arXiv:2007.02072v1 [cs.CV] 4 Jdul 2020

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Quo Vadis, Skeleton Action Recognition?

Pranay Gupta, Anirudh Thatipelli, Aditya Aggarwal, Shubh Maheshwari, Neel Trivedi, Sourav Das, Ravi

Kiran Sarvadevabhatla Member, IEEE

Abstract—In this paper, we study current and upcoming frontiers across the landscape of skeleton-based human action recognition.
To begin with, we benchmark state-of-the-art models on the NTU-120 dataset and provide multi-layered assessment of the results. To
examine skeleton action recognition 'in the wild', we introduce Skeletics-152, a curated and 3-D pose-annotated subset of RGB videos
sourced from Kinetics-700, a large-scale action dataset. The results from benchmarking the top performers of NTU-120 on
Skeletics-152 reveal the challenges and domain gap induced by actions 'in the wild'. We extend our study to include out-of-context
actions by introducing Skeleton-Mimetics, a dataset derived from the recently introduced Mimetics dataset. Finally, as a new frontier for
action recognition, we introduce Metaphorics, a dataset with caption-style annotated YouTube videos of the popular social game Dumb
Charades and interpretative dance performances. Overall, our work characterizes the strengths and limitations of existing approaches
and datasets. It also provides an assessment of top-performing approaches across a spectrum of activity settings and via the
introduced datasets, proposes new frontiers for human action recognition.

Index Terms—human action recognition, human activity recognition, skeleton, 3-D human pose, deep learning

*

INTRODUCTION

NDERSTANDING human actions, especially from their

2-D and 3-D joint-based skeleton representations, has
received a lot of focus recently. Joint-based representations
have a small memory footprint which improves feasibility
of on-board processing in compute-restricted environments
(e.g. smartphones, cameras on IoT devices). The privacy-
friendly nature of the skeleton representation is also an
advantageous factor.

On the flip side, obtaining accurate 3-D skeleton data
usually requires specialized capture mechanisms and con-
straints on the capture environment. Even after the capture
hurdle is crossed, the sparsity of skeleton representation
relative to denser counterparts (RGB, depth) induces am-
biguity and imposes additional challenges. In addition, the
lack of large-scale, diverse datasets remained a challenge
until the advent of datasets such as NTU-60 [1] and PKU-
MMD [2]. These datasets have prompted a number of di-
verse approaches for skeleton-based action recognition [3],
[4], [5], [6], [7], [8], [9]. The introduction of the even larger
NTU-120 dataset [10] is poised to continue this trend.

Typically, the introduction of a newer, larger dataset
(NTU-120) is marked by a flurry of novel architectures
which aim to solve challenging domain tasks. In this paper,
we argue that this is also a good opportunity to evaluate
approaches originally trained for earlier dataset versions
and more generally, re-evaluate the status quo. This argu-
ment has already been made successfully for RGB action
recognition [11]. To this end, we benchmark current, past
state-of-the-art approaches on the NTU-120 dataset and
analyze the results (Sec. 3).

The datasets and capture methods for aforementioned
works are confined to controlled, indoor settings. What
about human activities occurring outdoors, 'in the wild'?
Also, in recent times, a number of works on robust estima-
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tion of human 3-D pose from RGB data have emerged [12],
[13], [14]. These prompt yet another question: How well can
human actions be recognized in terms of 3-D skeletal pose
estimated from RGB videos? To answer these questions, we
first create Skeletics-152, a carefully curated and 3-D pose-
annotated subset of videos sourced from Kinetics-700 [15],
a large-scale RGB action dataset. Subsequently, we eval-
uate the performance of top ranked NTU-120 approaches
(Sec. 4.1).

Actions in NTU-120 and Kinetics datasets retain either
full or partial context supplied by object interactions and
background. In contrast, out-of-context actions represent an
unconventional and challenging frontier for skeleton action
recognition. To benchmark performance for such actions,
we evaluate the recognition models on the skeletal version
of Mimetics [16], a subset of Kinetics-400 containing exag-
gerated, out-of-context human actions (Sec. 4.2). Addition-
ally, we introduce Metaphorics, a new video dataset with
detailed action phrase annotations for YouTube videos of
the popular social game Dumb Charades and expert dance
performances of popular songs (Sec. 6). The performance on
skeleton version of Metaphorics provides an opportunity to
study the capabilities and limitations of existing approaches
which are typically optimized for non-interactive, category-
based, closed-world recognition paradigms.

Overall, our work characterizes the strengths and limita-
tions of existing approaches and datasets. It also provides an
assessment of top-performing approaches across a spectrum
of activity settings and via the introduced datasets, proposes
new frontiers for human action recognition.

Our primary contributions can be summarized as fol-
lows:

e We benchmark current, past state-of-the-art skele-
ton action recognition approaches on a large-scale
dataset (NTU-120) and provide insightful analysis of
performance trends (Sec. 3).

o We introduce Skeletics-152, a curated 3-D pose anno-
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Fig. 1: A pictorial illustration of the landscape for skeleton-based action recognition. Datasets such as NTU-120 characterize
actions in controlled lab-like settings. We use state-of-the-art RGB 3-D pose estimation to obtain skeletons and benchmark
recognition models 'in the wild' by introducing SKELETICS-152 dataset. To explore out-of-context action recognition in the
wild, we introduce SKELETON-MIMETICS and benchmark models trained on SKELETICS-152. As a novel frontier for action
recognition, we introduce METAPHORICS which contains indirectly conveyed metaphor-style actions. Note that all datasets
are skeleton-based — RGB background has been included to convey the original context.

tated subset of Kinetics-700 for benchmarking skele-
ton action recognition 'in the wild'(Sec. 4.1).

e We introduce Skeleton-Mimetics to recognize
skeleton-based out-of-context and exaggerated
actions (Sec. 4.2).

e We introduce Metaphorics, a new video dataset with
phrase annotations for YouTube videos of Dumb
Charades and interpretative dance to explore the
new frontier of metaphor-style actions (Sec. 6).

o We provide a qualitative assessment of previously
established recognition models on 3-D skeletal se-
quences from the Metaphorics dataset (Sec. 6).

The code, pre-trained models and datasets will be re-
leased. To enable richer understanding of performance char-
acteristics across datasets and approaches, we also plan to
open-source our interactive web-based visualization dash-
board for the benefit of the community.

For better understanding, please refer to the video
accompanying the paper at https://www.youtube.com/
watch?v=YKjQcV_2gLU which depicts various skeleton ac-
tion sequences from the datasets and associated model
predictions.

2 RELATED WORK

Skeletons from explicit 3-D capture: An earlier era of
works serve to document handcrafted features for skeleton
action recognition [17], [18], [19], [20]. The recent class of
approaches based on deep networks can be broadly cat-
egorized into three groups based on input skeleton data
representation.

The first group explicitly consider the sequential nature
of actions wherein the temporal dependencies are modelled
using an RNN or an LSTM [21], [22], [23]. To further dis-
criminate activities based on the joint dependencies, Song et
al. [24] introduce attention mechanisms at multiple levels in
the network. Kundu et. al. [25] learn the action sequence as a
trajectory in the pose manifold for the downstream activity
classification task. Caetano et al. [26] use CNN-based feature
representation over a temporal window containing skeleton
dynamics.

The second group of works model the input skeleton as
a single spatio-temporal unit. In some instances, this unit is
a tensor of the form frames X joints x coordinates which is
subsequently processed by a CNN [27], [28], [29], [30], [31].
More recently, a series of approaches use graph convolutions
to model the (spatio-temporal) unit. Prominent examples
include the ST-GCN framework introduced by Yan et al. [32]
and variants [4], [8]. In contrast to the fixed graph in ST-
GCN, newer approaches involve adaptation to learn the
graph topology [3], [5], [7], [33], [34].

In addition to the groups mentioned above, hybrid ap-

proaches also exist. Si et al. [33] employ an attention-based
graph convolutional LSTM to capture the spatio-temporal
co-occurrence relationships. Zhang et al. [6] propose a CNN-
RNN late-fusion model with learnable view transformation.
For a survey of 3-D skeleton action recognition, refer to
Presti et al. [35] and Wang et al. [36]. In addition to NTU-
120 [10], numerous other 3-D skeleton datasets exist [1], [2],
[18], [37], [38]. However, we consider NTU-120 in our work,
given its dominance over existing datasets in terms of size,
viewpoint and category diversity.
Skeletons from RGB video based pose: In another class
of approaches, human skeletal pose estimated from in-the-
wild RGB video frames is used for action recognition. A
number of approaches based on 2-D skeleton pose from
RGB video exist [39], [40], [41], [42], [43]. A recent variation
involves a pseudo 3-D pose representation wherein 2-D
OpenPose coordinates [44] in Kinetics-400 [45] videos are
augmented with joint-level confidence scores as the third
coordinate [3], [5], [7], [9], [32], resulting in the Skeleton-
Kinetics dataset [32]. Weinzaepfel et al. [16] use 3-D pose
obtained using LCR-Net++ [14] on Kinetics-400 and create a
skeleton-based version of the dataset for pretraining models
tasked with mimed action recognition. In our case, we build
a curated subset of the much larger Kinetics-700 [15] dataset
and utilize skeleton sequences obtained using VIBE [12],
a state-of-the-art 3-D human pose estimation model, for
benchmarking.

3 SKELETON ACTION RECOGNITION IN THE LAB

NTU-120 [10] is the largest 3-D skeleton action recognition
dataset, comprising 114,480 25-joint 3-D skeleton annotated
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Method | Cross Setup | Cross Subject
DGNN [3] 78.13 75.16
GCN-NAS [5] 85.29 81.99
25-SDGCN [48] 86.18 84.42
VA-CNN (ResNeXt-101) [6]' 86.90 84.88
4s-ShiftGCN [47] 87.65 85.76
MS-G3D [46] 87.32 85.92
top-5 models average pooled |  88.80 | 87.22

TABLE 1: Benchmarking comparison for NTU-120 test set
(mean accuracy). Gray-shaded lines correspond to models
which originally reported results on NTU-60 but retrained
by us on NTU-120 for comparison.

videos of 120 human actions, performed by 106 subjects in
a controlled indoor setting and captured from 32 different
camera viewpoints.

3.1 Evaluation Protocol

Two standard evaluation protocols are typically used for
evaluation of multi-subject multi-viewpoint skeleton action
recognition approaches. In the Cross Subject protocol, the
train and test set are split based on performer id. Under the
protocol proposed by Liu et al. [10] for NTU-120, 53 subject
ids out of 106 are allocated for training and the remaining
for test. We use data from 11 (20%) randomly selected ids
of original training set for validation.

The other protocol is Cross Setup. By default, action
sequences from the 16 even-numbered camera setup ids are
used for training and 16 odd setup ids are used for testing.
As with cross subject protocol, we retain the original NTU-
120 test set and use 4 (25%) ids randomly chosen from even
setup ids for validation.

3.2 Performance with full sequences

For benchmarking comparison, we selected approaches
which report performance on NTU-120 and top 5 ap-
proaches with the best performance on NTU-60 [1], the
precursor to NTU-120. The results on the test set of NTU-
120 can be viewed in Table 1. The results show that MS-
G3D [46] and 4s-Shift-GCN [47] are the best performers for
Cross Setup and Cross Subject respectively.

The gray-shaded portion of Table 1 shows the perfor-
mance of top performing NTU-60 models evaluated on the
NTU-120 test set. Note that these models were not origi-
nally designed for NTU-120 and were retrained by us from
scratch, for benchmarking purposes. From the results, we
notice that our version of VA-NN [6], retrained with a more
powerful backbone (ResNeXt-101) performs competitively
with state-of-the-art NTU-120 approaches (MS-G3D and 4s-
Shift-GCN). VA-CNN has a relatively simpler architecture
and is fast to train , adding to its appeal. More significantly,
the results underscore the importance of benchmarking
existing approaches on newly introduced datasets while
investing effort into creation of novel architectures.

Figure 2 shows the mean accuracy and associated stan-
dard deviation for the top-5 models. The significant mag-
nitude of deviation indicates that additional progress is

1. Our version of VA-CNN [21] with ResNeXt-101 backbone.
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Fig. 2: Class accuracy plots for NTU-120 with standard
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Fig. 3: Comparison of top-3 models on the partially observed
sequences for NTU-120 (Cross Subject)

needed before mean accuracy can be considered a reliable
measure of overall performance.

To obtain a better understanding of performance, we list
the 10 best recognized and worst recognized action classes
in Table 2 (cross subject) and Table 3 (cross setup). The
results show that the best and worst performers largely stay
same across all the models. The best performing classes (e.g.
'Arm swings', 'Tump up', 'Walking towards') have distinct
actions and involving large joint-level movements. On the
other hand, action classes containing subtle actions with
fine-grained differences are hardest to recognize and exhibit
large intra-class confusion (Figure 4). For instance, "Make ok
sign' and 'Make victory sign' get confused with each other
significantly because the actions differ only in terms of hand
joint movement which is not captured in adequate detail by
the Kinect sensor. In addition, skeletons for classes such as
'Reading'dnd 'writing' have very low inter-class variability,
resulting in poor performance.

The top 5 models exhibit similarities at the set level
for top-10 and bottom-10 classes. However, motivated by
the variance in actual rank order (Tables 2,3), we examine
performance with an average pooled ensemble of top-5
models. In addition to being the new state-of-the-art, the
noticeably improved ensemble performance (bottom row of
Table 1) suggests that the top-5 models span action classes
in a complementary manner.
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| MS-G3D 4s-ShiftGCN VA-CNN 25s-SDGCN 25-AGCN
Hugging Jump up Falling down Stand up Hugging
Hopping Staggering Walking towards Jump up Drink after cheers
Put on jacket Take off jacket Jump up Walking towards Arm swings
Walking Towards Arm swings Arm swings Drink after cheers Put on jacket
Top-10 Drink after cheers Put on jacket Pushir}g Arm circles Run on the spot
Jump up Walking towards Staggering Put on Jacket Arm circles
Staggering Arm circles Arm circles Arm swings Jump up
Arm circles Hugging Squat down Staggering Staggering
Arm swings Run on the spot Drink after cheers Take off jacket Walking towards
Capitulate Drink after cheers Follow Hugging Follow
Staple book Staple book Make ok sign Staple book Staple book
Make victory sign Make victory sign Make victory sign Make victory sign Make ok sign
Hit with object Make ok sign Staple book Writing Make victory sign
Blow nose Counting money Counting money Counting money Counting money
Bottom-10 Countiqg money Blow nose Play with phqne or tablet Makg ok sign Writing
Writing Reading Reading Cutting nails Cutting paper
Reading Cutting paper Writing Blow nose Hit with object
Make ok sign Hit with object Hit with object Play with phone or tablet Blow nose
Snap fingers Cutting nails Fold paper Wield Knife Cutting nails
Cutting nails Play with phone or tablet Play magic cube Hit with object Yawn
TABLE 2: Top-10 and Bottom-10 classes for models trained on NTU-120 (Cross Subject)
|  4s-ShiftGCN MS-G3D VA-CNN 2s-SDGCN 2s-AGCN
Put on jacket Stand up Walking towards Walking towards =~ Walking towards
Walking towards ~ Nod head or bow Falling down Put on jacket Put on jacket
Staggering Put on jacket Jump up Stand up Stand up
Jump up Walking towards Staggering Nod head or bow Hopping
Top-10 Stand up Arm circles Hopping Walking apart Arm circles
Walking apart Hopping Stand up Hopping Staggering
Take off jacket Staggering Arm swings Arm circles Nod head or bow
Hopping Arm swings Walking apart Jump up Cheer up
Nod head or bow High five Cross toe touch Take off jacket Drink after cheers
Cross toe touch Walking apart Nod head or bow Sit down Walking apart
Staple book Writing Make ok sign Staple book Cutting paper
Writing Staple book Staple book Writing Play magic cube
Make ok sign Cutting paper Writing Cutting paper Make ok sign
Cutting paper Make ok sign Counting money Yawn Staple book
Bottom-10 Yawn Counting money Reading Counting money  Make victory sign
Make victory sign Cutting nails Yawn Cutting nails Counting money
Wield knife Yawn Make victory sign Make ok sign Writing
Counting money Wield knife Cutting paper Make victory sign Yawn
Reading Reading Play with phone or tablet Reading Type on keyboard
Cutting nails Make victory sign Hit with object Play magic cube Cutting on nails

TABLE 3: Top-10 and Bottom-10 classes for the models trained on NTU120 (Cross Setup)

3.3 Performance on partial sequences

Action recognition from partially observed sequences has
been an active area of research [49], [50], [51], [52] and has
many practical applications in the field of video surveillance
and human-computer interaction. The ambiguity induced
by partial sequences naturally makes this a challenging
problem. To study action recognition in this setting, we
benchmark the top-3 models of Table 1 on the partially
observed skeleton sequences of NTU-120 using the Cross
Subject protocol in Figure 3. The increase in accuracy is on
expected lines, i.e. actions are generally better recognized
when the extent to which they are seen increases. In particu-
lar, the multiple input streams in 4s-ShiftGCN and MS-G3D
learn complementary features. Therefore, with increasing %
of elapsed frames, these models outperform VA-CNN by a
noticeable margin.

To understand recognition onset trends in a fine-grained

manner, we replicate the plot of Figure 3, but now for the
top-1 model (MS-G3D) and for individual action categories.
The top-5 and bottom-5 classes by overall accuracy can
be viewed in Figure 5. The closer a curve to the top-left
corner, the better its ability to be recognized early. From this
viewpoint, it is interesting to note that some classes (top-3,4)
ranked lower than the overall top-most have earlier onset of
recognition. The temporal effect of intra-class confusion on
bottom ranked classes can also be seen.

The top-5 and bottom-5 plots in Figure 5 are with respect
to overall, 100% elapsed performance. As a better alternative
for measuring early recognition performance, we propose
the Area-under-curve (AUC) - the closer a category’s AUC
to 1, the earlier it can be recognized. The top-5 and bottom-
5 categories by AUC can be viewed in Figure 6. Multiple
interesting trends can be seen. Firstly, most of the top-5
and bottom-5 classes are different from overall accuracy



JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

cutting nailf JUKEN 000 000 001 003 002 000 000 000 004

snap fiders | 0.00 RSl 0.01 000 000 000 000 000 004 000

makefok sign | 0.00 0.02 JUCEM 0.00 000 000 000 000 019 0.00

reading | 0.00 0.0

writing | 0.00  0.00

counting money | 0.08 0.00 000 001 o001 [CKIW 0oc 000 000 003

blow nose | .00 000 000 000 000 000 JUEEE 000 000 0.00

hit with object | 0.00 0.00 000 000 000 000 oo [OENE 000 0.00

make victory sign | 0.00 0.00 ‘022 000 000 000 oos o000 JUEEE 0.00 01

8
=
g
2
8
o
e
g
2
o
=
g
&
g
8
e
=
8
o

staple book | 0.08

cutting nails
snap fingers
make ok sign
reading

writing

counting money
blow nose

hit with object
make victory sign
staple book

Fig. 4: The confusion matrix sorted by class-wise accuracy shows that the least accurately recognized classes are confused

amongst each other (magnified inset).
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Fig. 5: Early recognition curves for top-5, bottom-5 classes
of MS-G3D model on NTU-120 Cross Subject with class-
wise accuracy as the measure.

plot counterparts. The AUC-wise top performing classes
(e.g. 'Walking towards', 'Walking apart'and 'Take off jacket
') contain minimal intra-class variation and are more con-
sistently identified with increasing number of frames. The
accuracy of 'Point finger' class decreases in the first half due
to barely discernible joint movement in the initial frames.
Among the AUC-wise bottom classes ('Snap fingers', 'Make
victory sign', 'Make OK sign'), the finger-joint motion is
predominant. Since hand joints are not captured adequately
in NTU-120, a fundamental bottleneck arises in recognizing
these classes regardless of elapsed time.

AUC
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Fig. 6: Early recognition curves for top-5, bottom-5 classes
of MS-G3D model on NTU -120 Cross Subject with AUC
as the measure.

4 SKELETON ACTION RECOGNITION IN THE WILD

As mentioned in the Introduction (Sec. 1), large-scale
datasets such as NTU-120 represent lab-style, controlled,
indoor settings. In contrast, a much larger variety of hu-
man actions characterize in-the-wild RGB videos of human
activities. To obtain 3-D skeleton representations from such
videos, pose estimation techniques are applied on action se-
quences from large-scale activity datasets. In this section, we
explore two diverse settings with progressively increasing
level of complexity in terms of human actions.
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Fig. 7: Examples of classes from Kinetics-700 omitted for skeleton action recognition. In Playing American football', multiple
people are detected. For 'Playing ice hockey' and 'Somersaulting', pose estimation is not accurate. In 'Springboard diving',

the person performing the diving action is not tracked.

4.1 Skeletics-152

For our experiments, we use Kinetics-700 [15], a large-scale
video dataset consisting of over 650,000 YouTube video
clips spanning over 700 action categories ranging from daily
routine activities, sports and other fine-grained actions.
However, unlike previous work (Skeleton-Kinetics-400 [32]),
we carefully omit categories from action settings which are
incompatible for pose-based skeleton action recognition.

e A number of classes (e.g. 'Petting cat', 'Scrubbing
face') were removed because most of the videos
contain occluded poses which make the 3D pose
estimation unviable.

e Some classes (e.g. 'Cooking eggs, 'Wrapping
presents’, 'Clay pottery making') were removed as
they were captured from egocentric views.

e Some classes (e.g. Peeling apples', Peeling potatoes’,
'‘Baking cookies') are highly object-centric and hence,
irrelevant for skeleton based action recognition.

e Classes involving no substantial movement (e.g.
'Staring', 'Attending a conference') cannot be recog-
nised solely based on human pose.

o Classes where the labels differ solely due to scene
background were removed (e.g. 'Walking through
snow’ is same as 'Walking').

On videos from the 274 categories that remain, we use
VIBE [12] to obtain corresponding 3-D skeleton sequences.
Classes such as Playing american football', 'Playing ice
hockey', 'Doing aerobics', containing large groups of peo-
ple performing different activities were removed based on
VIBE detections. In addition, classes such as 'Somersaulting’,
'Springboard diving' were removed since the VIBE model
typically reported missing joints. Figure 7 shows some ex-
amples of omitted action classes. For the case of multiple
(> 2) skeleton detections in videos, we select the top two
skeletons appearing in maximum number of frames. For any
intermediate frames with missing skeleton detections, we
perform bounding box and joint interpolation. In the end,
we obtain Skeletics-152, our curated 3-D skeleton dataset
which contains 125,621 sequences spread over 152 classes.

As with NTU-120, we use dataset splits originally pro-
vided with Kinetics-700. To enable comparison, we use
the original validation set of Kinetics-700 as our test set.
We randomly split the original Kinect-700 training set into
training and validation sets in a 85:15 ratio. To address
class imbalance, we employ class-frequency based mini-
batch resampling and class-based loss weighting.

Model | Accuracy  F-1score
MS-G3D (trained from scratch) 56.39 50.80
4s-ShiftGCN (trained from scratch) 56.15 50.41
MS-G3D (pretrained on NTU-120 + finetuned) 55.75 49.57
4s-ShiftGCN (pretrained on NTU-120 + finetuned) 57.01 51.13

TABLE 4: Results on Skeletics-152 test set with mean accu-
racy as performance measure.

| MS-G3D |

Mountain climber (exercise)
Front raises

4s-ShiftGCN

Mountain climber (exercise)
Clean and jerk

Top-5 Jumping Jacks Front raises
Deadlifting Lunge
Lunge Jumping jacks
High fiving Falling off chair
Cumbia Cumbia
Bottom-5 Falling off chair Swinging baseball bat

Hugging (not baby)
Combing hair

Passing American football (not in game)
Digging

TABLE 5: Top-5 and Bottom-5 classes of all models trained
on Skeletics-152 dataset.

We evaluated the best two performers (MS-G3D and 4s-
ShiftGCN) from NTU-120 in two training regimes. In one
regime, we first extracted VIBE skeletons from RGB videos
of NTU-120 and trained the models on these skeletons.
The resulting models were ultimately fine-tuned on the
Skeletics-152 data. In the second regime, we trained the
models from scratch on Skeletics-152 data. We found that
4s-ShiftGCN provides the best performance (Table 4). Pre-
training on NTU-120 provides a slight benefit compared
to training from scratch. Comparing the performance rates
in Tables 1 and 4, it is evident that skeleton-based action
recognition in the wild is significantly more challenging
given the inter/intra-category diversity and noise-inducing
factors (e.g. occlusion, lighting, uncontrolled background
context). In addition, we empirically observed that even the
best 3-D pose estimators routinely generate poorly localized
joint estimates, impacting performance.

As shown in the Table 5, the top-5 classes are all exercise
based activities which tend to have very low intra class
variability. On the other hand, sequences from the bottom-5
classes exhibit a lot of diversity and intra-class variability
(see Figure 8).

4.2 Skeleton-Mimetics

Human actions in the wild tend to be contextual. Such
context can be valuable and does influence traditional (RGB)
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Pose estimator | Base Model | Training set | Test set | Mean Accuracy
Kinetics-400 (50 classes) Mimetics (50 classes) 25.10
LCR-Net++ [14] SIP-Net [16] Kinetics-400 (full) Skeleton-Mimetics (23 classes) 21.57
Skeletics-152 (full) 57.37
VIBE MS-G3D Skeletics-152 (23 classes) Skel Mimetics (23 cl | 49.22
. Skeletics-152 (full) eleton-Mimetics (23 classes 56.11
4s-ShiftGCN | g1 letics-152 (23 classes) 51.10

TABLE 6: Performance summary on Skeleton Mimetics dataset.

action recognition approaches. However, this sometimes
causes context to excessively influence model predictions
for RGB models [11]. Skeleton-based approaches are not
affected by context. Context arises from two sources — ob-
jects involved in the action and background in which action
takes place. Actions in NTU-120 occur in the absence of
background context but objects associated with actions are
present. How do action recognition approaches fare when
objects are absent as well?

The Mimetics dataset [16] was introduced to study and
develop recognition models for out-of-context actions where
objects are absent. Derived as a subset of Kinetics-400
(an earlier version of Kinetics-700), Mimetics contains 713
RGB videos spread over 50 out-of-context action classes
performed by expert mimicry artists. The actions often
include gesture-like, exaggerated movements. We followed
the same data curation procedure as Skeletics-152 (Sec. 4.1)
to extract 3-D pose from RGB videos. Our final dataset,
Skeleton-Mimetics, contains 319 skeleton sequences across
23 classes (out of 50 present in Mimetics). An impor-
tant observation in Skeleton-Mimetics is that the actions
mimicked by actors without object interactions are often
exaggerated. Also, actors in Mimetics sometimes describe
the physically absent (virtual) object as part of the action
performance (e.g. opening a bottle, climbing a rope). Such
descriptions do not happen in physical object interaction
settings (e.g. Kinetics). Therefore, Skeleton-Mimetics dataset
poses unique challenges and is a novel frontier for skeleton
action recognition.

Following the procedure for its parent dataset [16], we
perform only evaluation on Skeleton-Mimetics. The results
can be viewed in Table 6. For reference, the results on
all 50 Mimetics classes and the 23 shortlisted by us are
presented in the top-most segment. In general, we also
observe that our models outperform existing approaches
by a significant margin. This is likely due to our choice of
powerful base models and the judicious curation of action
classes (Skeletics-152) used to train the base model.

5 DISCUSSION

In this section, we analyze the salient trends for skeleton
action recognition approaches and scenarios. The list of top-
5 and bottom-5 classes for various scenarios (datasets) can
be viewed in Table 7.

The first two columns correspond to the lab-based in-
door datasets - NTU-60 and NTU-120. It is interesting to
note that even the worst performing classes of NTU-60 have
accuracy in the range 50-70 % while the counterparts in
NTU-120 exist in a much lower range (32-60 %). One reason

is that the introduction of NTU-120 resulted in an increase
of action classes with subtle, finger-level movements which
impacts performance as mentioned previously (Section 3.3).

We have already seen that average performance in the
wild is relatively lower compared to lab-based settings
(Tables 1, 4). The results from Table 7 for Skeletics-152 reflect
this trend as well. Actions in the wild exhibit large intra-
class variability which affects even the top-5 classes (cf. top-
5 of NTU-120). Actions belonging to the bottom-5 classes in
Skeletics and Skeleton-Mimetics are characterized either by
high intra-class variability or by containing subtle, finger-
dominant motions which cannot be captured by existing
skeleton representations. Additionally, action sequences in
NTU-120 are somewhat choreographed, having a defined
starting pose and ending pose, but this is absent in Skeletics.

In terms of base architectures, MS-G3D provides the best
performance across various datasets except for Skeletics-
152, where 4s-ShiftGCN is the best performer. A pictorial
illustration of performance trends in the top-2 models for
selected action classes from Skeletics-152 and Skeleton-
Mimetics can be viewed in Figure 8. Interestingly, even for
the classes with lowest performance (bottom-3), the correct
prediction for Skeletics is often in the list of top-5 model
predictions. This is similar to the trend already observed for
NTU-120 (Section 3).

To gain an overall perspective about the datasets, both
existing ones and those introduced in our work, we sum-
marize some prominent attributes in Table 8. Note that
these cover both quantitative and qualitative aspects of the
datasets.

Overall, our analysis motivates the need for approaches
which can explicitly focus on boosting the performance for
classes ranked lowest. Another complementary requirement
arising from our analysis is for skeleton representations
which provide finger-level joint information.

6 METAPHORICS DATASET

The action datasets encountered so far can be characterized
as verb-based actions, since the action description is funda-
mentally incomplete without the verb. However, humans
also tend to associate non-verb words to actions, iconic
gestures being a well-known example [53]. In general, ac-
tions can be more abstract and used to convey metaphorical
concepts. One such scenario is the popular social game
of Dumb Charades. The game involves interactive and
adaptive guessing of a target 'phrase'(usually a movie title)
based on actions being performed by an 'actor'. Unlike
other datasets, nouns and adjectives can have action de-
pictions. Moreover, the vocabulary is open-ended, further
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SKELETICS

TOP-3 BOTTOM-3

MOUNTAIN CLIMBERS
Mountain climbers, Pumping fist, Bouncing ball,
Exercising arm, Exercising with an exercise ball
Mountain climbers, Exercising with an exercise
ball, Push up, Pushing car, Stretching leg

FALLING OFF CHAIR

Falling off chair, Exercising with an exercise ball,
Bouncing ball, Air drumming, Punching bag
Falling off chair, Situp, Falling off bike, Exercising with an
exercise ball, Bench pressing

A u ‘ 'ﬂi
CUMBIA

Pumping fist, Air drumming, Rebot dancing, Cumbia,

4.4

™ AW

CLEAN AND JERK
Clean and jerk, Snatch weight lifting, Squat,
Deadlifting, Bouncing ball Singing
Clean and jerk, Snatch weight lifting, Jumping Cumbia, Salsa dancing, Robot dancing, Zumba, Tap
jacks, Pull ups, Squat dancing

FRONT RAISES SWING BASEBALL BAT

Swinging baseball bat, Hitting baseball, Jumping into
pool, Golf driving, Hammer throw
Air drumming, Exercising with an exercise ball, Swinging on
something, Bouncing on bouncy castle, Bouncing ball

Front raises, Exercising arm, Stretching arm, Battle
rope training, Rope pushdown
Front raises, Exercising arm, Battle rope training,
Rope pushdown, Stretching arm

MIMETICS

BOTTOM-3

PLAYING GUITAR
Dribbling basketball, Punching person (boxing), Playing
violin, Playing guitar, Playing accordion
Dribbling basketball, Playing guitar, Playing accordion,
Playing saxophone, Playing violin

GOLF DRIVING
Golf driving, Playing tennis, Hitting baseball,
Catching or throwing frishee, Sword fighting
Golf driving, Hitting baseball, Playing tennis, Sword
fighting, Catching or throwing baseball

DEADLIFTING
Deadlifting, Clean and jerk, Playing saxophone,
Playing guitar, Playing accordion
Deadlifting, Clean and jerk, Catching or throwing
baseball, Catching or throwing frisbee, Hitting baseball

PLAYING TENNIS
Catching or throwing frisbee, Sword fighting, Punching
person , Playing tennis, Bowling
Playing tennis, Sword fighting, Golf driving, Catching or
throwing frisbee, Sweeping floor

CLEAN AND JERK READING BOOK

Playing saxophone, Playing accordion, Reading book,
Playing guitar, Punching person
Reading book, Playing guitar, Playing saxophone, Playing
violin, Playing accordion

Clean and jerk, Catching or throwing frisbee, Climbing a rope,
Dunking basketball, Catching o throwing baseball
Clean and jerk, Deadlifting, Climbing a rope,
Catching or throwing frisbee, Dunking basketball

Fig. 8: Sample skeleton sequences from Skeletics-152 and Mimetics-Skeleton. The sequences are chosen from top-3 and
bottom-3 classes in terms of performance achieved by best models on these datasets (see Tables 4, 6). The ground-truth
phrase is color-coded green. The top-5 predictions by 4s-ShiftGCN are coded pink and those by MS-G3D are coded blue.

| NTU-60 [MS-G3D] |  NTU-120 [MS-G3D] |

SKELETICS-152 [4s-ShiftGCN, 25-joint]

| SKELETON-MIMETICS [MS-G3D, 25-joint]

Staggering (99.64%) Hugging (99.64%) Mountain climber (exercise) (92.59%) Golf driving (93.33%)
Jump up (99.27%) Hopping (99.27%) Clean and jerk (89.25%) Deadlifting (90.00%)
Top-5 Falling down (98.54%) Put on jacket (99.27%) Front raises (87.37%) Clean and jerk (83.33%)
Put on jacket (98.53%) Walking towards (99.26%) Lunge (87.14%) Climbing a rope(78.57%)
Hopping (98.18%) Drink after cheers (99.13%) Jumping jacks (87.10%) Playing saxophone(75.00%)
Writing (57.41%) Staple book (32.57%) Falling off chair (11.5%) Playing tennis (15.79%)
Eat meal (71.43%) Make victory sign (54.02%) Cumbia (12.90%) Playing guitar (16.67%)
Bottom-5 Reading (72.43%) Hit with object (60.03%) Swinging baseball bat (14.29%) Reading a book (30.00%)
Sneeze or cough (77.17%) Blow nose (60.45 %) Passing American football (not in game) (16.28%) Bowling (38.46%)
Play with phone or tablet (78.75%) | Counting money (60.70%) Digging (17.39%) Catching or throwing baseball (38.46%)

TABLE 7: List of Top-5 and Bottom-5 classes in terms of accuracy for NTU-60, NTU-120, Skeletics-152 and Skeleton-
Mimetics datasets. The model associated with the best peformance is in brackets alongside the dataset name.

| NTU-120 SKELETICS-152  SKELETON-MIMETICS =~ METAPHORICS
No. of Classes 120 152 23 N.A.
No. of sequences 114,480 125,657 319 845
Action Vocabulary Fixed Fixed Fixed Open-ended
Action setting Lab/Scripted Wild Wild Wild /Scripted
Action environment Non-contextual Contextual Non-contextual Non-contextual
Typical action duration 1-10 seconds 10 seconds 1-10 seconds 1-3 seconds
Level of action explicitness High High Moderate Low
Camera Fixed Fixed /Moving Fixed Fixed

TABLE 8: Attributes of datasets (existing, newly introduced) in the paper.

compounding the action understanding challenge. To study
actions arising in this challenging scenario, we introduce
Metaphorics, a new dataset. The dataset contains videos
from two scenarios - dumb charades and interpretive dance.

Dumb Charades: We first source Dumb Charade game
episodes from YouTube. In the game episodes, one person
(‘actor’) acts out a target phrase word by word while the

other player tries to guess the target phrase solely from
actions performed by the 'actor'. For annotation, we use the
popular Anvil tool [54]. We annotate (i) target phrase (ii)
beginning and ending timestamps for each action segment
(iif) guess phrase associated with a segments (iv) episode
outcome ('correctly guessed','incorrect’). We also annotate
certain special actions such as number of words and the
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Fig. 9: An illustration of the annotation for a typical Charades episode using the Anvil interface. 'Action, Ground Truth,
Success/Fail, Special Actions ' are the annotation channels. In the 'Action'channel, 'rabb...(rabbit)'and 'zorro' are guesses
that the guessing player makes for the first two actions performed by the actor performs upon being revealed the ground
truth phrase 'the vampire diaries'. The segment labelled 'vampire' in the 'Ground Truth' channel is the entire duration
for which the actor tried to act out the word 'vampire'. The 'Success/Fail ' channel shows the success and failure for
corresponding guesses present in the 'Action' channel. Here, 'rabbit' and 'zorro' are both incorrect and hence they are
marked as 'F'. The 'Special Action'channel has tabs containing 'TV'and 'wo...(number of words)'. These are helping actions
to indicate that the phrase is the name of a TV show and the number of words in the phrase respectively.

current word number for a multi-word target phrase. These
special actions also include helping actions which the actor
uses to convey some basic information to the guessers such
as length of the word (long','short’). Figure 9 provides an
illustration of a typical annotation for a Charades video
episode.

adverbs
3.28%
prepositions_
2.92%
cardinal numbers
2.55%
modals
0.73%
conjunctions
0.73%

nouns
69.3%

Fig. 10: Part of speech distribution across the ground-truth
for Metaphorics dataset.

To characterize performance of action recognition ap-
proaches, we associate each correctly guessed word with its
corresponding temporal video slice ('clip’). After removing
clips where the actor is occluded, we obtain 716 such clips

across 28 game sessions.

Interpretative dance: We also source YouTube videos con-
taining interpretative dances of popular songs. In these
videos, the song is made audible only to the actor who
then proceeds to enact real-time actions corresponding to
song lyrics. In this case, the guesser needs to correctly guess
the song title based on the performed lyric-based actions.
Unlike Charades, the actor is required to act out the song
lyrics in real time which increases the challenge since the
actions are more fast paced than Charades. As part of the
annotation process, we align the lyric subtitle file of original
song and the video based on the starting point of the song
(in the video). Since the actions are performed in real time,
we obtain the action level annotations by aligning the audio
file of the video with the original audio file of the song. The
temporal extents of the dance are thus annotated into word-
level action clips. We obtain a total of 129 clips across two
full-length music videos.

In total, our Metaphorics dataset contains 845 video
clips. Compared to existing datasets, videos tend to be
‘bursty’ due to the extremely small temporal extents of the
actions. The dataset is very diverse in terms of the types of
action sequences and the labels present (see Figure 10).

As with other RGB datasets, we obtain corresponding
3-D skeleton sequences using VIBE [12]. To obtain a qual-
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FIGHT
Punching bag, Using a sledge hammer, Chopping wood, Krumping,
Pumping fist
Punching bag, Pumping fist, Air drumming, Punching person,
Krumping

10

SWIMMING
Jumping into pool, Disc golfing, Punching bag, Playing ping pong,
Bouncing on bouncy castle
Punching bag, Falling off bike, Playing ping pong, Falling off chair,
Pulling rope

BABY
Cutting cake, Tapping guitar, Contact juggling, Playing drums, Air
drumming
Playing drums, Tapping guitar, Air drumming, Contact juggling, Cutting
cake

TRAIN
Pumping fist, Singing, Dancing gangnam style, Combing hair, Shoot
dance
Pumping fist, Sword swallowing, Dancing gangnam style, Singing,
Riding mechanical bull

KILLING

Pumping fist, Bouncing ball, Combing hair, Dancing gangnam style, Air
drumming
Pumping fist, Air drumming, Bouncing ball, Catching or throwing
baseball, Catching or throwing softball

CAR
Falling off chair, Contact juggling, Opening door, Stretching arm,
Trimming shrubs

Stretching arm, Falling off chair, Contact juggling, Opening door,
Bouncing ball

Fig. 11: Sample skeleton sequences from our Metaphorics dataset. The ground-truth phrase is color-coded green. The top-5
predictions by 4s-ShiftGCN are coded pink and those by MS-G3D are color-coded blue.

itative assessment of top-performing skeleton-based mod-
els, we report top-5 predictions by MS-G3D, 4s-ShiftGCN
pre-trained on Skeletics-152 for sample videos from our
dataset in Figure 11. As mentioned before, target phrases
in Dumb Charades and interpretative dances are typically
enacted indirectly using metaphors. Models trained on other
datasets tend to map the skeleton sequence 'literally’ to
action labels. This explains some of the predictions seen in
Figure 11. For example, the model predictions for actions
shown in the first row seem related to the ground-truth tags
(fight', 'swimming'). The predictions for the other example
sequences reinforce the literal nature of current action pre-
diction models as mentioned previously.

7 CONCLUSION

In this paper, we have examined multiple existing and up-
coming frontiers in the landscape of skeleton-based human
action recognition. As an important facet of establishing
new frontiers for skeleton action understanding in the wild,
we curate and introduce three new datasets — Skeletics-152,
Skeleton-Mimetics and Metaphorics. Our experiments and
benchmarking reveal the capabilities and shortcomings of
state-of-the-art recognition models. In addition, the results
also highlight the bias induced by processing components

(e.g. RGB 3-D pose estimation) and the task paradigm (clas-
sification). We hope these findings and the newly introduced
datasets will spur the design of better models for 'in the
wild'actions — both contextual and non-contextual.

In our current work, we have not examined approaches
which map skeleton actions to lexical phrase representations
(cf. class labels) [55], [56]. We intend to study this promising
frontier as well in the future.
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