnable transformation Wvis and

distance scores in visual space. (b) Semantic space approach with learnable transformation Wsem and distance scores in semantic space.

phrased in terms of semantic attributes. Akata et al. [1, 2]

and Frome et al. [11] developed a bilinear compatibility

framework that uses a pairwise ranking formula to learn the

parameters of the bilinear model. Xian et al. [36] learned

a collection of maps with selection instead of learning a

single bilinear map, resulting in a piece-wise linear deci-

sion boundary. Ba et al. [4] used text features to predict

output weights of both convolutional and fully connected

layers. Recently, Zhang et al. [37] proposed the use of vi-

sual space as the embedding space due to nearest neighbour

search suffering much less from hubness in visual space.

Annadani et al. [3] also utilized visual space as embedding

space and proposed an objective function to preserve se-

mantic relations in the visual space. Mikolov et al. [23]

and Pennington et al. [26] propose word embeddings that

map words to the continuous vector space which encodes

semantic and syntactic similarity between words. How-

ever, all aforementioned efforts are explicitly for classi-

fication (not detection, which is the focus of this work).

We however adapt popular ZSR methods to detection,

and include them as baselines in our experimental stud-

ies. We also exploit the property of word embeddings in

[23][26] to semantically scale up object detection to target

classes for which no training data is available, in this work.

Recently, Wang et al. [34] proposed a model that learns an

intermediate latent space as the embedding space (for clas-

sification again). Jiang et al.[17] combine visual and se-

mantically aligned intermediate spaces. Intermediate space

however suffers from hubness problem as pointed out in

[3], and we hence propose a new multi-space model for

ZSD. We extend the idea of cross-modal consistency loss

proposed in [10] to ZSD by introducing a correlation loss.

Zero-Shot Object Detection: Demirel et al. [7] pro-

posed a hybrid of convex combination of class em-

beddings [25] and label embedding-based classification.

Rahman et al. [28] proposed an extension of Faster R-CNN

[31] and ConSE [25] with a loss formulation that combines

max-margin and semantic clustering losses. Zhu et al. [38]

proposed a zero-shot detection framework that fuses seman-

tic attribute prediction with visual features to predict object-

ness scores for bounding box proposals. Bansal et al. [5]

and [38] addressed the problem of confusing background

with unseen classes. However, all of these methods rely on

the semantic space for the ZSD task. In contrast to previous

works on ZSD, we propose a multi-space approach which

utilizes both semantic and visual spaces. We show that our

multi-space approach outperforms earlier methods on both

PASCAL VOC [8] and MS COCO [21] datasets.

3. MS-Zero++: Our Multi-Space Approach

Zero-shot object detection (ZSD) aims at recognition and

localization of unseen objects. Our approach is motivated

by the observation that there are effectively two spaces, the

visual and the semantic, when performing zero-shot learn-

ing. All existing related efforts focus on taking the visual

space feature vectors to a semantic space, and comparing

with the class label embeddings in the semantic space. This

procedure is inherently limiting, and forces the model to

rely largely on the discriminative capacity of the semantic

space for recognizing classes. However, as evident from the

embeddings in the visual space in Fig 1, the visual space has

discriminative capacity by itself, which needs to be lever-

aged to improve the performance of zero-shot learning. In

this work, we aim to bring together the capacities of both

these spaces to obtain state-of-the-art performance for ZSD.

In particular, we combine the capabilities of the individ-
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ual spaces in a multi-space (MS-Zero) approach which is

summarized in Figure 2. The Visual Space model (MS-

Zero-V) captured in part (a) of Figure 2 leverages the simi-

larities between object categories in the visual feature space,

while the semantic space model (MS-Zero-S) captured in

part (c) of Figure 2 exploits the semantics between cat-

egory embeddings for object classification. Training the

semantic space model using a cross-entropy loss on soft-

max scores and a mean square error loss on transforma-

tion matrix, Wsem, ensures that the semantic space not only

learns to discriminate categories well, but also the trans-

formation from visual-to-semantic space is learned prop-

erly. Similarly, in the visual space model, a max-margin

loss on similarity scores enforces the model to discriminate

well. We also add a new correlation loss which ensures

that the learned transformation matrix in the visual space,

Wvis, matches the semantics between category embeddings

and the visual similarities between the corresponding object

categories. We now describe our methodology in detail.

We denote the set of all classes as C = S ∪ U , where

S denotes the set of seen classes and U denotes the set of

unseen classes, and S ∩ U = ∅. Each image is denoted

as I ∈ R
M⇥N⇥3, with corresponding bounding boxes and

ground truth labels denoted as bi ∈ N
4 and yi ∈ C respec-

tively. We use region-based CNNs (Faster R-CNN) as the

object detector of choice, because of their superior accuracy

compared to one-shot methods such as YOLO [30]. The

network generates visual features for region proposals de-

noted by pi ∈ R
d1 and softmax scores denoted by ci ∈ R

d2

where d2 = |S| is the number of seen classes.

Semantic Model (MS-Zero-S): The key idea of the se-

mantic model is to provide reasoning in the semantic space

(as defined by the object categories) in an effective manner.

The space spanned by semantic embeddings of class labels

is denoted by Msem ∈ R
d3 , where d3 is the dimension-

ality of the space. Given lsemj ∈ Msem, the embedding

for class j in the semantic space (which is obtained using

standard methods such as GloVe [26]), we learn a transfor-

mation Wsem ∈ R
d3⇥d2 (defined by a sub-network) that

transforms softmax scores ci ∈ R
d2 for ith proposal pi to

semantic space. We then use a similarity metric denoted

by φ (such as a cosine similarity; more implementation de-

tails are presented in Section 4), to capture the similarity

between the class embeddings and the semantic space em-

beddings obtained from the softmax scores, i.e. our final

similarity scores in semantic space are given by:

Ssem
ij = φ(lsemj ,Wsemci) ∀j ∈ {1, ..., C} (1)

We note here that the softmax layer predicts scores only for

seen classes. Classification loss and bounding box regres-

sion loss for region proposals as well as the region classi-

fication network are used as described in [31] and denoted

by Lcls and Lreg respectively. The transformation matrix

Wsem is learned using a Mean Squared Error (MSE) loss

given by:

Lmse(ci, y
gt
i ) =

1

d3

d3
X

k=1

((Wsemci)k − lsemj,k )2 (2)

where y
gt
i is the ground truth label (one-hot vector) for the

proposal. (Wsemci)k and lsemj,k are the kth elements of the

transformed softmax scores and the ground truth semantic

embedding lsemj corresponding to y
gt
i respectively.

Visual Model (MS-Zero-V): Motivated by [3, 37, 32]

which considered a visual space for ZSR, we propose a

module of reasoning directly in the visual space. To this

end, we consider the visual features obtained for each re-

gion proposal, pi ∈ R
d1 . In order for us to use these visual

features for reasoning w.r.t. class labels, we learn a transfor-

mation, Wvis (defined by a sub-network) that transforms the

class embeddings lsemj (as used before) to the visual space,

Mvis ∈ R
d1 . The similarity score between class categories

and region proposals in the visual space is then captured by:

Svis
ij = φ(Wvisl

sem
j , pi) ∀j ∈ {1, . . . , C} (3)

where φ is a similarity metric as before. Since both inputs to

similarity measure in (3) are uncertain, we use max-margin

loss to learn the transformation matrix. The loss is given by:

Lmargin(pi, y
gt
i ) =

X

j2S,j 6=y
gt

i

max(0,m− Svis
ii + Svis

ij )

(4)
where m refers to the margin, Svis

ii is the visual space score

w.r.t. the ground truth class embedding lsemi , and Svis
ij is the

visual space score w.r.t. all class embeddings other than the

ground truth class embedding. Max-margin loss enforces a

constraint on similarity and separates individual classes.

Modern object detection approaches define an additional

background class to differentiate between foreground and

background proposals. This eliminates proposals which do

not contain any object of interest. Since in ZSD, background

proposals may contain objects that belong to unseen classes,

defining a semantic embedding for background class is non-

trivial. Similar to [28], in this paper we consider back-

ground class embedding in semantic space to be the mean

of all semantic class embeddings: lsembg = 1

C

PC

j=1
lsemj ,

where, lsembg represents the background class embedding in

semantic space. Background embedding is chosen in this

manner to not be representative of any particular class in C.

Proposed Multi-Space Model (MS-Zero++): In the pro-

posed multi-space model, we bring together the loss func-

tion terms used for both visual and semantic models, and

also combine the similarity scores obtained from the se-

mantic and visual space model by averaging them, i.e.

Smlt
ij = 1

2
(Ssem

ij + Svis
ij ). While this simple approach of

combining the loss terms worked reasonably well (and is

called MS-Zero in our experimental results), we also in-

troduce a cross-modal consistency loss term, which is in-

tended to maintain consistency across the representations
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Model Seen Unseen Mix

DeViSE-ZSD 59.22 50.63 46.57

ConSE-ZSD 73.19 55.30 56.61

ZSD-YOLO [7] 65.60 54.20 52.33

MS-Zero-S 75.93 55.55 57.95

MS-Zero-V 70.47 51.39 56.44

MS-Zero 74.49 62.15 60.05

MS-Zero++ 76.09 57.07 61.08

Table 1. Table presents the mean average precision (mAP) (%) of

all models on PASCAL VOC dataset using different test settings.

Model car dog sofa train

DeViSE-ZSD 44.22 81.51 48.73 28.07

ConSE-ZSD 62.24 83.70 58.16 17.08

ZSD-YOLO [7] 55.00 82.00 55.00 26.00

MS-Zero-S 60.40 85.89 54.15 21.78

MS-Zero-V 38.42 83.79 54.34 29.04

MS-Zero 69.00 86.80 65.99 26.81

MS-Zero++ 55.24 89.15 58.39 25.5

Table 2. Table shows the class wise Average Precision (AP) (%) for

the unseen classes for all models in test-unseen setting on PASCAL

VOC dataset.

from both modalities. Similar to efforts in style transfer

[13, 35, 20], we write this loss term as below, and call it the

correlation loss:

Lcorr(l
sem) = ψ(corr(Wvisl

sem)− corr(lsem)) (5)

where ψ gives the smooth L1 loss and corr represents the

correlation matrix of the input. Note that the smooth L1
loss is given by:

ψ(x) =

(

0.5x2 if|x| < 1

|x|− 0.5 if|x| ≥ 1
(6)

The above term improves the performance of the overall

model, as shown in our results. We call the overall model

that uses all the loss terms as MS-Zero++. The loss function

used to train MS-Zero++ is given by:

Lmlt(pi, y
gt
i ,Θ) = Lcls+Lreg+Lmse+Lmargin+Lcorr

(7)
where Θ represents the combined parameters of the net-

work, including the transformation matrices introduced.

4. Experiments

Datasets: We validated the proposed method on two large

commonly used datasets: PASCAL VOC [8] and MS COCO

[21]. PASCAL VOC: This dataset contains 20 object cat-

egories broadly divided in four super-categories namely:

‘person’, ‘vehicle’, ‘animals’ and ‘indoor’. We select car

and train from the super-category ‘vehicle’, sofa and dog

from the super-categories ‘indoor’ and ‘animal’ respec-

tively as unseen classes. Since super-category ‘person’ has

only one sub-category, it is excluded from unseen classes.

Model Seen Unseen Mix

(mAP) (mAP/recall) (mAP)

DeViSE-ZSD 30.3 10.6 21.5

ConSE-ZSD 42.4 9.3 30.5

Bansal et al. [5] - 0.70/27.19 -

MS-Zero-S 42.6 9.8 30.8

MS-Zero-V 37.7 12.2 26.6

MS-Zero 42.4 12.9 30.7

MS-Zero++ 35.0 13.8/35.0 26.0

Table 3. Table shows the mean average precision (mAP) (%) and

Recall@100 (%) comparison of all models for MS COCO dataset

on three different test settings.

In total we consider 16 seen classes and 4 unseen classes.

We use training/validation sets of the 2007 and 2012 data

for training and test the model on the 2007 test set. We de-

fine three testing configurations, named as Test-Seen, Test-

Unseen and Test-Mix. These three settings consist of the

same image sets as used in [7]. Test-Seen considers images

which contain only seen classes, Test-Unseen considers im-

ages which contain only unseen classes and Test-Mix is the

combination of both seen and unseen classes. The major

difference between all three configurations is in the nearest

neighbor search space: Test-Seen and Test-Unseen contain

only seen classes and unseen classes in the search space re-

spectively while Test-Mix contains both. MS COCO: This

dataset contains 80 object categories. We follow a strategy

similar to [5] for creating seen/unseen class splits. We only

consider classes that have a synset associated with them in

the WordNet [24] hierarchy. We split the classes into 10

clusters and select 80% of the classes as seen and 20% as

unseen. This gives us 48 seen classes and 17 unseen classes.

For testing, we follow the same configurations as described

for PASCAL VOC. We use the 2014 train set for training and

validation while the 2014 val set for testing.

Baseline: We present results of [5, 7] as baseline for our

model in Tables 3, 2, 3. In order to ensure fair compar-

ison of our proposed method, we also adapted two prior

works on zero-shot recognition, namely DeViSE [11] and

ConSE [25] to the detection context, and used them as our

baselines. Since these methods are considered landmark ap-

proaches in ZSR, it is natural to compare against their per-

formance in the ZSD setting. For DeViSE-ZSD, we trans-

formed the visual features of each proposal to the semantic

space and learned the transformation using max-margin loss

as described in equation 4. For ConSE-ZSD, we trained the

model on seen classes in a fully supervised setting. We ob-

tained the embedding for each proposal by a weighted com-

bination of semantic class embeddings where weights for

each class are the softmax scores generated by the model.
Implementation Details: As in Faster R-CNN, we use a

shallow CNN on top of image features to generate region

proposals. In line with all existing efforts [5, 28, 38, 27],
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DeViSE-ZSD 26.1 28.1 12.1 8.5 23.7 7.1 0 0 0.8 0.3 4.8 0.4 15.6 20.1 13.7 14.1 5.8

ConSE-ZSD 10.7 51.8 0 10.1 0 25.3 0.1 0 5.5 5.9 8.5 2.3 2.7 26.1 1.5 0 8.4

MS-Zero-S 11.8 48.8 0 9.4 0 24.1 0.2 0 11.5 2.2 9 3.6 3.8 32.9 0.8 0 8.8

MS-Zero-V 8.8 36.5 13.7 11.0 34.2 4.7 0.3 0 2.5 0.4 9.3 2.9 11.8 30.1 19 14.2 7.7

MS-Zero 10.9 51.0 2.7 8.0 35.1 12.9 0 0 10.9 0.7 10.5 0.5 5.8 40.6 21.5 1.0 7.0

MS-Zero++ 19.6 35.5 4.3 9.3 33.0 4.0 0.1 0 3.5 5.0 10.3 1.1 20.0 41.5 26.3 13.6 7.1

Table 4. Class-wise Average Precision (AP) (%) for unseen classes for all models in test-unseen setting on MS COCO dataset.

we use ResNet-101 pretrained on the Imagenet-1k dataset

to extract image features. The choice can be understood

as leveraging common world knowledge. Image features

are extracted using a ResNet-101 network. We assign la-

bels to each proposal on the basis of IoU (Intersection over

union) threshold. Any proposal with an IoU > 0.5 with a

ground-truth box is considered a foreground proposal while

any proposal with 0 < IoU < 0.2 with a ground truth

box is considered as a background box. We train on images

containing only seen classes, therefore none of the unseen

categories are misclassified as background during training.

We use stochastic gradient descent with an initial learning

rate of 10�3 and momentum of 0.9. In case of MS COCO, we

train the model for a total of 5 epochs with a learning rate

of 10�3. In case of PASCAL VOC, we train the model for

8 epochs with a learning rate of 10�3 for the first 5 epochs

and 10�4 for the remaining three epochs after which the re-

sults saturate. Margin for ranking loss is set to 0.1. We train

the model end-to-end while keeping the semantic embed-

dings fixed. For MS-Zero-S, the weights for the transfor-

mation matrix Wsem are initialized with semantic attribute

embeddings [9] of seen classes for PASCAL VOC dataset

and with GloVe embeddings [26] for MS COCO. For MS-

Zero-V we transform the 300 dimensional semantic embed-

ding of each class to 2048 dimensional visual space using

a fully connected layer. MS-Zero-S and ConSE-ZSD uti-

lize 64 dimensional semantic attribute embeddings [9] for

PASCAL VOC dataset and 20 dimensional semantic embed-

dings [38] for MS COCO dataset. Label embeddings for MS-

Zero-V and DeViSE-ZSD method for both the datasets are

extracted from publicly available GloVe [26] embeddings.

MS-Zero++ utilizes 64 dimensional semantic attribute em-

beddings [9] for PASCAL VOC dataset and GloVe [26] em-

beddings for MS COCO dataset. We normalize the semantic

scores and visual scores using L2 norm before combining

them. In case of the MS-Zero model, similarity metric used

for both semantic and visual branches of the model is co-

sine similarity. In case of the MS-Zero++ model, similarity

metric used for the semantic space branch of the model is

L2 distance for MS COCO and cosine similarity for PASCAL

VOC. The visual space branch used cosine similarity for

both datasets. Choice of the similarity metric was based on

an initial empirical study with different metrics.

Results: We use mean average precision (mAP) with an

IoU threshold of 0.5 with ground truth boxes as the evalua-

tion metric for the model. Tables 3 and 3 provide quantita-

tive results in terms of mAP for MS-Zero, MS-Zero++ and

its special cases - MS-Zero-S and MS-Zero-V on PASCAL

VOC and MS COCO datasets respectively on the three dif-

ferent test settings. Figure 3 provides the qualitative results

for the proposed models. We provide an extensive perfor-

mance comparison of our work with existing work in ZSD.

We compare our results on the PASCAL VOC dataset with

the hybrid region embedding model proposed by [7] and re-

fer to it as ZSD-YOLO in further discussion, table 3 and 2.

Since they do not use MS COCO dataset and do not have

publicly available code, we do not compare our results on

MS COCO with them. We compare our results on the MS

COCO dataset with Bansal et al. [5] which is the best work

so far on MS COCO. Since they do not use PASCAL VOC

dataset and do not have publicly available code, we do not

compare our results on PASCAL VOC with them. We could

not compare our work with [38] as they only report class-

agnostic average precision thereby relaxing the recognition

constraint for them. We also could not compare our work

with [28] as they use a different dataset and have no publicly

available code.

PASCAL VOC: To our knowledge, ZSD-YOLO [7] is the

best work so far in terms of mAP on PASCAL VOC. As seen

in Table 3, MS-Zero outperforms ZSD-YOLO by a margin of

14% in test-unseen setting. MS-Zero++ outperforms ZSD-

YOLO by a margin of around 16% in both test-seen and test-

mix settings. We observe that MS-Zero++ performs best in

test-seen and test-mix settings and MS-Zero performs best

in test-unseen setting. We attribute this to the fact that the

correlation loss (equation 5) helps MS-Zero++ retain the se-

mantic properties in the visual space as well. But the num-

ber of seen classes (16) is not enough to learn a generalized

transformation from semantic space to visual space. We

also note that, as seen in Table 2, MS-Zero and its vari-

ants leverage both semantic and visual spaces to outperform

other methods on each class.
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Figure 3. Qualitative detection results on test images from PASCAL VOC (first four images) and MS COCO (last two images) dataset. Topmost

row shows detection and classification results using MS-Zero-S. Middle row shows detection and classification results using MS-Zero-V.

Results from both models are prone to misclassification. Bottom row shows detection results using MS-Zero. It is evident from results that

MS-Zero outperforms individual search space methods.

Figure 4. Percentage of classes having a certain number of com-

mon neighbours in both semantic and visual space.

MS COCO: MS-Zero++ performs the best on MS COCO

in the test-unseen setting. MS-Zero-S outperforms MS-

Zero in test-seen and test-unseen setting by a small mar-

gin. We observe that our MS-Zero++ model achieves a huge

13 mAP increase and a 28% increase in recall@100 value

when compared to the previous best, Bansal et al. [5] as

seen in Table 3. We observe that MS-Zero-S performs better

than all other models in test-seen and test-mix settings. This

can be attributed to good separation for the seen classes in

the semantic space. The performance in the test-mix setting

is biased towards seen classes therefore the results for test-

mix are higher for MS-Zero-S as well. A low AP for some

of the classes in MS COCO dataset as seen in Table 4 occurs

when there is a lack of semantically similar classes in the

seen set and very small size of objects. For e.g. the classes

‘tie’ and ‘umbrella’ belong to the broad super category ‘ac-

cessory’, for which almost no semantically similar classes

are available in the training set. Addressing this challenge,

which is an issue across existing methods [27, 7, 28], will

be an important direction of our future work.

We observe that MS-Zero-S performs better compared

to MS-Zero-V on PASCAL VOC while, MS-Zero-V outper-

forms MS-Zero-S on MS COCO in test-unseen setting. We

posit that since the number of seen classes is much lesser

in PASCAL VOC (16) than MS COCO (48), it is difficult for

MS-Zero-V to learn the high dimensional visual space em-

beddings from semantic embeddings, that can retain seman-

tic properties for PASCAL VOC dataset. Higher number of

seen classes offered by MS COCO dataset enables the model

to learn visual space embeddings that can retain semantic

properties. To justify this, we compare the number of com-

mon neighbours for each class in semantic space and visual

space. We find top-five nearest neighbours for each class in

semantic space and visual space and calculate the number

of neighbours shared in both space. Figure 4 presents the

percentage of classes having a certain number of common

neighbours. It is evident from the results that even though

PASCAL VOC has a smaller search space, number of shared

neighbours in the semantic and visual space are lower as

compared to MS COCO dataset.

We recently came across another work in ZSD based on
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Figure 5. 2-D t-SNE [33] plot of the semantic attribute embed-

dings [9] (human-annotated) (left) and the transformed semantic

embeddings (right) on PASCAL VOC dataset.

Model Seen Unseen Mix

PASCAL VOC

MS-Zero-Avg-U 68.15 55.25 54.57

MS-Zero-Max 73.45 57.35 58.75

MS-Zero-Avg-N 74.49 62.15 60.05

MS COCO

MS-Zero-Avg-U 42.4 12.9 30.7

MS-Zero-Max 43.3 10.0 31.3

MS-Zero-Avg-N 43.5 11.2 31.4

Table 5. Table shows mean average precision (mAP) (%) for the

un-normalized, max and average models on PASCAL VOC and MS

COCO datasets on different test settings.

polarity loss [27] which we refer to as ZSD-POLARITY.

On the PASCAL VOC dataset, our MS-Zero model with an

mAP of 62.15% outperforms ZSD-POLARITY by a small

margin which has an mAP of 62.1%. MS-Zero also outper-

forms ZSD-POLARITY in the test-seen setting with a 17%

improvement in mAP (74.49% vs 63.5%). On the MS COCO

dataset, our MS-Zero++ model with an mAP of 13.8% out-

performs ZSD-POLARITY which has an mAP of 10.01%.

Our proposed models outperform ZSD-POLARITY on both

datasets in terms of mAP.

5. Discussion and Analysis

Hubness: Hubness phenomenon is associated with near-

est neighbor search and is observed when a few objects in

the dataset occur as the nearest neighbor of many objects,

therefore becoming universal neighbours or hubs. We ar-

gue that in ZSD since, the background semantic class em-

bedding is the average of all semantic class embeddings,

the background class by virtue of its definition tends to

become a hub and is often assigned to bounding boxes

with unseen classes. We define hubness for each class as,

Hk(y) = |{x, x ∈ P |y ∈ NNk(x, S)}| where x denotes a

region proposal, P denotes the set of all region proposals,

S is the search space and NNk(x, S) denotes the k nearest

neighbor of x in S. We show how our proposed multi-space

approach alleviates this problem of hubness in ZSD. Fig-

ure 5 shows 2-D t-SNE [33] plots of the semantic attribute

embeddings (human-annotated) obtained from [9] and the

transformed semantic embeddings on PASCAL VOC dataset.

It can be seen that the semantic embeddings of MS-Zero

learn a better representation for the ‘dog’ class than the

human-annotated embeddings for ‘dog’ class which over-

lap with ‘background’, ‘car’ and ‘sofa’ classes (as shown in

the red box). Furthermore, the semantic embeddings of MS-

Zero learn a more closely associated representation for ‘car’

and ‘background’ classes separately and overcome the hub-

ness caused by the ‘background’ class (for ‘sofa’ and ‘dog’

classes) in the semantic attribute embeddings. This rein-

forces our claim that hubness decreases as MS-Zero com-

bines information from both the semantic and visual spaces.
Combining scores through other methods: We combined

scores in both spaces using two approaches: (1) MS-Zero-

Avg-U where we take the average of the scores. (2) MS-

Zero-Avg-N where we normalize scores using L2 norm be-

fore taking average. Table 5 shows that MS-Zero-N per-

forms the best on both datasets in test-seen and test-mix set-

ting. MS-Zero-Avg-N and MS-Zero-Avg-U give the best re-

sults for PASCAL VOC and COCO datasets respectively. This

can be attributed to the fact that, since the unnormalized

scores are a weighted combination of normalized scores,

some unseen categories perform well on normalized scores

while some on unnormalized scores. We also consider com-

bining the scores by taking max scores from each space de-

noted by MS-Zero-Max. We observe that the scores in se-

mantic space are generally of higher magnitude than scores

in visual space causing scale mismatch. Due to this scale

mismatch, MS-Zero-Max is biased towards semantic space

and does not fully exploit the benefits of multi-space model

leading to lower results.

As described in Sec 4, we use separate semantic em-

beddings for MS-Zero-S and MS-Zero-V methods. We ob-

served in our experiments that low-dimensional semantic

embeddings perform better for MS-Zero-S whereas high

dimensional semantic embeddings perform better for MS-

Zero-V. We attribute this to the fact that since MS-Zero-

S transforms visual features to semantic embedding, it is

easier for the model to learn a transformation from visual

features to low dimensional (20-d and 64-d) semantic em-

beddings as compared to high dimensional (300-d) GloVe

embeddings. High dimensional GloVe embeddings makes

it easier for MS-Zero-V to learn transformations of embed-

dings to visual space that can retain semantic properties.

6. Conclusion

ZSD is an exciting avenue and an important step towards

providing semantic scalability to object detection. In this

work, we propose a novel multi-space approach to solve this

problem. We compare semantic and visual space scores of

the model separately and show that multi-space model im-

proves on individual scores and mitigates the hubness prob-

lem. Our multi-space model outperforms the previous best

on PASCAL VOC as well as MS COCO dataset. Our extensive

experimentation indicates that the proposed multi-space ap-

proach is a promising step towards solving ZSD.
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