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Abstract

Localizing natural language phrases in images is a chal-
lenging problem that requires joint understanding of both
the textual and visual modalities. In the unsupervised set-
ting, lack of supervisory signals exacerbate this difficulty.
In this paper, we propose a novel framework for unsuper-
vised visual grounding which uses concept learning as a
proxy task to obtain self-supervision. The intuition behind
this idea is to encourage the model to localize to regions
which can explain some semantic property in the data, in
our case, the property being the presence of a concept in a
set of images. We present thorough quantitative and qual-
itative experiments to demonstrate the efficacy of our ap-
proach and show a 5.6% improvement over the current state
of the art on Visual Genome dataset, a 5.8% improvement
on the ReferltGame dataset and comparable to state-of-art
performance on the Flickr30k dataset.

1. Introduction

The recent advancements in computer vision have seen
the problem of visual localization evolve from using pre-
defined object vocabularies, to arbitrary nouns and at-
tributes, to the more general problem of grounding arbitrary
length phrases. Utilizing phrases for visual grounding over-
comes the limitation of using a restricted set of categories
and provides a more detailed description of the region of
interest as compared to single-word nouns or attributes.

Recent works have used supervised learning for the task
of visual grounding (i.e localizing) [8, 23, 3, 28]. However,
these approaches require expensive bounding box annota-
tions for the phrase, which are difficult to scale since they
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Figure 1. We exploit the presence of semantic commonalities
within a set of image-phrase pairs to generate supervisory signals.
We hypothesize that to predict these commonalities, the model
must localize them correctly within each image of the set.

are a function of scene context and grow exponentially with
the number of entities present in the scene. Furthermore,
bounding box annotations for phrases are subjective in na-
ture and might contain non-relevant regions with respect to
the phrase. This brings us to our main motivation, which is
to explore new ways in which models can directly harness
unlabelled data and its regularities to learn visual grounding
of phrases.

Given the lack of supervision, we develop a self-
supervised proxy task which can be used for guiding the
learning. The general idea behind self-supervision is to de-
sign a proxy task which involves explaining some regularity
about the input data. Since there are no ground truth annota-
tions, the model is trained with a surrogate loss which tries
to optimize for a proxy task, instead of directly optimizing



for the final task. A good proxy task improves performance
on the final task when the surrogate loss is minimized.

In this work we propose concept-learning as a substi-
tute task for visual grounding. During training, we create
concept batches of size k, consisting of k different phrase-
image pairs, all containing a common concept (as illustrated
in Figure 1). The proxy task for the model is to decode the
common concept present within each concept batch. We
induce a parametrization which, given the input text and
image, can generate an attention map to localize a region.
These localized regions are then used to predict the common
concept. Adopting concept-learning as our substitute task,
we align our proxy and empirical task, and by introducing
concept batches, we constrain the model to learn concept
representations across multiple contexts in an unsupervised
way.

Previous work on unsupervised visual grounding can
also be interpreted as having proxy losses to guide the lo-
calization. [28] use reconstruction of the whole phrase as a
substitute task for grounding. However, we hypothesize that
the objective of reconstructing the entire phrase can also be
optimized by learning co-occurrence statistics of words and
may not always be a result of attending to the correct bound-
ing box. Moreover, precise reconstruction of certain unin-
formative parts of the phrase might not necessarily corre-
late well with the correct grounding. This limitation is also
evident in other methods like that of [34] which uses a dis-
criminative loss on the whole phrase instead of generating
discrimination for the object to be localized. Many other
works like [25] and [36] only allow for word-level ground-
ing, thus making them average over the heatmaps to get a
phrase-level output. In contrast, our formulation does not
suffer from these limitations. Our proxy task deals with the
full phrase and forces the model to limit the attention to
areas which can explain the concept to be grounded, thus
aligning the objective better with the task of visual ground-
ing.

To evaluate the generality of our approach, we test our
approach on three diverse datasets. Our ablations and anal-
ysis identify certain trends which highlight the benefits of
our approach. In summary, the main contributions of our
work are as follows:

e We propose a novel framework for visual grounding of
phrases through semantic self-supervision where the
proxy task is formulated as concept learning. We in-
troduce the idea of a concept batch to aid learning.

e We evaluate our approach on the Visual Genome and
Referlt dataset and achieve state-of-art performance
with a gain of 5.6% and 5.8% respectively. We
also get performance comparable to the state-of-art on
Flickr30k dataset.

e We analyze the behavior of our surrogate loss and the

concept batch through thorough ablations which gives
an insight into the functioning of our approach. We
also analyze the correlation of performance for visual
grounding with respect to size of the bounding box
and possible bias induced due to the similarity of the
grounded concepts to the ImageNet labels.

2. Related work

Visual grounding of phrases. The problem of image-
text alignment has received much attention in the vision
community in the recent years. Early work like DeViSE [7]
focus on learning semantic visual embeddings which have
a high similarity score with single-word labels. Similar to
DeViSE, [27] learn a multi-modal alignment by construct-
ing a semantic embedding space, but instead of image-label
correspondences, they learn region-label correspondences
through a multiple-instance learning approach. [14] learn
a joint embedding space for a complete sentence and an
image using a CNN-LSTM based encoder and a neural
language model based decoder. Since the release of the
Flickr30k Entities dataset [24] and subsequently the Visual
Genome dataset [ 5], availability of bounding box annota-
tions of phrases has allowed many new attempts at the prob-
lem of visual grounding of phrases. [24] provide a base-
line for Flickr30k Entities dataset using Canonical Correla-
tion Analysis (CCA) to compute the region-phrase similar-
ity. [33] construct a two-branch architecture that enforces
a structure and bi-directional ranking constraint to improve
upon the CCA baseline. Another recent work from [3] de-
parts from the standard usage of bounding box proposals
and uses the primary entity of the phrase along with its con-
text to regress localization coordinates. They use a com-
bination of a regression, a classification and a reinforce-
ment learning based loss to train multiple networks in their
framework. Prior to our work, there are two papers which
take up the problem of unsupervised visual grounding of
phrases. [28] use reconstruction of the original phrase as
a substitute objective function to improve visual attention.
But the output predictions in their work is in the form of
bounding boxes which, as noted by [3], puts an upper bound
on the performance. In a more recent work, [34] use the
parent-child-sibling structure in the dependency tree of the
phrase along with a discriminative loss to generate weak
supervision and produce heatmap based outputs for local-
ization. Following [34], we too generate heatmap based
localizations, but use an objective which is better aligned
with the grounding task. Apart from these papers, certain
other unsupervised methods allow modification of their ap-
proach to enable evaluation on the phrase grounding task.
For example, [36] and [25] produce word-level heatmaps
and average them to get a phrase-level output. We compare
with all these works in section 5.

Self-supervised learning. Self-supervision can be seen as



learning by predicting or reconstructing some structured
property of the input data itself. For example, in unsu-
pervised models like auto-encoders [9, 32], the reconstruc-
tion of the input data is used as a proxy task. In the re-
cent years, many self-supervised approaches have been pro-
posed for learning visual representations. As categorized
in [16], most methods fall into the class of spatial, tem-
poral or colorization-based self-supervision. Spatial self-
supervision adopts explaining of a spatial characteristic of
an image as a proxy task. Spatial context prediction [4],
inpainting [22], solving jigsaw puzzles [20] and predicting
segmentation maps [21], all belong to this category. Tem-
poral self-supervising methods model the correlations be-
tween video frames as a way to generate supervising sig-
nals. Works like [6, 19, 29] model temporal coherence in the
frames as supervision while others like [26, 31] use future
frame prediction as a proxy task. Colorization as a proxy
task has been experimented with in recent papers of [16]
and [37]. In the natural language domain, unsupervised
learning of word embeddings by [18] is also an example of
self-supervision where prediction of word context is used as
a proxy task. Finally, both previously proposed methods for
unsupervised visual grounding can also be viewed as self-
supervised. [28] uses reconstruction of one modality using
another as a proxy task while [34] exploits regularities in the
phrase-structure in addition to a contrastive loss function to
create self-supervision. Most visual proxy tasks like puz-
zle solving and inpainting, given their formulation, should
ideally learn some high-level representation at the object or
scene level. But as noted in the work of [1], self supervised
representations typically end up learning low-level features
like texture detectors. To the best of our knowledge, we
are the first ones to formulate a self-supervised proxy task
which is semantic in nature.

3. Grounding semantic  self-

supervision

through

Unsupervised learning can be interpreted as learning an
energy function which assigns lower energy value for data
points similar to the training set while assigning high energy
value to others. In a self-supervised environment, the role
of proxy task is to learn the function that pulls down the
energy at the data manifold. With this in mind, we define
our proxy task for visual grounding.

3.1. Proxy task formulation

Our model is trained for the proxy task of concept-
learning. A concept is defined as the entity which is to be
grounded in the image. For example, in the phrase ‘white
towel on the counter’, the highlighted word ‘fowel’ is the
concept. We observe that in most phrase-image pairs, the
localization refers to some concept which explicitly occurs
in the phrase as a single word. Though there are some

phrases like ‘a calm blue water body’ where the concept
is multi-word entity, such phrases occur rarely or can be ap-
proximated with a single word. We hypothesize that if we
induce a parametrization for localization of the phrase and
use the localized regions to predict the concept present in
an image, the parametrization will converge to the ground
truth localization of the phrase. Given this proxy task, we’re
faced with two main challenges: 1) How do we identify the
concept in a phrase? and 2) How do we learn concept rep-
resentations in an unsupervised setting?

For the first part, we note that identifying a concept
which is to be grounded in a phrase, is a problem from
the linguistics domain. We can imagine an external sys-
tem which takes in as input the phrase and returns the con-
cept. Assuming the concept is a single-word entity and ex-
ists within the phrase, a naive system can randomly pick a
word from the phrase. A more sophisticated sampler can
annotate and use the POS tags of the phrase to return the
concept. Since most concepts to be localized are nouns, a
POS tagger should perform better than random sampling of
words. Though better techniques can be employed for con-
cept identification, for the sake of simplicity, we choose the
POS tagger to find all nouns in a phrase and randomly select
one of them as the concept.

For the second problem, we introduce the notion of a
concept batch and learn the concept-prediction task with
such batches. A concept batch, as shown in Figure 2, is
one training instance for our model, which itself consists
of k phrase-image pairs, all containing a common concept.
The proxy task is now re-formulated as jointly decoding the
common concept using all k localized feature representa-
tions in addition to independently decoding the same con-
cept. The intuition behind training with a concept batch
is that for decoding the common concept, k phrase-image
pairs should encode a localized representation which is in-
variant to the difference in context across the & pairs. On the
other hand, the proxy task of decoding independent concept
(for each image in the batch) ensures two things: a) Indi-
vidual and common representations are consistent b) Model
cannot find a shortcut by using only few inputs from the
concept batch to decode the common concept.

It is important to note that using a concept batch for
learning along with a noun-based concept can be interpreted
as generating weak supervision, albeit noisy in nature. In-
stead of an imperfect concept-identifier, if an oracle could
generate a concept which always corresponded to the actual
region to be grounded, then this would convert the unsu-
pervised problem to a weakly supervised one. But since
the concept identifier might choose the wrong concept or
the actual entity to be grounded is not present as a sin-
gle word in the phrase, the concept-identifier can generate
noisy gradients by selecting concepts which might not have
anything to do with the localized region. For example, for
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Figure 2. An overview of our model for unsupervised visual grounding of phrases. The encoder takes in a set of image-phrase pairs,
indexed by 4, all sharing a common concept. The encoder embeds the image and the phrase to V¢ and t* respectively. These features are
used to induce a parametrization for spatial attention. Next, the decoder uses the visual attention map to predict the common concept. In
addition, the decoder also predicts the common concept independently for each pair (¢). For details, see Section 3.2.

the phrase ‘air-crew boarding the plane’, the region to be
grounded corresponds to the word ‘air-crew’ But the sub-
optimal concept-identifier might select ‘air’ as the concept,
which can introduce noise in the weak supervision. Nev-
ertheless, since the same image-phrase pair can be chosen
with different sampled concepts during training, it is this
random sampling of concepts which ensures that the model
doesn’t only learn a simple concept-identifier, but also gen-
erates information which can help it discriminate between
the same concept in different contexts.

3.2. Encoder-Decoder model

We adopt an encoder-decoder architecture for learning
to ground as illustrated in Figure 2. The encoder uses an
attention mechanism similar to [35] using the joint features
from visual and textual modalities. To maintain fair com-
parison with previous work, the image features are extracted
from the last convolution layer of a VGG16 model [30] pre-
trained on ImageNet. Similarly, the phrase features are ex-
tracted from a language model trained on next word predic-
tion on the Google 1 Billion dataset [2] and the MS COCO
captions dataset [17]. As done in [34], both the model
weights are frozen during training and aren’t fine tuned. For
the i*" index in the concept batch, given visual features from
VGG16, Vi = fyae(I?) and textual features from the lan-
guage model t* = f5/(P?), the attention over visual re-
gions is given by:

i = softmaz(fjoind (V' 1)). 1)

fioint (V' t7) = 0 (0,(Dg(2,([V', £7])))), 2

where Vi € R™n, ¢t € R £,,.,(Vi ) € R,
[V t'] is an index-wise concatenation operator (over the
first dimension) between a matrix V* and a vector t* result-
ing in a matrix of size ((m +1) x n). ®(-) corresponds to a
hidden layer of a neural network and is defined as:

®,(X) = ReLU(W,X + b,), 3)

where ReLU (z) = max(z,0), W, € RP*4 b, € RPX!
and X € R¥*", Here n is the number of regions over which
attention is defined and d is the dimensionality of each re-
gion with respective to X.

Thus, we use a 4 layered non linear perceptron to cal-
culate attention for each of the n regions '. In contrast
to [28], we compute attention over the spatial regions of the
last feature maps from VGG16 instead of computing it over
bounding boxes. The four ®(-) layers gradually decrease
the dimensionality of the concatenated joint features from
(m+1) —p—q—r — swhere s = 1. It is important
to note that the attention module is shared across all V* and
t?. Thus the encoder is common for all pairs in the concept
batch. Next, we describe a decoding mechanism to predict
the common and independent concept.

Given the attention weights fi,, € R*™, the visual
attention for common concept prediction (f,.) is computed
by taking the weighted sum with the original visual features.

k
foac = Z f;ttn‘/Z (€]
=1

We find that aggregating the visual attention across regions,

I'Since we compute attention over VGG feature maps, n.=7 x 7



Dataset Statistics Value

Visual Genome ReferIt Flickr30k
No of phrases per image 50.0 5.0 8.7
No of objects per image 35.0 - 8.9
Word count per phrase 5.0 34 2.3
Noun count per phrase 2.2 1.8 1.2

Table 1. Phrase-region related statistics for datasets used in evalua-
tion. The numbers reflect the relative complexity of these datasets.

which is commonly done in the past attention literature de-
grades performance for our task. Therefore we retain the
spatial information and only aggregate the features across
the concept batch.

Similarly, the visual attention for independent concept
prediction, f? . is given by the element-wise product of the

» tvat

attention weights and visual features.
fas = faren V' ®)

Finally, both the attended features are flattened and sepa-
rately connected to a fully connected layer, leading to a soft-
max over the concepts. In practice, we also down-sample
the dimensionality of f’_; using 1 * 1 convolutions before

we aggregate and flatten the features.
Ycommon = Softma:r(wvacfvac + bvac)~ (6)

ygndependent - Softma’x(wvaifzvai + bvai)7 (7)

where Y common 1S the network prediction for the common
concept and Yy, jonendent 1S the independent concept pre-

diction for the 7*" index in the concept batch.

3.3. Surrogate loss

Our surrogate loss consists of two different terms, one
corresponding to the common concept prediction and the
other for independent concept prediction. Since we decode
the visually attended features to a softmax over the con-
cept vocabulary, we use the cross-entropy loss to train our
model. Given the target common concept vector y; for a
concept batch of size k, the proxy objective function is:

Ltotal = L(Y(;ommon7 yt) +

El i

k
Z L(andependenta Yt) (8)
=1
where L(-) is the standard cross-entropy loss.

4. Experimental setup

In this section, we elaborate upon the implementation
details, employed datasets, evaluation metric and baselines.

4.1. Implementation details

An ImageNet pre-trained VGG16 and a Google 1 Bil-
lion trained language model are used for encoding the image

and the phrase respectively. Both the visual and textual fea-
ture extractors are fixed during training. Before the atten-
tion module, both the features are normalized using a batch-
normalization layer [11]. The concept vocabulary used for
training with the softmax based loss is taken from the most
frequently occurring nouns. Since the frequency distribu-
tion follows the Zipf’s Law, around 95% of the phrases are
accounted for by the top 2000 concepts, which is used as the
softmax size. Another implication of this distribution is that
random sampling of instances skews the number of times a
concept is seen during training. Therefore instead of creat-
ing mini batches by randomly sampling instances, we ran-
domly sample a concept from the concept vocabulary and
using this, we randomly sample % phrase-image pairs where
this word occurs, thus creating our concept batch. In the en-
coder, the values of p, g, r, s from Equation 2 are taken as
512,128, 32, 1 respectively. We train our models using the
Adam optimizer [|3] with a batch size of 16.

4.2. Evaluation

Dataset. We test our method on the Visual Genome [15],
the ReferltGame [12] and the Flickr30k Entities [24]
datasets and there exist few important qualitative and quan-
titative differences between them. Visual Genome has a
longer average description length than Referlt which is in
turn higher than Flickr30k. As mentioned in [15], Vi-
sual Genome and Referlt include description for regions
which are less salient and hence harder to localize unlike
Flickr30k. On the other hand, Flickr30k provides multi-
ple bounding box annotations for different description in-
stances within an image. So for a phrase, ‘trees behind
the lake’, all instances of ‘trees’ are annotated separately
in Flickr30k whereas Visual Genome only annotates a sin-
gle instance of the description. Unlike the others, Referlt
usually only refers to a specific object instance. Table 1
shows some important dataset statistics which hint towards
the complexity of the datasets. For example, notice that in
Flickr30k, the average phrase length is just 2.3 words and
average noun count is 1.2 which would mean that the region
to be localized in most cases is directly present as a single
word, thus changing the problem to an almost weakly su-
pervised setting. To ensure fair comparison with the previ-
ous work of [34], we use the images from the validation set
of MS-COCO which have region annotations in the Visual
Genome dataset as our test set. We use remaining images
of the Visual Genome dataset for training. For Referlt and
Flickr30k, we use the test sets for evaluation.

Evaluation metric. Since our model generates localiza-
tion in the form of a heatmap, we evaluate our model with
the pointing game metric [36], similar to the previous work
of [34, 25]. Pointing game measures how accurate the most
confident region in the predicted heatmap is with respect to
the ground truth bounding box. For a given input image-



Method Accuracy
Visual Genome ReferIt (mask) Referlt (bbox) Flickr30k

Random baseline 11.15 16.48 24.30 27.24
Center baseline 20.55 17.04 30.40 49.20
VGG baseline 18.04 15.64 29.88 35.37
Fang et al. [5] 14.03 23.93 33.52 29.03
Zhang et al. [36] 19.31 21.94 31.97 42.40
Ramanishka et al. [25] - - - 50.10
Xiao et al. [34] 24.40 - - -
Semantic self-supervision (Ours) 30.03 29.72 39.98 49.10

Table 2. Phrase grounding evaluation on 3 datasets using the pointing game metric. See Section 5 for mask vs bbox explanation for Referlt.

phrase pair, the predicted localization heatmap is consid-
ered a Hit if the pixel with the maximum value lies within
the bounding box, else it’s considered a Miss. Therefore it
purely evaluates the spatial accuracy of the heatmap instead
of measuring the extent of localization. The pointing game
accuracy is defined as the fraction of correct localizations
out of the total testing instances, i.e. % For an
image of size 224 x 224, the 7 x 7 attention map is projected
back using a stride of 224 /7. Thus each of the 49 grids cor-
respond to a 32 x 32 region in the original image space and
the center point of the highest activated grid is chosen as the
maximum value for the pointing game. For the purpose of
visualization, we use bilinear interpolation of the attention
weights to generate image-sized heatmap.

Baselines. We compare the performance of our approach
with multiple baselines and previous methods. The first
is a random baseline which mimics the attention-based lo-
calization of our setup, but chooses the region randomly.
This baseline randomly chooses one out of the 49 regions.
The second baseline is taken from [25, 36] where the cen-
ter point of the image is taken as the max for the pointing
game. Note that this baseline can produce skewed results in
datasets where the phrase to be localized has a center-bias,
which is what we observe with Flickr30k (as previously
noted in [25]). We also use a visual-only baseline which
selects the maximum pixel value for the pointing game on
the basis of pre-trained visual features. For this, we use the
feature maps from the last convolution layer of an ImageNet
pre-trained VGG16 and average the channel activations to
geta 7x 7 map. We then choose the maximum activated grid
for the pointing game. Apart from these three baselines,
we also compare against weakly supervised works of [5]
and [36] who use an MIL based approach and an excitation
backprop scheme respectively for localizing single-word la-
bels. As done in [36, 25], we average the heatmaps gener-
ated for tokens present in their dictionary for obtaining the
final heatmap. Finally, we also compare against the more
recent unsupervised works of [34, 25].

5. Results

We report the comparison of our method with the base-
lines and previous methods in this section. Table 2 sum-

marizes the performance of our best model on the three
datasets. To highlight our generalization ability, we train
the proposed model on Visual Genome since it’s the largest,
more complex dataset out of the three and directly evaluate
on the test set of all three datasets without fine tuning.
Visual Genome. The random baseline yields the least per-
formance as expected. Surprisingly, the VGG16 baseline
fares decently well given that it does not take any phrase-
related information into account. We believe this is due
to the phrases often referring to some object in the image
which the VGG16 features are already trained for recogniz-
ing. Our model outperforms all the baselines and improves
upon the previous state-of-art work by [34] by 5.63%.
ReferItGame. [10] provide segmentation mask for each
phrase-region pair and use them to obtain a bounding box
(bbox) which envelopes the mask completely. They then
use this for their evaluation on Referlt. Though we pro-
vide evaluation for both bbox and mask settings, we believe
that the mask based annotations are more precise and accu-
rate for measuring localization performance. Since both Vi-
sual Genome and Referlt contain phrases which: a) refer to
very specific regions like ‘red car on corner’ and b) refer to
non-salient objects like ‘white crack in the sidewalk’, both
datasets have low performance with baselines like center
and VGG. Our model outperforms all baselines on Referlt
too, improving upon the MIL based approach by 5.79%.
Flickr30k Entities. Flickr30k dataset has higher perfor-
mance across methods as compared to the other two datasets
due to the two points mentioned in the previous subsection
along with the fact that Flickr30k annotates all bboxes re-
ferring to a phrase as opposed to the other datasets which
only have a one-to-one phrase-bbox mapping for an image.
Our model outperforms most baselines and is just 1% less
than the state-of-art work of [25].

6. Analysis of the approach

In this section, we examine the effects of changing the
hyperparameter k (concept batch size), the significance of
the two surrogate losses and the effect of the concepts with
which our model is trained, followed by some qualitative
outputs of our model. All the analysis in the following sec-
tions is done on the Visual Genome dataset.



Loss Type Concept Batch Size (k)
k=3 k=5 k=7 k=9

Independent concept only 27.15 2727 28.01 28.05

Common concept only 27.52 2894 29.18 27.90

Independent and common concept  28.25 28.91 29.89 30.03

Table 3. Analysis of different surrogate losses while varying the
concept batch size.

6.1. Concept batch size and surrogate loss

We perform ablative studies on the two loss terms and
the concept batch size k£ and observe certain patterns. For
the discussion in this section, we use the shorthand IC' (in-
dependent concept only), C'C (common concept only) and
ICC (independent and common concept) for the three loss
types from Table 3. We train our model with the IC' and
CC loss separately, keeping everything else in the pipeline
fixed. This means that the sampling procedure for a con-
cept batch remains intact for all loss types, even when there
is no common concept being decoded. For all three set-
tings, we vary the concept batch size k and observe some
interesting trends. As shown in Table 3, for a fixed loss
type, the performance increases as we increase k, the CC
loss being the exception to this trend. The performance for
CC loss increases up to k = 7, but goes down with k = 9.
This points to a common problem with self-supervised tech-
niques where the model finds a shortcut to reduce the loss
value without improving on the performance. With only the
common concept loss, the network can learn a majority vot-
ing mechanism such that not all k£ concept representations
need to be consistent with the common concept. Thus, the
network can easily optimize the proxy objective, but is not
forced to learn a robust grounding for all instances in the
concept batch. This is corroborated with the fact that dur-
ing training, we also observe a faster convergence of CC
loss for k = 9 than the lower concept batch sizes. This
empirically highlights the importance of the IC' loss term.
It also highlights the usefulness of the concept batch for-
mulation since it improves performance in general. For a
fixed k, we also observe an expected pattern. IC' loss usu-
ally achieves the least performance out of the three, with
CC loss coming in next. The best performance is obtained
with both the losses together. Lastly, we point out the slight
increase in performance for IC' loss as we increase k. We
believe that even though this loss type does not jointly de-
code the common concept explicitly, within a training mini-
batch, the gradients which are backpropagated are from the
average loss of a concept batch having a common concept
(see second term of Equation 8). Thus training with IC
loss is not exactly the same as training with a batch of inde-
pendent image-phrase pairs and simply decoding a concept
from the phrase.

Pearson's Correlation Coefficient = 0.85 Pearson's Correlation Coefficient = -0.02
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Figure 3. Variation of performance with respect to bounding box
area and similarity of concept with ImageNet classes.

6.2. Performance variation across concepts

To better understand the variation in performance across
the chosen concepts, we also compute the performance
across each of the 2000 concept classes. We observe a
trend in the performance with concepts like ‘suitcase’, ‘air-
planes’ and ‘breakfast’ getting close to 70% accuracy while
concepts like ‘screw’, ‘socket’ and ‘doorknob’ getting less
than 5%. We investigate two possible causes for this vari-
ability. The first is the average bounding box size associ-
ated with each of these concepts. The second is the exist-
ing knowledge of concept labels present in the ImageNet
classes which our model obtains through the VGG16 based
visual encoder. Figure 3 (left) shows the variation of per-
formance with respect to the average bounding box area for
each concept. We observe a strong positive correlation be-
tween the two variables, explaining the lower performance
for concepts with small sizes. For computing the correlation
of concept performance with the knowledge from ImageNet
classes, we use a trained word2vec model [ 18] and compute
the maximum similarity of a particular concept across all
the ImageNet classes. We plot this in Figure 3 (right) which
illustrates no noticeable correlation between the two vari-
ables. This further strengthens the case for our approach
since we observe that our concept performance isn’t biased
towards the labels present in ImageNet.

6.3. Improvement over a noun-based concept detec-
tor

We also conduct a small experiment to verify that the
model isn’t simply working as a noun-based concept de-
tector instead of modeling the complete phrase. For this,
we replace the phrase with a single noun randomly sampled
from the phrase, as the input to the textual encoder. We note
a 4.7% drop in performance on Visual Genome for k& = 5.
Since training of the original model enforces only concept-
level discrimination, it’s interesting to see that presence of
complete phrases is useful for performance. This shows that
our model is much more than a word-level concept-detector
and utilizes the full phrase for grounding.
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Figure 4. Qualitative results of our approach with different image and phrase pairs as input. More results and visual error analysis shown

in supplementary material.

6.4. Qualitative analysis

In this section we show some of our qualitative results on
the Visual Genome dataset. Figure 4 shows the localization
heatmap we obtain from our attention weights. It also shows
the VGG16 activation heatmaps obtained by averaging over
the channels. We find that our model doesn’t simply gen-
erate a phrase-independent saliency map, but focuses even
on non-salient regions if the phrase refers to it. This is also
evident through comparisons with the VGG maps. We pro-
vide many more examples and typical failure cases in the
supplementary.

7. Conclusion

We propose a novel approach for visual grounding of
phrases through a self-supervising proxy task formulation.

Our qualitative and quantitative results point to the fact that
many semantic regularities exist in the data which can be
exploited to learn unsupervised representations for a variety
of tasks. Thorough analysis of our model reveals interesting
insights which may be useful for future research efforts in
the area. Using our approach, we achieve state-of-art per-
formance on multiple datasets. Finally, we note that as the
complexity of these visual tasks increase, the role of lan-
guage can become pivotal in learning richer representations,
the task of unsupervised grounding being one of the case in
point.
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Supplementary Material

8. Introduction

In the supplementary material, we qualitatively highlight
the following:
e How our generated heatmap differs from the VGG16
features which are used as visual input to our model.

e How the alignment of the chosen ground truth con-
cept, the predicted concept and the actual entity to be
grounded affects the quality of the phrase grounding.

9. Comparison with VGG16 feature maps

Our model uses a pre-trained VGG16 model to extract
feature maps for our visual encoder. In this section we show
that even though the visual features are fixed during train-
ing, our model learns attention maps which are spatially dis-
tinct from the VGG16 feature maps used as input. We use
the channel averaged VGG16 baseline model for visualiz-
ing the VGG16 heatmap. Figure 5 shows the comparison
between this and our predictions. As evident from the ex-
amples, our method produces attention maps which can lo-
calize regions which were weak or even non-existent in the
activations of the input maps. This shows that our model
doesn’t simply amplify the activations present in VGG16
channels but learns a phrase dependent attention map.

10. Alignment of the selected, predicted and
true concept

In this section, we qualitatively cover four cases for sum-
marizing the effects of the selected concept and the pre-
dicted concept and how these two relate to what the actual
entity to be localized was. Note that our proxy loss is trained
with the selected concept as the ground truth and predicts
the common concept and independent concept. In Figure 6,
common concept, independent concept and selected concept
are denoted by red, blue and gray blocks respectively. For
the remainder of this section we use the term true concept
to refer to the actual entity to be localized.

First row: Correct grounding of phrase. In cases where
the selected concept and all predicted concepts coincide
with the true concept to be localized, the generated heatmap
produces a good localization of the phrase. This is shown
in the first row of Figure 6 with the concept ‘headlight’ and
‘picture’.

Second row: Incorrect grounding due to wrong concept-
selection. In cases where the selected concept is incorrect,
ie. it’s not the same as the true concept, even with the cor-
rect decoding, the localizations produced are wrong. For
example in the second row of Figure 6, instead of selecting
‘building’ and ‘switch’, the incorrect selection of ‘top’ and
‘wall’ leads to localization which is correct for the selected
ground truth, but incorrect for the phrase.

Third row: Incorrect grounding due to wrong concept-
learning. In these cases, the selected concept is correct but

the decoder predicts incorrect common/independent con-
cepts, due to which the final phrase grounding is affected.
For example in the third row of Figure 6, even though ‘win-
dow’ and ‘tire’ are correct selected concepts, the concept-
learning inaccurately predicts ‘glass’ and ‘car/vehicle’
which in turn generates a localization corresponding to the
predicted concept.

Fourth row: Incorrect grounding due to challenging
phrase-image pairs. Lastly, there are some cases where
the entity to be localized is either ambiguous or simply too
hard (due to a small size in the image or due to a compli-
cated phrase structure). In these cases, the grounding is in-
correct across the different possibilities of alignment of the
aforementioned concept. For example in the fourth row of
Figure 6, the concept ‘pole’ exists at multiple visual loca-
tions while in the other example, the concept ‘lighter’ oc-
cupies a very small space in the visual region.

11. Additional outputs from our model

In Figure 7, the first two rows show a typical concept
batch with ‘ice’ and ‘television’ as the respective common
concepts. The third row shows some small and challeng-
ing entities to be grounded. Finally, the fourth and fifth
row highlight the ability of the model to output completely
different heatmaps for the same image having differing
phrases. The grounded heatmap appear to identify regulari-
ties like localizing ‘television’ towards the periphery near
a wall or localizing ‘phone’ near the hands of a person.
We also note that since the concept batch is trained with
concepts from very diverse contexts, the model is forced to
learn high-level semantics about the image (see first row).
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Figure 5. Comparison of VGG16 feature maps with our generated attention maps.
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Figure 6. The figure shows how the quality of output heatmap changes with the alignment of the selected concept, predicted concept and
the real entity to be grounded. For some sampled concept batch, the gray box refers to the chosen common concept, the red box refers to
the predicted common concept and the blue box refers to the predicted independent concept. See section 10 for details about each row.
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Figure 7. Additional qualitative examples



