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Abstract

Road network extraction from satellite images often pro-

duce fragmented road segments leading to road maps unfit

for real applications. Pixel-wise classification fails to pre-

dict topologically correct and connected road masks due to

the absence of connectivity supervision and difficulty in en-

forcing topological constraints. In this paper, we propose

a connectivity task called Orientation Learning, motivated

by the human behavior of annotating roads by tracing it

at a specific orientation. We also develop a stacked multi-

branch convolutional module to effectively utilize the mu-

tual information between orientation learning and segmen-

tation tasks. These contributions ensure that the model pre-

dicts topologically correct and connected road masks. We

also propose Connectivity Refinement approach to further

enhance the estimated road networks. The refinement model

is pre-trained to connect and refine the corrupted ground-

truth masks and later fine-tuned to enhance the predicted

road masks. We demonstrate the advantages of our ap-

proach on two diverse road extraction datasets SpaceNet

[30] and DeepGlobe [11]. Our approach improves over the

state-of-the-art techniques by 9% and 7.5% in road topol-

ogy metric on SpaceNet and DeepGlobe, respectively.

1. Introduction

A mapped road network provides routing information to

find the traversable paths, which are important for planning

in various applications such as navigation and disaster man-

agement. Example of a connected road network is shown

in Figure 1a. Manual mapping of a complex road network

is time consuming and requires intensive human effort. Au-

tomatic extraction of road networks from satellite imagery

has been proposed [2, 6, 18, 29, 33], where recently, deep

learning based techniques have shown high quality mapping

results in diverse scenarios [3, 8, 10, 19, 21–23, 28, 31, 35].

However, the extracted road networks often produce frag-
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Figure 1: Road network extraction formulated as binary seg-

mentation fails to produce topologically correct road map due to

change in road appearance. (a) Annotators trace lines (highlighted

nodes) along the center of roads with a traversable shortest path

(a, c, d, e, b) for a → b. (b) Fragmented road network estimated

using segmentation resulting in path (a, c, f, g, h, b) for a → b.

(c) Tracing roads with orientation to achieve connectivity. (d) We

extract connected and topologically correct road networks using

segmentation and orientation.

mented road segments, and therefore, are unfit for real ap-

plications (Figure 1b). Satellite images pose difficulties in

the extraction of roads due to (a) shadows of clouds and

trees, (b) diverse appearance and illumination condition due

to terrain, weather, geography, etc., and, (c) similarity of

road texture with other materials. Label scarcity [28] as well

as omission and registration noise in road ground-truths

[22] also inhibit the accurate estimation of road maps.

Road network extraction is explored in [8, 10, 19, 21,

22], where the problem is posed as segmentation followed

by post-processing steps to refine and couple the missing
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connections. The pixel-wise classification supervision does

not constrain the model to learn representations for con-

nected road segments [23], leading to poor estimation of

road topology. Predicting masks with accurate topology

is a challenging task due to difficulty in enforcing topo-

logical constraints via a loss function [20, 23] or during

post-processing [19]. To measure deviations in topology,

Mosinska et al. [23] rely on higher-level abstract features of

ground-truth and predicted road masks whereas Máttyus et

al. [20] employ an adversarial matching paradigm. To im-

prove road connectivity, Máttyus et al. [19] proposed post-

processing steps to reason for missing connection hypothe-

ses while Bastani et al. [3] and Ventura et al. [31] iteratively

connect road segments in the neighbouring image patches.

Our focus is on improving connectivity in road network

extraction from binary segmentation of overhead imagery.

Characterizing connectivity supervision in the way human

annotates road maps requires topological and structural in-

formation of roads. We build our approach on the intuition

that to annotate road maps human trace lines along the road

orientation to connect the fragmented road segments. Con-

sider Figure 1b, tracing lines c → b via d and e can connect

the broken roads. This motivates us to design a connectivity

task using available road labels to predict road orientation

angle along with the road segmentation (Figure 1c).

In this paper, we propose to learn a road orientations

jointly with per-pixel road segmentation in multi-branch

CNN model (Figure 2). We also propose connectivity re-

finement which connect small gaps and reduces false posi-

tives in the prediction. The connectivity refinement model is

pre-trained to restore the corrupted road ground-truth masks

(Figure 2 and 4). This allows the model to effectively cor-

rect diverse failure scenarios. Similar to Mosinska et al.

[23], our connectivity refinement model can be employed

in an iterative manner, however, our refinement approach

focuses on improving connectivity with the help of pre-

training in addition to segmentation improvement. Lastly,

we design a joint learning module by stacking multi-branch

encoder-decoder structure (Figure 5 and 6). This module is

a variant of stacked hourglass network [24], however our

motivation is different i.e., flow of information between

the related tasks to improve the performance of individ-

ual task in a multi-task learning framework. In contrast to

[3, 19, 22, 28], our segmentation model inherently captures

the information of connected road segments in the interme-

diate representation, leading to an accurate topology in road

network estimation (Figure 1d).

Contributions:

1. We design an orientation learning task and demon-

strate that the joint learning of orientation and segmen-

tation improves the connectivity of road network.

2. We propose a connectivity refinement approach pre-

trained with corrupted road ground-truth masks and

fine-tuned with segmentation outputs to iteratively en-

hance the topology of the estimated road networks.

3. We design a stacked multi-branch module to effec-

tively utilize the dual supervision. We show that the

proposed module enables the flow of information be-

tween the tasks and helps in boosting the connectivity.

2. Related Work

Road Network Extraction: Numerous techniques have

been developed in literature to extract road networks from

satellite images. Traditional methods impose connectivity

by incorporating contextual priors such as road geometry

[18], higher order CRF formulation [33], marked point pro-

cesses [6, 29], and solving integer programming on road

graphs [2]. These methods utilized hand designed fea-

tures and optimized for complex objectives. In recent deep

learning based techniques, road extraction is formulated

as segmentation problem [19, 21–23, 28] using convolu-

tional encoder-decoder structured models, which are able

to capture large spatial context. Different from segmenta-

tion based approaches, Bastani et al. [3] introduced graph

based methodology to predict road line strings. In the cur-

rent scope, we focus on segmentation based approaches.

Mnih et al. [21] learn road classification by CNN model

in multiple stages (to reduce false negative rate due to la-

bel noise), operating on the image patches. Máttyus et al.

[19] propose encoder-decoder structure model and pose it as

multi-class (roads, building and background) seg-

mentation. The model performs well in segmentation, how-

ever, fails to predict connected roads, and missing roads are

connected using shortest path algorithms in the post pro-

cessing steps to improve the connectivity. Máttyus et al.

[19] further use a binary decision classifier to predict the

correctness of connections. We found that [19] face diffi-

culty in correctly adding and classifying the missing road

connections in regions with high road density, ambiguous

road appearance, occlusions, and complex road topology

present in the datasets (SpaceNet [30] and DeepGlobe [11])

we validate our methods on.

The other well admired encoder-decoder structure to

learn thin curvilinear road structures are U-Net [27] and

LinkNet [7]. Their variants are proposed to learn the road

segmentation in [8, 10]. LinkNet34 [7] has been primarily

utilized to segment the roads in DeepGlobe challenge [11].

Nevertheless, connectivity is achieved with more heuristic

based post-processing in these methods. In contrast, we

propose joint learning of connectivity task and road seg-

mentation with a stacked encoder-decoder structure. The

most recent work of Mosinska et al. [23] combine pixel-

wise classification and perceptual losses [12] to learn road

topology in U-Net [27]. Mosinska et al. [23] also proposed
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Figure 2: Our approach for extracting connected road topology from satellite images. Annotations in the form of line strings, are converted

to (a) orientation groundtruth and (b) road groundtruth masks. We use encoder-decoder structure with (c) stacked multi-branch module to

jointly learn (d) orientation and (e) segmentation, providing dual supervision to the model. The orientation task is designed to improve the

road connectivity. Finally, a connectivity refinement network, (f) pre-trained with corrupted groundtruths to remove false roads and further

improve the road connectivity, is (g) fine-tuned with road segmentation output to iteratively enhance the estimated road networks.

iterative refinement to fill the small gaps in road segments.

The introduced loss term favors the road like structures but

is inefficient in connecting the road segments.

Multi-Task Learning (MTL): It is a learning mecha-

nism [4], inspired from human beings to acquire knowledge

of complex tasks by performing different shared sub-tasks

simultaneously. Multi-task learning improves the perfor-

mance by inducing mutual information of the tasks in the

learning process. MTL has been applied successfully in var-

ious domains such as speech recognition, natural language

processing [9] and computer vision [17]. Readers are sug-

gested to read survey [34] on multi-task learning.

Humans perform two related tasks while annotating the

roads i.e. identify the road pixels and trace lines to con-

nect them. In our work, we use multi-task learning to incor-

porate road annotation as two tasks i.e. while labeling the

satellite images, humans recognize roads and connect them

by tracing lines, inherently identifying the orientation. We

show that these related tasks improve the connectivity with

improved encoded representation in the encoder.

3. Method

Road extraction from overhead images via segmentation

based methods produce disconnected road segments. To ad-

dress this, we develop an orientation task from the road line

strings (Section 3.1) and use it as an auxiliary loss along

with pixel-wise segmentation loss. The motivation of ori-

entation loss is to capture the relational information be-

tween the neighboring pixels through explicit learning of

orientations between them. We formulate the problem as

a two stage process: (a) joint learning of road orientation

and segmentation in multi-task fashion, and (b) a connec-

tivity refinement using a pre-trained CNN model (Section

3.2). We first present our novel inductive task followed by

a connectivity refinement technique. Finally, we outline the

proposed end-to-end joint learning pipeline with two stacks

of multi-branch encoder-decoder which can flow the infor-

mation across the tasks (Section 3.3).

3.1. Orientation Learning

The pixel level annotation of roads is a computationally

costly and time consuming task. To reduce the human ef-

fort, roads are preferably annotated with line strings con-

necting 2D points. We visualize each road line string as

a directional vector between two consecutive points in 2D

image plane (see Figure 3). The directional vector provides

the orientation (tracing angle) of each road segment.

The orientation learning task is partly inspired from Part

Affinity Fields [36] and bears resemblance with the deep

watershed technique for instance segmentation [1]. Intu-

itively, representations learned for instance (road segments)

segmentation would lead to improved connectivity in the

estimated road network. However, road segments, unlike

object instances or human body parts, do not have de-

fined boundary between them and are rather interconnected.

Therefore, instead of predicting orientation from the object

boundary towards its centroid [36], we encode and predict

the unit vector pointing towards the next pixel in the same or

the connected adjacent road segment. Learning orientation

with a pixel based cross-entropy loss poses a connectivity

constraint in the encoded representation as learning of road

orientations favors the connected road segments and joint

learning of related tasks often leads to more generalizable
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