
A Flexible Neural Renderer for Material Visualization
Aakash KT
IIIT Hyderabad

Parikshit Sakurikar
IIIT-H, DreamVu Inc.

Saurabh Saini
IIIT Hyderabad

P. J. Narayanan
IIIT Hyderabad

Figure 1: Shaderball visualizations of four selected materials produced by our network are shown for two lighting conditions:
Left - Daylight and Right - Sunset. Scene adopted from ©eMirage (https://www.emirage.org/).

ABSTRACT
Photo realism in computer generated imagery is crucially depen-
dent on how well an artist is able to recreate real-world materials
in the scene. The workflow for material modeling and editing typi-
cally involves manual tweaking of material parameters and uses
a standard path tracing engine for visual feedback. A lot of time
may be spent in iterative selection and rendering of materials at
an appropriate quality. In this work, we propose a convolutional
neural network that quickly generates high-quality ray traced ma-
terial visualizations on a shaderball. Our novel architecture allows
for control over environment lighting which assists in material
selection and also provides the ability to render spatially-varying
materials. Comparison with state-of-the-art denoising and neural
rendering techniques suggests that our neural renderer performs
faster and better. We provide an interactive visualization tool and
an extensive dataset to foster further research in this area.

CCS CONCEPTS
• Computing methodologies→ Rendering; Ray tracing.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SA ’19 Technical Briefs, November 17–20, 2019, Brisbane, QLD, Australia
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6945-9/19/11. . . $15.00
https://doi.org/10.1145/3355088.3365160

KEYWORDS
Ray Tracing, Global Illumination, Deep Learning, Neural Rendering

ACM Reference Format:
Aakash KT, Parikshit Sakurikar, Saurabh Saini, and P. J. Narayanan. 2019. A
Flexible Neural Renderer for Material Visualization. In SIGGRAPH Asia 2019
Technical Briefs (SA ’19 Technical Briefs), November 17–20, 2019, Brisbane,
QLD, Australia. ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/
3355088.3365160

1 INTRODUCTION
Ray tracing has emerged as the industry standard for creating photo
realistic images and visual effects, which is achieved by accurate
modeling of the behavior and traversal of light alongwith physically
accurate material models. Achieving photo realism is however a te-
dious process. Ray tracing is a computationally expensive operation
while physically accurate material modeling requires expertise in
fine-tuning of parameters. Visualization of edits during fine-tuning
is therefore a time consuming process. An artist might thereby end
up spending a lot of time in a slow and iterative visualization loop.

In this paper, we present a neural network architecture that can
quickly output high-quality ray-traced visualizations to assist in
material selection. Our work extends the state-of-the-art in neural
rendering by providing the ability to deal with a large range of
uniform as well as spatially-varying materials with flexible envi-
ronment lighting. We render on a fixed shaderball geometry which
is complex enough to encode fine interactions between light and
the underlying material.

We evaluate our system quantitatively and also compare quali-
tative render quality with existing neural rendering frameworks.
We also conduct a user study to illustrate the benefit of providing

https://doi.org/10.1145/3355088.3365160
https://doi.org/10.1145/3355088.3365160
https://doi.org/10.1145/3355088.3365160

SA ’19 Technical Briefs, November 17–20, 2019, Brisbane, QLD, Australia Aakash KT et al.
40

0x
40

0x
64

20
0x

20
0x

12
8

10
0x

10
0x

25
6

50
x5

0x
51

2

25
x2

5x
51

2

50
x5

0x
51

2

10
0x

10
0x

25
6

20
0x

20
0x

12
8

40
0x

40
0x

64

40
0x

40
0x

3

32

128

256

625

Fully connected + Tanh

3x3 conv + BN + ReLU

3x3 conv + BN + Sigmoid

Input / Output

3x3 deconv + BN + ReLU

4

40
0x

40
0x

12

40
0x

40
0x

3

Skip connections

3D Sun direction and
turbidity value

Figure 2: Our neural renderer that uses an autoencoder in-
spired from U-Net which renders the shaderball under a
given environment lighting specified by the sun direction
and turbidity value. The material of the shaderball is speci-
fied by four screen space material maps.

control over lighting for material selection. We show that our pro-
posed system is fast and therefore helps in real-time visualization
of materials. Our method also compares favourably with denoising
frameworks in producing faster and better rendered images. In
summary, the following are the contributions of our work:
� Aneural renderer for rendering uniform and spatially-varying
materials, with control over environment lighting.
� An interactive tool1for material visualization and editing
and a large-scale dataset of uniform and spatially-varying
material parameters with corresponding ground truth ray-
traced images.

2 RELATEDWORK
The use of neural networks for rendering has gained popularity in
the recent past. Existing approaches to neural rendering deal with
denoising low sample-count Monte-Carlo renders, image-based
relighting or neural rendering of materials on a fixed geometry,
which we briefly discuss in the context of our contributions.

Data-driven methods for denoising Monte-Carlo (MC) renders
have been used to produced ray-traced quality images in real-time
[Chaitanya et al. 2017; Lehtinen et al. 2018]. We show that our ap-
proach produces better visualizations than denoising a low sample
count image of the material. Furthermore, our network has a better
overall run-time than a denoiser, which is limited by the speed of
the low sample count render.

Neural networks have also been used for relighting an image
[Ren et al. 2015; Xu et al. 2018]. While not directly related to our
work, we take inspiration from such architectures to provide control
over environment lighting in the rendered material output.

Neural rendering formaterial visualization as proposed by Zsolnai-
Fehér et al. [2018] is closely related to our work. We extend this
work by enabling the use of spatially-varying materials, which is
necessary for photo realism, along with control over environment
lighting. Additionally, our proposed network is much smaller and
hence runs faster in a real-time setting.

We refer the reader to our arXiv paper [KT et al. 2019] for more
details on our proposed method, the user study and additional
results and comparisons. The source code and training dataset can
be found at the project page1.
1https://aakashkt.github.io/neural-renderer-material-visualization.html

3 A NEURAL RENDERING MODEL
The incoming radiance at each pixel x of a ray-traced 2D image
can be modeled as:

I „x” =

„
Ω

fr „px ;ωi ;ωx ”L„px ;ωi ”„ωi � n”dωi ; (1)

where px is the 3D point corresponding to the 2D pixel x, ωi is the
incoming light direction at x, ωx is the direction towards pixel x
from point px , L„px ;ωi ” is the radiance of incoming light at point
px from direction ωi , Ω is the set of directions on the upper hemi-
sphere and fr is the Bi-directional Reflectance Distribution Function
(BRDF). The choice of fr determines the material model in use. The
hyperparameters of fr describe the surface and material properties
of the geometry, which we refer to as the material parameters (mf).

We use the Cook-Torrance material model (fr) that is based on
the microfacet theory and accurately models surface properties. We
make use of a large SVBRDF dataset for the Cook-Torrance model
which is publicly available [Deschaintre et al. 2018].

We parameterize the environment lighting in the scene using the
[Hosek and Wilkie 2012] sky model. Such a sky model simulates
realistic and plausible environment lighting given only the sun
direction ωs and turbidity (cloudiness) c as input. It encodes large
variations in outdoor lighting using only four parameters.

Given the Cook-Torrance material parametersmf , the incoming
sun direction ωs and turbidity c , the solution of Eq. (1) is estimated
by a convolutional neural network ϕ as:

I „x” = ϕ„x ;mf ;ωs ; c”: (2)

4 IMPLEMENTATION DETAILS
4.1 Training Dataset
We generate a synthetic dataset of 50,000 material parameter maps
and ground truth render pairs, containing equal number of spatially-
varying and uniform parameter maps. For uniform maps, we ran-
domly choose one value for all the four parameters (Diffuse, Specu-
lar, Roughness, Normal), and replicate it along the width and height
(400x400) to get a uniform parameter map. We use SVBRDF tex-
tures from dataset of [Deschaintre et al. 2018] for spatially-varying
maps. For each material map, we sample 5 random sun directions
on the upper hemisphere with random turbidity value, and render
the scene at 150 samples-per-pixel (spp).

The input to the network is the screen space map of each ma-
terial parameter map, along with a 3D vector encoding the sun
direction and turbidity. We construct these screen-space maps by
UV-mapping the shaderball, and rasterize the scene with each ma-
terial map as the base texture (Fig. 3). We evaluate the loss of the
network’s output with respect to the ray-traced 150 spp ground
truth for the given environment lighting.

4.2 Network Architecture
Fig. 2 shows our neural rendering architecture, inspired from the
U-net-style autoencoder. The encoder takes 400x400 screen space
maps of the material parameters: Diffuse, Specular, Roughness and
Normal, and reduces them to 25x25x512 dimensional feature map.
The sun direction, which is specified as a 3D vector in the upper
hemisphere, along with the turbidity value, is encoded using a
separate fully-connected network, which expands this 4D vector to

https://aakashkt.github.io/neural-renderer-material-visualization.html

A Flexible Neural Renderer for Material Visualization SA ’19 Technical Briefs, November 17–20, 2019, Brisbane, QLD, Australia

Diffuse Specular Roughness Normal Render

SV
B

R
D

F
Sc

re
en

 sp
ac

e
m

ap

Figure 3: Constructing a screen spacematerialmap from the
input material. Each map is UV mapped to the shaderball,
and the scene is rasterized with that map as base texture.

a 625-dimensional feature. This feature vector is then reshaped to
a 25x25 dimensional feature map, replicated 128-times along the
channel dimension, and appended to the bottleneck of the auto-
encoder. The decoder takes this concatenation of the low resolution
feature map and the encoded environment lighting, and outputs
the target 400x400 rendered RGB image. We use skip connections
between the encoder-decoder pair, for accurate high frequency
detail recovery.

4.3 Training Loss
The task of material visualization requires that the perceptual visual
quality of the rendered images is impeccable. Cost functions based
on Euclidean (L2) distance are known to be prone to blurring and
pixel degradation. We therefore use a loss term which evaluates
the perceptual quality of the rendered image, along with L1 loss for
training.

Specifically, we use the feature reconstruction loss from a pre-
trained VGG16 network, which is given by :

L
j
f eat „y

0;y” =
1

CjHjWj

ϕ j „y
0” � ϕ j „y”

2
2 ; (3)

where ϕ j is the activation of the jth convolutional layer with di-
mensions Cj � Hj �Wj representing number of channels, width
and height of the feature map respectively. Here, y denotes the
predicted output and y0 is the ground truth. We use the relu_3_3
(j=relu_3_3) feature representation in our experiments. Our com-
posite loss function is given by:

Ltrain = L1 + L
r elu_3_3
f eat : (4)

We train our network on an NVIDIA GTX 1080Ti, with a batch
size of six using the Adam Optimizer (lr = 10�2, β1 = 0.9, β2 = 0.999).
We initialize all weights using Glorot-initialization. The network is
trained for 30 epochs and takes around 90 hours to train.

5 EVALUATION
We compare our performance with two contemporary paradigms
for neural rendering: (1) Neural rendering based on denoising [Chai-
tanya et al. 2017]; (2) Direct neural rendering [Zsolnai-Fehér et al.
2018]. We also justify the design choices of our network using an
ablation study and we conduct a user study for perceptual evalu-
ation. More results and comparisons can be found on our arXiv
paper [KT et al. 2019].

Diffuse Specular Roughness Normal Render

Figure 4: Shaderball visualizations produced by our network
corresponding to a variety of SVBRDF maps.

5.1 Comparison with previous work
We show qualitative and run-time comparisons with the recurrent
denoiser for Monte Carlo images [Chaitanya et al. 2017]. We imple-
ment their network in PyTorch and train on our dataset with 2spp
render inputs and 150spp ground truth, consisting of both uniform
and spatially-varying materials. The denoiser fails to recover accu-
rate details, which are essential for material visualization (Fig 5). In
terms of run-time, rendering a 2spp image and denoising it requires
a lot more time than what is required by our network, even with
the additional overhead of UV-mapping (Table 1).

We also compare our results with a previously proposed neu-
ral renderer for material visualization [Zsolnai-Fehér et al. 2018].
We implement their network in PyTorch and train on our dataset
of uniform material parameter maps. For a fair comparison, we
compare results over a fixed environment lighting. Our network
produces better results than theirs both in terms of render quality
and PSNR (Fig. 5, Table 1). Since the number of parameters of our
network is lesser than theirs by a factor of 10, the run-time of our
network is also better.

Table 1: Quantitative and run-time comparison (in millisec-
onds). The network of [Chaitanya et al. 2017] has a pre-
process time for rendering the 2spp image while our net-
work has a pre-process time for UV-mapping. Run-time val-
ues are evaluated on a workstation with 40 CPU cores and
one NVIDIA GTX 1080Ti GPU.

Algorithm

Zsolnai-Fehçr et al.

Params: 5,374,75,643

Chaitanya et al.

Params: 15,05,453

Ours

Params: 117,52,404

PSNR(dB) Pre-proc. Network Total

-36.105

30.437

37.656

70.000 2.510 72.510

2.7172.7150.002

13.866 13.866

SSIM

0.965

0.992

0.985

Quantitative Run-time

	Abstract
	1 Introduction
	2 Related Work
	3 A neural rendering model
	4 Implementation Details
	4.1 Training Dataset
	4.2 Network Architecture
	4.3 Training Loss

	5 Evaluation
	5.1 Comparison with previous work
	5.2 Quantitative Results and User Study

	6 Conclusion
	References

