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Abstract— We showcase a topological mapping framework
for a challenging indoor warehouse setting. At the most abstract
level, the warehouse is represented as a Topological Graph
where the nodes of the graph represent a particular warehouse
topological construct (e.g. rackspace, corridor) and the edges
denote the existence of a path between two neighbouring
nodes or topologies. At the intermediate level, the map is
represented as a Manhattan Graph where the nodes and edges
are characterized by Manhattan properties and as a Pose Graph
at the lower-most level of detail. The topological constructs
are learned via a Deep Convolutional Network while the
relational properties between topological instances are learnt
via a Siamese-style Neural Network. In the paper, we show
that maintaining abstractions such as Topological Graph and
Manhattan Graph help in recovering an accurate Pose Graph
starting from a highly erroneous and unoptimized Pose Graph.
We show how this is achieved by embedding topological and
Manhattan relations as well as Manhattan Graph aided loop
closure relations as constraints in the backend Pose Graph
optimization framework. The recovery of near ground-truth
Pose Graph on real-world indoor warehouse scenes vindicate
the efficacy of the proposed framework.

I. INTRODUCTION

This paper explores the role of topological understanding
and the concomitant benefits of such an understanding to the
SLAM framework. Figure-1 shows an erroneous Pose Graph
(PG) labelled ‘a’, while the topological graph TG is shown
labelled as ‘b’ in the same figure succinctly. Each node in
the TG is labelled by the Deep Convolutional Network. The
TG is converted to a Manhattan Graph (MG) wherein the
Manhattan properties of the nodes (length or width of the
topology) and edges are gleaned from the PG. While the
MG facilitates seamless loop detection between a pair of
Manhattan nodes, such relations when integrated with a back-
end SLAM framework, enable the recovery of an optimized
pose-graph and corresponding map. The crux of the paper
lies in detailing the framework and its efficacy in challenging
real world settings of two different warehouses.

There have been a number of works in this area and
a detailed review of such methods can be seen in [1].
Prominent and well cited amongst these include [2]–[7].
Most of these methods are focused exclusively on vision
based loop detection with invariant descriptors. Many relate
to an individual image as a distinct topology of the scene
without relating such nodes to a meta-level label such as a
rackspace, corridor, intersection etc. The classification task of
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place categorisation has been extensively performed on large
datasets such as [8]–[10]. Works such as [11], [12] and more
recently, [13], [14] present hierarchical scene representations
and how they are useful for various navigation tasks. How-
ever, neither of these exclusively tackle highly challenging
repetitive environments such as warehouses.

[15] shows the use of topological constructs for robot
navigation in a simulated environment with the help of graph
neural networks, where topological features are embedded
into the nodes of a graph network. However, the method re-
lies on the availability of noise-free sensor input, along with
distinct topologies. [16] shows how a Bayesian inference
over topologies can be performed to obtain more accurate
topological maps. However, it does not entertain notions of
meta-level topological labels that go beyond an immediate
lower-level topology restricted to the scene seen by the robot.

In this paper, we distinguish ourselves by portraying how
higher level/meta level topological constructs that go beyond
an immediate frame/scene and the relations that they enjoy
amongst them percolate to a lower level pose-graph and
elevate their metric relations. In fact, we recover close to
ground truth floor plans from a highly disorganized map at
the start. This is the essential contribution of the paper. In
addition, the following constitute our contributions:

1) A deep convolutional network capable of learning ware-
house topologies.

2) A Siamese Neural Network based relational classifier
which resolves topological element ambiguity and helps
achieve an accurate pose graph purely based on Topo-
logical relations.

3) We showcase a backend SLAM framework that inte-
grates loop closure relations from an intermediate level
Manhattan Graph to the lowest level Pose Graph and
elevate a disoriented unoptimized map to a structured
optimized map which closely resembles the floor plan
of the warehouse. Apart from the loop closure relations,
the SLAM integrates other Manhattan relations to the
pose graph. Ablation studies show the utility of both
loop and Manhattan constraints as well as the superior
performance of an incremental topological SLAM over
a full batch topological SLAM. (Refer to Table IV.)

4) We also show how the two-way exchange between the
MG and PG further improves the accuracy of the
PG. This two-way exchange between the various levels
of representation is unique to this effort. Refer to the
bottom two rows in Table IV.

Through the above formulation, the paper essentially
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Fig. 1. Overall formulation presented with Pose-graph as the input and CNN based classifier to classify regions. These classification labels are used
to propose potentially similar regions in the pose-graph using Topological Instance Comparator which generates more constraints for the pose graph.
Additionally, we generate topologically consistent graph called Manhattan Graph, which helps add more constraints in pose-graph eventually giving more
relevant constraints to the pose-graph to increase accuracy. The blue dotted arrow shows the start of the pipeline and then follows a feedback like structure.

exploits the Manhattan properties present in indoor ware-
house scenes to perform PG recoveries. Project page:
https://github.com/Shubodh/ICRA2020.

II. METHODOLOGY

Consider an unoptimized pose graph PG represented by
its nodes as Vpg and edges as Epg . The edge relations are
of the following kinds:
• Odometry relation between successive nodes.
• Loop closure relation between a pair of nodes.
• Manhattan relation between a pair of nodes.
We obtain odometry relations from fused ICP and wheel

odometry estimates which gives us the initial pose graph,
which is highly erroneous. We then leverage the topological
and Manhattan level awareness to generate the loop closure
and Manhattan relations and use them for pose graph opti-
mization to recover accurate graphs. This whole process is
divided into 3 sub-sections:

1) Topological categorization using a convolutional neural
network classifier and its graph construction.

2) Constructing Manhattan Graph from the obtained Topo-
logical Graph and predicting loop closure constraints
using Multi-Layer Perceptron.

3) Pose graph optimization using obtained Manhattan and
loop closure constraints.

Each part of the pipeline is described in each sub-section
below, followed by experiments and results which are ex-
plained in the next section.

A. Topological Categorization and Graph Construction

Every node Vi ∈ Vpg is associated with a topo-
logical label L(Vi) or Li where Li ∈ L =
{rackspace, corridor, transitions} for a warehouse scene.
To obtain these topological labels from visual data, we
train a Convolutional Neural Network (CNN) configured
for classification. The training data consists of RGB images

resized to 224×224 and paired with topological node labels.
For our warehouse setting, the labels are Rackspace,
Corridor, Intersection:
• Rackspace: Location on path between two rackspaces
• Corridor: Location on the warehouse boundary path

common to rackspaces
• Intersection: A transition location on the path
Figure-1 entails examples of frames and their topological

labels. Using PyTorch framework [17], we train a ResNet-
18 [18] architecture pre-trained on ImageNet [19] with its
final layer replaced by a 3-neuron fully connected layer,
corresponding to the possible topological node labels. During
training, we optimize the network to minimize cross-entropy
loss. To account for class imbalance, we use class-weighted
loss [20] with the following set of weights: Rackspace:
2.48, Corridor: 2.16, Intersection: 7.38. The CNN
is fine-tuned for 356 epochs using Adam optimizer with a
learning rate of 0.001 for the pre-trained ResNet-18 layers
and a learning rate of 0.005 for the final layer weights. We
stop training when the validation loss starts to increase. For
training, we use 33,273 images from two warehouses with a
mini-batch size of 8. To evaluate the trained network, we use
21,200 images. The results are presented in the next section.

After obtaining the inferred labels from the CNN, we
group together the adjacent nodes that share the same label.
Thus, a node in Topological Graph TG consists of two
positions from the dense Pose Graph PG, i.e. the starting
and ending positions of that topology.

B. Manhattan Graph Construction and Constraint Predic-
tion using MLP

We now explain how the Topological Graph TG of the last
section is converted to a Manhattan Graph, MG. We denote
each node in the MG as a meta-node, Mj ∈MG, where Mj

corresponds to a collection C i.e. Vi, Vi+1, .., Vi+n of PG
nodes, such that we write Vi ∈ C(Mj) and L(Mj) = L(Vi)

https://github.com/Shubodh/ICRA2020


Fig. 2. Fig. a shows unoptimized trajectory with dense poses along with
topological labels. Fig. b shows sparse trajectory obtained by approximating
each topological region with its starting and ending position. Notice that ir-
regular robot trajectory inside some topological regions is also approximated
to straight line. Fig. c shows Manhattan graph generated by approximating
angles between two nodes to their nearest multiple of 90 degree. Fig. d
is a siamese network which takes two nodes features as input and outputs
similarity score between two nodes. Feature vector consists of starting and
ending coordinates of a node along with node’s topological label. Fig. e
shows two images which are 180◦ rotated but belongs to same intersection
region as detected by siamese network. Arrows from Fig. e to Fig. a show
corresponding locations of the two images in unoptimized pose graph.

for every PG node in the collection set C. A new meta-node
is formed when there is a change in the label.

The pose graph nodes, their corresponding topology labels
shown in the color denoting the label, the collection of such
nodes that constitute a meta node also shown in the same
color in the MG are portrayed in figure 2.

The MG relies on two essential measurements for its
construction.
• The length l of traversal or the length of topologies such

as corridor or a rackspace.
• The angle φ made between two corridors/two

rackspaces/rackspace and corridor via an intersection.
The length of the traversal is obtained by integrating

fused odometry and ICP based transformations between two
successive nodes of the Pose Graph that belong to the same
meta node in the Manhattan Graph. The angle made as the
robot moves from one topology (rackspace/corridor) to an-
other (rackspace/corridor) via an intersection is estimated by
fusing odometry and scan matching ICP measurements and
integrating them over the traversal through the Intersection.
This angle is binned to the closest multiple of π/2 as one
of −π2 , 0,

π
2 , π. We use these sets of obtained lengths l and

angles φ along with the category of the meta node Mj

i.e. L(Mj) as attributes as input to a Siamese-style MLP
neural network in order to determine if any two nodes in
MG are the same instance of a topological construct. In
other words, the MLP determines if any two nodes in MG
correspond to the same topological area of the workspace.
We chose to use MLPs for classifying the topologies instead
of using a manual heuristic which might miss potential edge
cases; however, note that any other classifiers such as k-

nearest neighbours algorithm can be used. Figure 2 details
the generation of Manhattan Graph and how its node features
are fed into the MLP for loop closure detection.

The training data for the MLP consists of what we have
described as “meta-nodes” above. Each meta-node is a tuple
consisting of {Xstart, Ystart, Xend, Yend}. The four values
of the tuple denote the starting and ending displacement
co-ordinate of a particular node with respect to a global
origin (global origin is the point from where the robot starts
moving in the warehouse). Xstart, Xend and Ystart, Yend
denote the displacement co-ordinates in the x and y-direction
respectively. We create training data on the fly since we
know the general structure of our warehouse and hence
can create nodes synthetically using random numbers with
similar lengths. The architecture is a Siamese network [21]
which consists of two hidden layers. We apply contrastive
loss on the output obtained from the Siamese network to
constrain semantically similar “meta-node” representations
to lie closer to each other. During inference, the MLP
compares two nodes of the Manhattan Graph and predicts
if the nodes correspond to the same topological instance.
We base our approach on two strong assumptions:
• Each node comprises of one contiguous region of one

particular category.
• Each node has displacement only in one direction.

(Along x or y).
The classification that results from the MLP is particu-

larly powerful due to its ability to classify two topological
instances to be the same even when viewed from opposing
viewpoints. This is shown in Figure-2 where the same
topology is viewed from opposite viewpoint and have little
in common. Yet the MLP’s accurate classification of them
to be the same instance becomes particularly useful for the
Pose Graph optimization described in the next section.

The MLP’s non reliance on perceptual inputs also comes
in handy for repetitive topologies. Warehouse scenes are
often characterizes by repetitive structure and are prone to
perceptual aliasing. The classification accuracy of the MLP
is unaffected by such repetitiveness in the environment since
it bypasses perceptual inputs. Yet the MLP does make use
of perceptual inputs minimally in that it attempts to answer
if the two nodes in the MG are the same instances only if
the topological labels of the two nodes are predicted to be
the same by the CNN.

C. Pose Graph Optimization

The Manhattan relation that exists between two
nodes Mi,Mj and represented as R(Mi,Mj) =<
∆xij ,∆yij ,∆θij > serves as a Manhattan constraint
between the nodes corresponding to Mi,Mj in the pose
graph (in a manner consistent with the edge relations given
in posegraph libraries such as G2O [22], GT-SAM [23]).
∆θij is typically 0◦ or 180◦ depending on whether the
topology is being revisited with the same or opposing
orientation.

The output of the MLP classifier is also used to invoke
loop closure constraints. A pair of nodes classified to be



the same topological construct by MLP corresponds to two
sets of pose-graph nodes in the unoptimized graph belonging
to the same area. Multiple loop closure relations are thus
obtained between the pose-graph nodes of these two sets.
Apart from these, there exist immediate Manhattan relations
between two adjacent rackspaces or two adjacent corridors
or a rackspace adjacent to a corridor mediated through an
intersection. All such relations that exist in the Manhattan
Graph as well as the loop closure relations percolate to the
nodes in the PG as described further below.

In effect the optimizer solves for [24]:

X∗ = argmax
X

P (X|U) = argmax
X

∏
i

P (xi+1|xi, ui)

×
∏

i∈C(Mi),j∈C(Mj)

P (xj |xi, cij)︸ ︷︷ ︸
Loop Closure Constraints

×
∏

i∈N(Mi),j∈N(Mj)

P (xj |xi,mij)︸ ︷︷ ︸
Manhattan Constraints

where P (X|U) is posterior probability of posegraph X
over set of constraints U , xi and ui are ith pose and
controls of the robot. The loop closure relation cij between
nodes i and j is obtained using ICP. There are in principle
n(C(Mi))×n(C(Mj)) loop closure relations that are possi-
ble between topological constructs Mi,Mj where C(Mi) is
the collection set of Manhattan node Mi as described before
and n(P ) is the cardinality of the set P . Whereas in practice
we only sample a subset of such relations to constrain the
graph.

Similarly, the graph is also constrained by Manhattan
relations mij that are invoked between the pose-graph nodes
that constitute the sets N(Mi) and N(Mj) where N(Mi)
and N(Mj) represent the Pose Graph nodes within the
neighbourhood of Mi and Mj .

Typically N(Mj) ⊆ C(Mj). More formally, let S
be the set that enumerates all loop closure pairs dis-
covered by the MLP over a Manhattan Graph MG. i.e
S = {(Mi,Mj), (Mj ,Mk), ..., (Mp,Mq)}, where each el-
ement of the set is a loop closure pair on the graph and
{Mi,Mj , ..,Mq} are the nodes of the MG. Let i be an
iterator iterating over the element of S, S(i) = (Mp,Mq).
Let LC be the set of all loop closure relations, cij obtained
for every S(i) ∈ S by sampling from the n(C(Mi)) ∗
n(C(Mj)) number of loop closures possible for every S(i) ∈
S. Similarly, let M be the set of all Manhattan relation
mij obtained for every S(i) ∈ S from the neighbouring
nodes in the unoptimized graph N(Mi), N(Mj) for every
S(i) = (Mi,Mj) ∈ S. Then

X∗ = argmax
X

∏
i

P (xi+1|xi, ui)
∏

cij∈LC
P (xj |xi, cij)∏

mij∈M
P (xj |xi,mij)

III. EXPERIMENTATION AND RESULTS

A. Topological Categorization in a Real Warehouse Setting

Fig. 3. We start with the unoptimized Pose Graph with drift (shown
by dotted-blue arrow) and obtain its Manhattan Graph. The nodes of the
Manhattan graph are then passed to the Topological Instance Comparator
which acts like a Topological Instance comparator and gives out node
pairs which belong to the same topology. This is then passed to the Pose
Graph Optimizer which gives us optimized Pose Graph. We then obtain
the Manhattan graph of the optimized Pose Graph. The nodes of this
graph are passed to the Topological Instance comparator which gives us
improved(more accurate) loop pairs. This complete pipeline is done multiple
times in a cyclic manner till convergence. We finally get a registered map
which is shown in the center.

The performance of the topological node classification
CNN (Section II-A) can be viewed in Table I. For the com-
bined dataset, the network is able to classify the rackspace
and corridor with very low false positives and false negatives
with precision and recall more than 94% each. However, it is
relatively difficult to classify the third class i.e. intersection
as there is not much semantic consistency as the robot moves
from one topology to another, which is reflected in the fact
that the recall value is quite low, about 78%. We explain
how this inaccuracy affects the downstream modules in the
Section III-E.

TABLE I
CNN CLASSIFICATION RESULTS.

Warehouse
dataset Accuracy

1&2 93.75
1 95.15
2 89.06

Metrics for Combined Data (1&2)

Category Precision Recall
Rackspace 94.2 96.3
Corridor 96.3 96.4

Intersection 85.6 78.1

B. Efficacy of Loop Closure Constraint Prediction using
MLP

We showcase our pipeline on two different warehouses.
There were two experiments performed. First, we sample our
training data according to the layout and length constraints
of warehouse-1 and use the data-points of warehouse-1 as
the lone testing data. In our second experiment, we train



TABLE II
MLP RESULTS

Network Type Warehouse-1 Warehouse-2
Accuracy 71.2 67.7

our MLP specifically according to the layout and length
constraints of warehouse-2.

The detection of nodes belonging to the same topology
was observed to be accurate at the initial phase of the
trajectory. The latter part of the trajectory was not accurate
and had drift due to which the detection of node-pairs was
observed to be inaccurate (Unoptimized Pose Graph shown
in Figure-3). We were able to improve the accuracy of
the MLP and were able to generate accurate loop pairs
by performing optimization on the Pose Graph in a cyclic
fashion as shown in Figure-3.

We performed the experiments on both warehouses. The
accuracy is calculated by checking for the percentage of
the true node pairs. An accuracy of 71.2% and 67.7% was
observed for the first and the second warehouse respectively.

C. Pose graph optimization Results

The ablation study on the type of constraints have been
done in five stages. The robustness of map recovery increases
with each stage which reflects in Absolute Trajectory Error in
Table IV. The experiments are conducted on four trajectories
with varying lengths and starting deformation. Trajectories
W − 1.1 and W − 1.2 are from the first warehouse and
W − 2.1 and W − 2.2 are from the second warehouse in
Table IV. Qualitatively, the initial trajectories are shown in
first row of Figure 5.

1) Stages of Map Recovery:
(i) Manhattan constraints: Only manhattan constraints

are used to optimize pose graph, PG. Constraints are
extracted from manhattan graph, MG, between nodes
proposed by MLP to be similar.

(ii) Loop Closure and Manhattan constraints: Apart from
Manhattan constraints, Loop Closure constraints as ex-
plained in section II-C are also used to constrain the
PG.

(iii) Dense Proposals from MLP: We consider nodes that
have been classified to belong to the same instance with
low confidence along with those classified to be the
same with high confidence. This increases the number
of constraints improving the optimization performance.
The wrongly detected loops are filtered based on the
loop closure (ICP) residual cost and do not make it to
the optimization.

(iv) Dense Proposals by MLP in Feedback Loop: A feed-
back loop is invoked on the optimized PG from previous
stage. A new MG is computed on the optimized PG, this
manhattan graph, MG, is fed to MLP and sets of con-
straints are generated in a cyclic manner. This feedback
mechanism leads to MLP performance improvement as
shown in Table V and also helps in achieving very

low Absolute Trajectory Error, ATE of 1.82 meters on
four different maps from 11.57 meters in unoptimized
map. This corresponds to the fourth of the contribution
mentioned in the Section I.

(v) Incremental formulation: Performing the feedback
strategy from the previous stage in an incremental
formulation in ISAM [23] helps us to achieve the
lowest ATE of 1.45 meters in our system. This confirms
the robustness of our system to recover from highly
unoptimized trajectories.

2) Qualitative Results: We evaluate our system in two
challenging real warehouse settings. The warehouse dimen-
sions are 30m × 50m and contains 21 rack-spaces with
intermediate corridors and intersections. All experiments
start with highly deformed trajectories. In all the cases, we
were able to recover trajectories close to the groundtruth.
Note that in our case, the ground-truth trajectory is the
optimized map from the cartographer that has been confirmed
with warehouse floor plan by our collaborators . These results
are shown in Figure 5. The top row shows highly distorted
pose graph trajectories while the middle row showcases the
results of our optimization framework. The last row depicts
the ground truth trajectories. The overall pipeline gets best
illustrated with Figure 3.

D. Improving the performance of the state-of-the-art SLAM
system: RTABMAP

We compare our topological SLAM pipeline with the
state-of-the-art SLAM system RTABMAP [25], which is
a highly modular library with the integration of various
sensors like monocular camera, stereo camera, LiDAR, IMU
and wheel odometry. When we evaluated RTABMAP on
our warehouse dataset, we found that RTABMAP detects
many False Positive loop closure constraints owing to similar
looking corridors, and thus, incorrectly merges different
parallel corridors into the same corridor. By incorporating
our topological constraints in RTABMAP, we achieved better
trajectory in terms of Absolute Trajectory Error, as shown
in Table III. This increase in performance is attributed to
the non-reliance of MLP on individual frame-wise visual
input but instead, it is utilizing the geometric structure of the
topological representation. Hence, our topological constraints
can be used to extend traditional Visual SLAM pipeline
in highly repetitive Manhattan-like environments. Further
qualitative results can be found in the Project page.

TABLE III
ATE COMPARISON OF TOPOLOGICAL SLAM WITH RTABMAP

RTABMAP RTABMAP +
Topological Constraints

4.45 3.36

E. Robustness Analysis

We analyze the performance of the topological SLAM
due to errors in topological classification due to the CNN
and due to failure to detect loops by the MLP. Errors in



topology classification manifest as loop detection in the
MG. Therefore, the analysis is one of the robustness due to
wrong loop detection wherein both false positive and false
negative cases are considered. The robustness to the pose
graph optimization stems due from the following features:

1) Residuals in the ICP estimated loop closure end up
serving as priors to the element of dynamically scaled
covariance matrix [4], which serves as a robust kernel
providing for backend topology recovery even when the
number of wrong loop closures increase.

2) An optimized PG feeds back to the MG and alleviates
its error. The improved MG improve the loop detection
performance of MLP, which percolate to the PG nodes
and further improve its accuracy. Overtime this iterative
exchange of information between the various represen-
tations improves the robustness of the PG backend.

Fig. 4. Effect of Robust pose-graph optimization with DCS

To analyse the performance of our robust kernel exclu-
sively in presence of the outliers, we synthetically introduced
false positive (FP) and false negative (FN) loop closure pairs
in the constraints for PG. In Figure 4 X-axis represents
percentage of loop closure pairs in the data-set having equal
amount of FP and FN pairs. Y-axis represents ATE of TG
with respect to the ground truth. The Figure 4 depicts the
performance of our framework due to errors occurred in
topology classification and loop detection.

From the analysis of results in Figure 4 it is evident that
gradual increase in outliers can be tolerated by Robust kernel
with DCS [4] as compared with non robust optimization
techniques.

Fig. 5. Top row shows unoptimized trajectories, middle row shows
trajectories recovered using our pipeline and last row shows ground truth
trajectories. Length in metres is shown along X and Y axes.

TABLE IV
ABSOLUTE TRAJECTORY ERROR(ATE) [26] FOR VARIOUS

POSE-GRAPHS WITH RESPECT TO GROUND-TRUTH TRAJECTORIES. LC
STANDS FOR ’LOOP CLOSURE CONSTRAINTS’

Method Type W-2.1 W-2.2 W-1.1 W-1.2 Avg
ATE ATE ATE ATE ATE

Unoptimized 4.7 7.5 16.3 17.8 11.57
MLP Manhattan
(G2O)

3.42 2.85 4.5 7.4 4.54

MLP Manhattan + LC
(G2O)

3.09 2.7 3.9 1.67 2.84

Dense MLP Manhat-
tan + LC (G2O)

1.98 1.96 2.75 1.65 2.08

Dense MLP Manhat-
tan + LC (In Feed-
back Loop) (G2O)

1.67 1.8 2.21 1.6 1.82

Dense MLP Manhat-
tan + LC (In Feed-
back Loop) (iSAM)

1.6 0.98 1.02 2.2 1.45

TABLE V
EFFECT OF FEEDBACK MECHANISM ON MLP PERFORMANCE

True
Positive

False
Positive Accuracy

MLP 119 81 59.5

MLP in Feedback Loop 133 55 70.7

IV. CONCLUSION

This paper shows how higher level abstractions of an
indoor workspace such as real warehouses can be used to
effectively improve lower level backend modules of local-
ization and mapping. Specifically we show how higher and
intermediate level abstractions in the form of Topological
Graph and Manhattan Graph can recover from backend pose
graph optimization failures. Further by constant information
exchange between the various levels of map abstractions we
improve quantitatively the ATE by more than 87.4% starting
from very distorted pose graphs. We further show the method
is robust to failures in the higher level representations such,
which occurs when the Deep CNN architecture wrongly
classifies a topological construct or when the Siamese style
classifier wrongly detects or fails to detect loops in the
Manhattan graph. The results shown are on two different
real warehouse scenes over an area of around 30m × 50m,
filled with many repetitive topologies in the form of corridor
areas and rackspaces. Future results are intended to be shown
on a variety of indoor topologies and office spaces such as
for example those found in the Gibson environment [27].
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