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Abstract— We propose the ViNet architecture for audio-
visual saliency prediction. ViNet is a fully convolutional
encoder-decoder architecture. The encoder uses visual features
from a network trained for action recognition, and the decoder
infers a saliency map via trilinear interpolation and 3D con-
volutions, combining features from multiple hierarchies. The
overall architecture of ViNet is conceptually simple; it is causal
and runs in real-time (60 fps). ViNet does not use audio as
input and still outperforms the state-of-the-art audio-visual
saliency prediction models on nine different datasets (three
visual-only and six audio-visual datasets). ViNet also surpasses
human performance on the CC, SIM and AUC metrics for the
AVE dataset, and to our knowledge, it is the first network to
do so. We also explore a variation of ViNet architecture by
augmenting audio features into the decoder. To our surprise,
upon sufficient training, the network becomes agnostic to the
input audio and provides the same output irrespective of the
input. Interestingly, we also observe similar behaviour in the
previous state-of-the-art models [1] for audio-visual saliency
prediction. Our findings contrast with previous works on deep
learning-based audio-visual saliency prediction, suggesting a
clear avenue for future explorations incorporating audio in a
more effective manner. The code and pre-trained models are
available at https://github.com/samyak0210/ViNet.

I. INTRODUCTION

Video saliency prediction focuses on understanding and
modeling human visual attention (HVA) while viewing a
dynamic scene (determining where and what people pay
attention to given visual stimuli). HVA empowers primates
to analyze/interpret the complex surroundings rapidly, and
naturally, we would like to extend these abilities to ma-
chines/robots. For instance, a robot that orients its eyes like
humans gives impressions of an intelligent behaviour [2].
Moreover, it may allow the robot to orient towards regions
of the visual scene that are likely to be relevant. Upon
compiling the ground truth regarding where viewers gaze in
the scene via eye-tracking hardware, saliency prediction (SP)
aims to mimic HVA given a novel video computationally.
Previous works have shown that SP is valuable in a vari-
ety of applications like human-robot interaction [3], stream
compression [4], video captioning [5], automated cinematic
editing [6], etc.

Video SP models primarily employ visual information to
predict gaze. Larger datasets like DHF1K [7] discard audio
during ground truth collection, and ask users to look at silent
videos. End-to-end deep saliency models are then trained
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Fig. 1. The core of our approach is a strong visual-only model ViNet. Here,
we compare ViNet (third column) with state-of-the-art UNISAL model [8]
(fourth column). Note that ViNet better captures the action, while UNISAL
focuses on objectness. In this example, ViNet focuses on the region being
drawn, whereas UNISAL focuses on the completed portion. Best viewed in
color and under zoom.

using only visual information. State-of-the-art video SP mod-
els largely depend on Long Short-Term Memory (LSTM)
networks to encode temporal dependencies [8], [9], [10].
These models build on image-based saliency and aggregate
frame-wise prediction using an LSTM. Since both spatial
decoding and temporal aggregation are performed separately,
LSTM models cannot collectively leverage Spatio-temporal
information, shown to be beneficial for video SP [11].

To this end, we propose a novel fully convolutional
encoder-decoder architecture called ViNet for visual saliency
detection. ViNet takes a set of frames as input and predicts a
saliency map for the last frame. Following the methodology
adopted in [11], it then employs a sliding window approach
to predict saliency for the entire video. ViNet takes features
learned from an action recognition network from multiple
hierarchies, fuses them in a UNet [12] like fashion, and
outputs a saliency map using trilinear interpolations and 3D
convolutions. The strength of ViNet is that it only com-
prises commonly used components, resulting in a minimal
and conceptually simple model which is easy to train and
interpret. ViNet is causal, runs in real-time, and surpasses
the state-of-the-art on three popular vision-only saliency
prediction datasets (a motivating example is illustrated in
Fig. 1). At the time of submission, ViNet is also the top-
ranked model on the private test-set of DHF1K, the most
diverse video saliency prediction benchmark. Interestingly,
ViNet also achieves state-of-the-art results on six audio-
visual saliency datasets without using any audio information.
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Fig. 2. Sample frames from Coutrot-2 database with the corresponding ground-truth. The predicted saliency maps of AViNet with and without passing
audio input turn out to be the same.

More fundamentally, discarding audio information con-
trasts with our real-life behaviour, where we simultaneously
perceive visual and audio modalities. Cognitive studies con-
firm that auditory and visual cues are correlated and jointly
contribute to human attention [13]. Coutrot et al. [14] collect
the human gaze on the same set of videos with and without
the original soundtrack and observe that the soundtrack sig-
nificantly affects the attention models in human perception,
even when using a monophonic stimuli [14]. Consequently,
recent efforts have explored multi-modal (audio-visual) video
SP [15], [1], and claim audio as a strong cue for SP.

Consequently, we experiment with an audio-visual
saliency prediction model obtained by augmenting ViNet
with an audio branch. The resulting architecture called
AViNet is end-to-end trainable and uses pre-trained audio
features from SoundNet [16]. We explore two fusion strate-
gies, similar to [1], [15] i.e. simple concatenation and
bilinear fusion. We observe that when compared to ViNet,
AViNet gives nil or marginal improvements on most audio-
visual SP datasets. Our results suggest that current audio-
visual saliency models [15], [1] are not optimal on the visual
modality. Furthermore, when we dig deeper, we find out that
the audio-visual network learns to ignore the audio signal
entirely and gives the same result even while sending a zero
vector as audio or by sending an unrelated random audio file
(Fig. 2). Surprisingly, we observe the same behaviour with
STAViS [1], the current state-of-the-art audio-visual saliency
prediction model. Our findings contrast to the prevalent
claims that the audio acts as a strong cue for SP. Overall,
we make the following research contributions:

• We propose a novel visual-only architecture called
ViNet for video saliency detection. Our model uses
commonly known deep learning components/ideas, and
the contributions are in their efficient amalgamation. We
back the proposed architecture with thorough ablation
studies.

• We present a comprehensive analysis on ten different
datasets (three visual and seven audio-visual datasets).
Our model achieves solid performance gains over the
current state-of-the-art.

• We carefully explore the role of audio and find that
the visual-only model almost recovers the underlying
performance. Furthermore, the strategies mentioned in
existing literature end up learning a prediction model

agnostic to audio. This motivates the need for exploring
novel architectures for audio-visual fusion for SP and
possibly carefully curating datasets where audio plays
a significant role.

II. RELATED WORKS

A. Video Saliency

The recent landscape in video saliency prediction is
dominated by the end-to-end trainable deep networks.
The availability of large datasets like Hollywood-2 [17]
and DHF1K [7] have been instrumental in this progress.
Hollywood-2 is the largest dataset, however, its content is
limited to human actions and movie scenes. DHF1K is
considered the most diverse and challenging dataset for
saliency detection.

Majority of the recent approaches rely on an LSTM based
architecture for sequential fixation prediction over successive
frames. Wang et al. [7] combine frame-level image features
using a ConvLSTM. SalEMA [10] model recurrence using a
temporal exponential moving average (EMA) operation over
the convolutional layer. They show such a simple moving
average-based approach matches the performance achieved
using a ConvLSTM. SALSAC [9] adds further complexity to
basic ConvLSTM architecture through a shuffled multi-level
attention module and a frame correlation module. STRA-
Net [18] learns an alignment module, and then aligned
frames are sent into a Bi-ConvLSTM. [19] propose a novel
construction of LSTM (2C-LSTM) with two sub-networks to
focus on objectness and motion, respectively. UNISAL [8]
is a unified image and video saliency prediction model that
uses MobileNet to extract spatial features and LSTMs for
encoding temporal information. The method heavily relies on
domain adaptive prior maps (different prior maps for image
and video domains), domain adaptive batch-normalization,
etc. Several of these video saliency prediction architec-
tures [8], [7] borrow and extend ideas (hierarchical features,
transfer learning, multi-branch architectures, etc.) from the
models trained for static image saliency prediction [20], [21].

3D convolutional architectures have also been explored for
the task. These methods typically rely on action detection
networks as their backbone. TASED-Net [11] uses S3D as
an encoder to extract spatial features while jointly aggre-
gating all the temporal information in order to produce a
single full-resolution prediction map. They use transposed



Fig. 3. AViNet Architecture overview. Removing the audio branch, the resulting architecture is ViNet.

convolution layers with auxiliary pooling ( a variation of
max-unpooling layers) for spatial upscaling in the decoder.
Bellitto et al. [22] use multiple decoders for features encoded
at different levels to obtain multiple saliency instances that
are finally combined to obtain final output saliency maps.
[22] is inspired by the DVA image saliency model [23]. A
combination of 3D convolutions and recurrent architecture
has also been explored [24]. STSConvNet [25] explicitly
computes optical flow and fuses the optical with the visual
features into two-stream convolutional architecture.

In contrast, our ViNet method is a straightforward encoder-
decoder architecture exploiting basic ideas of spatial hi-
erarchy, feature concatenation, skip connections, trilinear
upsampling, and 3D convolutions. It uses pretrained features
from a network trained for action recognition as a backbone
and is void of any explicit inputs like optical flow or any extra
modules for detecting objectness, motion, attention, etc.

B. Audio-Video Saliency

Research in cognitive neuroscience has led to interesting
findings about audiovisual integration. If you ever watched
a ventriloquist in action, you would agree how they trick
our visual stimuli to guide the perceived location of the
sound (and where we look at). Ventriloquist turns to face
the puppet, they attend the puppet, use a different voice for
the puppet, and make it seem that it is the puppet that is
talking (although the sound is being generated from their
stomach). McGurk effect [26], pip and pop effect [27], unity
assumptions [28] are other examples of how we jointly
integrate and perceive visual and audio modalities. Coutrot
et al. [14], [29], [30] present some interesting studies on
the influence of soundtrack on eye movements during video
exploration.

Application-specific attempts have been made for visual
saliency and audio localization [31], [32], [33]. The fusion
of handcrafted attention models and pre-trained deep image-
level models using canonical correlation analysis has been
explored [34], [35]. However, only a couple of attempts have

been made towards an end-to-end deep learning-based audio-
visual saliency fixation prediction. Tavakoli et al. [15] trains
two independent networks for the two modalities (audio and
visual data), and their outputs are simply concatenated as a
late fusion scheme. They use 3DResNet as the backbone for
both modalities. STAViS [1] extends the SUSiNet [36] visual
saliency model and investigates three different ways to fuse
the audio modality.

Significant efforts have been made in the direction of self-
supervised learning and representation learning exploiting
audio-visual data. SoundNet [16] leverage the natural syn-
chronization between vision and sound to learn an acoustic
representation. They use a student-teacher training procedure
to transfer discriminative visual knowledge (large-scale vi-
sual recognition) into the sound modality. On similar lines,
audiovisual correspondence has been exploited for the task
of cross-modal retrieval [37], sound classification [16], [38],
sound localization in images [37], [39], scene analysis [40],
temporal event localization [41] etc.

III. PROPOSED ARCHITECTURE

We propose an end-to-end architecture visual-only model
called ViNet. It is a fully 3D-convolutional encoder-decoder
architecture that predicts the saliency for the last frame of
the corresponding set of sequential frames. Then we present
an audio-visual saliency detection model called AViNet that
fuses the visual features from ViNet and audio features from
SoundNet. Fig. 3 displays an overview of the architecture.

A. Backbone

The architecture uses the S3D network [42] as the video
encoder. We use the model pre-trained on the Kinetics dataset
which is an action-recognition dataset. We use S3D since it
consists of 3D convolutional layers which efficiently encodes
the spatio-temporal information. Moreover, it is light-weight
and pre-trained on a large dataset, making it fast and ef-
fective for transfer-learning. It consists of 4 convolutional
blocks base1, base2, base3 and base4 that provides outputs
X1,X2,X3 and X4 in different spatial and temporal scales.



Clip Size (T ) CC SIM NSS
8 0.4978 0.363 2.8221
16 0.5112 0.378 2.9067
32 0.5212 0.3881 2.9565
48 0.5231 0.3807 2.9477

TABLE I
VALIDATION RESULTS ON VARYING CLIP SIZE FOR TRAINING VINET ON

EMPHDHF1K.

Model Architecture CC SIM NSS
Without Hierarchy 0.5002 0.361 2.7371

With Hierarchy 0.5212 0.3881 2.9565

TABLE II
VALIDATION RESULTS OF VINET WITH AND WITHOUT HIERARCHY ON

DHF1K.

X1,X2 and X3 are referred as multi-level features that
are extracted at three-levels of hierarchy. The input to the
encoder is a video clip xclip ∈ R3×T0×H0×W0 , where T0
is 32. It generates a lower-resolution activation map X4 ∈
RC×T×H×W , where C = 1024 and T,H,W = T0

8 ,
H0

32 ,
W0

32 .
For audio representation, we employ SoundNet [16],

which is trained for audio/sound based scene classification.
We pre-process the audio data similar to the STAViS [1]
(section 3.2). The sound module takes 1D pre-processed
audio feature as input, yaudio ∈ R1×T̂×1 and outputs audio
features A ∈ R1024×3×1.

B. Audio-Visual Fusion

Inspired by the recent works on audio-visual saliency pre-
diction [1], [15], we explore two types of fusion techniques.
First is a simple concatenation of encoded audio and video
features which was used in [15]. We repeat the audio features
to match the dimensions of visual features and combine
them across the channel dimension. Then we apply 1 × 1
Convolution to reduce the number of channels.

Secondly, we applied bilinear fusion which has been used
in [1]. The visual features are first passed through Max Pool
to reduce the spatial and temporal dimension and then col-
lapsed to represent it as a vector x1 ∈ R1024×x0 . Similarly,
the audio features are collapsed as a vector x2 ∈ R1024×y0 .
The bilinear fusion is defined as

y = xT1 Ax2 + b (1)

where A ∈ Rx0×x×y0 and b ∈ Rx×1 are parameters and x
is the desired output dimension.

C. Prediction Network

The Prediction Network consists of 6 decoding layers
consisting of 3D convolutional and upsampling layers. For
ViNet, the input to the Prediction Network is the X4 features
from the Backbone and X3,X2, and X1 are passed in using
skip connections, respectively. In the case of AViNet, the
audio features are fused with X4 and then sent to the decoder
(skip connections are made similarly).

D. Evaluation

Both ViNet and AViNet follow a sliding window approach
to generate a saliency map for all frames in the video. Given a
window size of T frames, we predict saliency map St at time
step t by taking Ft−T+1, ...Ft sequence of frames as input.
To enable prediction in the first T frames, we simply repeat
the first frame of the video at the start. A single inference
of ViNet takes around 0.016 seconds (62.5 fps) to generate
a saliency map, with T = 32 frames.

IV. EXPERIMENTS AND RESULTS

A. Datasets

1) Visual Datasets: The three most popular visual-only
datasets in video saliency are DHF1K, Hollywood-2, and
UCF-Sports [45]. We carry out the tests and comparisons
on these three datasets.

DHF1K [7] contains 1000 videos where 700 videos are
for training and 100 for validation. A test set of 300 videos
is also released, however, without public ground truth. All
our experiments and analysis are based on this dataset since
it is the most general and diverse dataset.

Hollywood-2 [17] is the largest video saliency prediction
dataset in terms of the number of videos, consisting of 1707
videos. The dataset is focused on human actions. The videos
in this dataset are short video sequences from a set of 69
Hollywood movies, containing 12 different human action
classes, ranging from answering the phone, eating, driving,
running and etc. We use the standard split of 823 training
videos and 884 test videos.

UCF-Sports [45] dataset consists of 150 videos focusing
on human actions in sports. We use a standard split with 103
videos for training and 47 videos for testing.

2) Audio-Visual Datasets: There are seven audio-visual
datasets in video saliency: DIEM, Coutrot1, Coutrot2, AVAD,
ETMD, SumMe, and AVE dataset. We carry out the tests and
comparisons on all these seven datasets.

DIEM [46] consists of 81 movie clips of varying genres.
They sourced from publicly accessible repositories, including
advertisements, documentaries, game trailers, movie trailers,
music videos, news clips, and time-lapse footage. It consists
of 64 training videos and 17 test videos.

Coutrot databases [29], [30] are split into Coutrot1 and
Coutrot2. Coutrot1 contains 60 clips with dynamic natural
scenes split into four visual categories: one/several moving
objects, landscapes, and faces. Coutrot2 contains 15 clips of
4 persons in a meeting and the corresponding eye-tracking
data from 40 persons.

AVAD dataset [34] contains 45 short clips of 5-10 sec
duration with several audio-visual scenes, e.g., dancing,
guitar playing, birds singing, etc.

ETMD dataset [47] contains 12 videos from six different
hollywood movies.

SumMe dataset [48] contains 25 unstructured videos, i.e.
, mostly user-made videos and their corresponding multiple-
human created summaries, which were acquired in a con-
trolled psychological experiment.



DHF1K Hollywood-2 UCF-Sports
CC sAUC AUC NSS SIM CC sAUC AUC NSS SIM CC sAUC AUC NSS SIM

SALEMA [10] 0.449 0.667 0.890 2.57 0.466 0.613 0.708 0.919 3.18 0.487 0.544 0.740 0.906 2.63 0.431
ACLNet [43] 0.434 0.601 0.890 2.35 0.315 0.623 0.757 0.913 3.08 0.542 0.510 0.744 0.897 2.56 0.406

STRA-Net [44] 0.458 0.663 0.895 2.55 0.355 0.662 0.774 0.923 3.47 0.536 0.593 0.751 0.910 3.01 0.479
SALSAC [9] 0.479 0.697 0.896 2.67 0.357 0.670 0.712 0.931 3.35 0.529 0.671 0.806 0.926 3.52 0.534

TASED-Net [11] 0.470 0.712 0.895 2.66 0.361 0.64 0.768 0.918 3.30 0.507 0.582 0.752 0.899 2.92 0.469
UNISAL [8] 0.490 0.691 0.901 2.77 0.390 0.673 0.795 0.934 3.90 0.542 0.644 0.775 0.918 3.38 0.523

ViNet 0.510 0.728 0.908 2.87 0.381 0.693 0.813 0.930 3.73 0.550 0.673 0.810 0.924 3.62 0.522

TABLE III
COMPARISON RESULTS ON THE DHF1K, Hollywood-2 AND UCF-Sports TEST SETS. THE BEST SCORES ARE SHOWN IN RED AND SECOND BEST SCORES

IN BLUE.

AVE dataset [15] consists of 150 hand-picked video se-
quences from DIEM, Coutrot1 and Coutrot2 datasets. The
videos are divided into three categories - Nature, Social
Events, and Miscellaneous. The dataset consists of 92 train-
ing videos, 29 validation, and 29 test sequences.

B. Experimental Setup

For training ViNet, clips with T consecutive frames were
randomly selected from the dataset. Each frame is resized
to 224 × 384 and trained with a batch size of 8. The
optimizer used is Adam, and the learning rate is set to be
1e-4. The network is initially trained on the DHF1K dataset.
The validation set of DHF1K is used for early stopping.
The trained model is then fine-tuned for Hollywood-2 and
UCF-Sports dataset using their respective training sets. The
test sets of Hollywood-2 and UCF-Sports are used for early
stopping.

For our audio-visual extension AViNet, weights of ViNet
pre-trained on DHF1K are used and fine-tuned on the audio-
visual datasets. For DIEM, the standard split provided in the
literature is used. For other datasets, there are no standard
splits defined, so we evaluated our model on three different
splits defined by [1] and report the average metric values
across various splits. For evaluating on AVE dataset, we fine-
tune the model using its training set and use its validation
for early stopping.

C. Loss Function

We use the Kullback-Leibler divergence as the loss func-
tion, which is often used in saliency prediction tasks. KLDiv
is an information-theoretic measure of the difference between
two probability distributions:

KLdiv(P,Q) =
∑
i

Qi log(ε+
Qi

Pi + ε
), (2)

where P , Q are predicted and ground truth maps respectively
and ε is a regularization term.

D. Ablation studies

We present ablations studies that motivated our design
choices in the ViNet model. All the ablations in this section
are performed with training on the DHF1K training set and
evaluation on its validation set. We examine the effects of
(a) changing the clip size, (b) using multi-level features,

(c) replacing upsampling with transpose convolutions, and
(d) applying different concatenation techniques for fusing
hierarchical features. Table I illustrates the results on varying
the clip size of the input and using clips of size 32 frames
gave the best results. Ablation results by using hierarchical
features can be found in Table II. It clearly indicates that
using multi-level features adds up to the performance. We
also use transpose convolution instead of trilinear upsampling
to increase the spatial dimension, but CC decreased to
0.5178 from 0.5212. The multi-level features extracted from
the backbone are concatenated at each decoder block. We
tried two ways of concatenating features - across temporal
dimension and channel dimension. We observed that they
gave a similar performance; therefore, we went ahead with
the former approach due to fewer trainable parameters.

E. Comparison with state-of-the-art

a) Visual-Only datasets: We quantitatively compare our
model with the top six state-of-the-art models on DHF1K,
Hollywood-2, and UCF-Sports test set. Table III shows
the results on all three datasets in terms of CC, sAUC,
AUC, NSS, and SIM metrics. We can observe that ViNet
outperforms all the state-of-the-art models on the DHF1K
dataset. ViNet also achieves top results on most metrics
on Hollywood-2 and UCF-Sports datasets. At the time of
the submission, ViNet is the top-performing model on the
DHF1K challenge (evaluated on the private test set)1. We
show a qualitiative example in Fig. 4 where we see that
ViNet is able to produce much more accurate saliency maps
as compared to TASED-Net and STAViS.

b) Audio-Visual Datasets: The comparison of ViNet
and AViNet models with state-of-the-art methods on audio-
visual datasets are presented in Table IV and V. We also
present results on ViNet(NF) baseline model, which is a
trained of DHF1K dataset and not fine-tuned further on
audio-visual datasets. The ViNet, ViNet(NF), ACLNet and
TASED-Net models are trained without using any audio in-
formation. STAViS and AViNet models make use of the audio
modality, both during training and inference. AViNet(B) and
AViNet(C) present the two fusion methodologies discussed
above i.e. concatenation and bilinear fusion respectively.

1The challenge website can be found here https://mmcheng.net/
videosal/

https://mmcheng.net/videosal/
https://mmcheng.net/videosal/


DIEM Coutrot1 Coutrot2
CC sAUC AUC NSS SIM CC sAUC AUC NSS SIM CC sAUC AUC NSS SIM

ACLNet [43] 0.522 0.622 0.869 2.02 0.427 0.425 0.542 0.85 1.92 0.361 0.448 0.594 0.926 3.16 0.322
TASED-Net [11] 0.557 0.657 0.881 2.16 0.461 0.479 0.58 0.867 2.18 0.388 0.437 0.611 0.921 3.17 0.314

STAViS [1] 0.579 0.674 0.883 2.26 0.482 0.472 0.584 0.868 2.11 0.393 0.734 0.71 0.958 5.28 0.511
ViNet(NF) 0.571 0.695 0.886 2.28 0.468 0.509 0.619 0.875 2.46 0.406 0.645 0.72 0.949 5.11 0.419

ViNet 0.626 0.723 0.898 2.47 0.483 0.551 0.633 0.886 2.68 0.423 0.724 0.739 0.95 5.61 0.466
AViNet(B) 0.632 0.719 0.899 2.53 0.498 0.56 0.635 0.889 2.73 0.425 0.754 0.742 0.951 5.95 0.493
AViNet(C) 0.631 0.720 0.897 2.50 0.497 0.556 0.636 0.887 2.68 0.426 0.753 0.743 0.951 5.81 0.486

TABLE IV
COMPARISON RESULTS ON THE DIEM, Coutrot1 AND Coutrot2 TEST SETS.

AVAD ETMD SumMe
CC sAUC AUC NSS SIM CC sAUC AUC NSS SIM CC sAUC AUC NSS SIM

ACL-Net [43] 0.58 0.56 0.905 3.17 0.446 0.477 0.675 0.915 2.36 0.329 0.379 0.609 0.868 1.79 0.296
TASED-Net [11] 0.601 0.589 0.914 3.16 0.439 0.509 0.711 0.916 2.63 0.366 0.428 0.657 0.884 2.1 0.333

STAViS [1] 0.608 0.593 0.919 3.18 0.457 0.569 0.731 0.931 2.94 0.425 0.422 0.656 0.888 2.04 0.337
ViNet (NF) 0.665 0.651 0.923 3.67 0.501 0.544 0.719 0.924 2.92 0.404 0.455 0.687 0.893 2.35 0.349

ViNet 0.694 0.663 0.928 3.82 0.504 0.569 0.736 0.928 3.06 0.409 0.466 0.696 0.898 2.40 0.345
AViNet(B) 0.674 0.658 0.927 3.77 0.491 0.571 0.733 0.928 3.08 0.406 0.463 0.692 0.897 2.41 0.343
AViNet(C) 0.683 0.661 0.931 3.74 0.494 0.566 0.737 0.928 3.05 0.404 0.471 0.699 0.899 2.42 0.346

TABLE V
COMPARISON RESULTS ON THE AVAD, ETMD AND SumMe TEST SETS.

The ViNet model significantly outperforms STAViS
on most datasets across most metrics. Surprisingly, the
ViNet(NF) model is already competitive, indicating that
models trained on DHF1K can generalize well to other
datasets. Moreover, the results clearly suggest that the visual-
only modality, when exploited well, is able to recover most
of the underlying performance on the current datasets, as
compared to existing state-of-the-art models. The improve-
ments obtained by AViNet(B) and AViNet(C) models over
ViNet are marginal at best (with an exception on Coutrot2
dataset, which is captured in highly specific settings). Hence,
in contrast to previous works [1], [15], our experimental
results do not indicate any clear benefit of incorporating
audio in the prediction pipeline.

We also evaluate the performance of our models on the
AVE dataset [15]. Although the AVE dataset is formed using
the sequences from DIEM, Coutrot1, and Coutrot2 datasets,
it is an interesting dataset because (a) it provides a human
upper bound and a lower bound using dataset biases and (b)
it provides video level categorization. The upper bound is
named Human Infinite (HI) and is computed by splitting the
eye-movements of observers into two groups and assessing
one group against the other (human vs. human performance).
The lower bound is called the Mean Eye Position map (MEP)
and is computed from the training sequences. It depicts the
center-bias that a model may learn by training on the dataset.
It is, hence, a robust lower-bound baseline.

ViNet model outperforms the state-of-the-art approaches
on the AVE dataset by a significant margin, resonating with
the observations on other datasets. Notably, ViNet is able to
cross the HI upper bound on AUC-J, CC, and SIM metrics.
We further provide a category-wise analysis of both our
models on this dataset. It is evident from Table VII ViNet

Method CC SIM

AViNet(B) 0.9977 0.9979
AViNet(C) 0.9978 0.9990
STAViS 0.9980 0.9981

TABLE VI
CC AND SIM METRICS FOR THE AUDIO-VISUAL SALIENCY

PREDICTIONS FOR AVINET(B), AVINET(C) AND STAVIS WITH AND

WITHOUT AUDIO(SENDING ZEROS FOR AUDIO) ON Coutrot2 DATASET.
THE PREDICTIONS ARE NEARLY IDENTICAL AS REFLECTED IN THE

METRICS.

and AViNet give fairly similar performance across all three
categories, giving solid gains over other methods.

F. The Impact of Audio

We conduct a simple experiment to investigate the role of
audio in AViNet and STAViS models. We compare the output
predictions obtained with original audio and by sending
zeroed-out vector as audio (indicating the absence of audio).
To our surprise, the network’s prediction maps obtained
with and without audio are nearly identical (as presented
in Table VI). A qualitative example is shown in Fig. 2.
This indicates that the network learns to be agnostic to
audio and gives the same output irrespective of the audio
input (zero vector, corresponding audio, or random audio). In
summary, the current state-of-the-art audio-saliency models
end up learning a visual-only model and that also explains
the marginal differences with ViNet and AViNet models in
our results (Table IV and Table V). Such marginal differences
might arise due to different instances of training or possibly
due to a slight variation in the number of parameters.
A deeper exploration is left for future work. Finally, the



Cat. Model Name CC sAUC AUC NSS SIM

N
at

ur
e HI 0.669 0.762 0.866 3.32 0.538

AViNet 0.649 0.729 0.895 2.37 0.515
ViNet 0.680 0.735 0.900 2.47 0.538

DAVE [15] 0.539 0.723 0.877 2.27 0.450
ACLNet* [43] 0.517 0.723 0.884 2.03 0.401

MEP 0.471 0.686 0.869 1.76 0.368

So
c

E
v. HI 0.655 0.759 0.855 3.63 0.516

AViNet 0.688 0.765 0.914 2.96 0.536
ViNet 0.688 0.760 0.910 2.88 0.544

DAVE [15] 0.545 0.726 0.885 2.65 0.442
ACLNet* [43] 0.449 0.683 0.869 2.02 0.359

MEP 0.314 0.633 0.819 1.35 0.274

M
is

c.

HI 0.597 0.748 0.837 3.23 0.481
AViNet 0.635 0.730 0.898 2.42 0.506
ViNet 0.636 0.726 0.896 2.40 0.509

Dave [15] 0.549 0.736 0.881 2.39 0.454
ACLNet* [43] 0.456 0.683 0.852 1.84 0.378

MEP 0.438 0.675 0.845 1.73 0.342

O
ve

ra
ll HI 0.644 0.757 0.854 3.41 0.514

AViNet 0.655 0.744 0.901 2.55 0.516
ViNet 0.671 0.742 0.903 2.60 0.533

DAVE [15] 0.545 0.726 0.881 2.45 0.449
ACLNet* [43] 0.475 0.700 0.870 1.98 0.379

MEP 0.403 0.662 0.844 1.59 0.326

TABLE VII
PERFORMANCE OF VARIOUS MODELS ON AVE TEST SET CATEGORIES.

HI REPRESENTS HUMAN INFINITE (HI) REPRESENTS UPPER

PERFORMANCE BOUND AND MEAN EYE POSITION (MEP) REPRESENTS

LOWER PERFORMANCE BOUND.

observations contrast with cognitive studies, which suggest
clear differences in human gaze patterns when the videos
are watched with or without audio [14]. The findings open
up an interesting avenue for future research for designing
architectures that can make better use of the aural modality.

V. CONCLUSION

We propose ViNet, a novel spatio-temporal visual-only
architecture that efficiently addresses the problem of saliency
detection in videos. We also explored incorporating audio for
the task with AViNet by the addition of an auditory module
to ViNet. We explore two different fusion techniques for
combining audio-visual cues. We perform a comprehensive
analysis of both models on 10 different datasets (3 visual and
7 audio-visual). Our models brings significantly gains over
the state-of-the-art models. We find that audio does not seem
to be playing a major role in audio-visual saliency predic-
tion, even in models that explicitly incorporate audio. Our
findings clearly illustrate the need for further explorations in
this direction, leading to better models as well as curating
datasets which can better utilize the auditory modality.
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