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Abstract—Deep convolutional features for word images
and textual embedding schemes have shown great success
in word spotting. In this work, we follow these motivations
to propose an End2End embedding framework which jointly
learns both the text and image embeddings using state of the
art deep convolutional architectures. The three major contri-
butions of this work are: (i) an End2End embedding scheme
to learn a common representation for word images and its
labels, (ii) building a state of art word image descriptor and
demonstrating its utility as off-the-shelf features for word
spotting, and (iii) use of synthetic data as a complementary
modality to further enhance word spotting and recognition.
On the challenging IAM handwritten dataset, we report
a mAP of 0.9509 for query-by-string based retrieval task.
Under lexicon based word recognition, our proposed method
report a 2.66 and 5.10 CER and WER respectively.

Keywords-Handwritten Word Images, Word Spotting,
Word Recognition, Deep Features.

I. INTRODUCTION

Learning efficient representation for word images is one
of the key problems to address for successful retrieval and
recognition of handwritten documents. Unlike printed doc-
uments where variations are limited, handwritten images
contain a diverse set of writings which makes the problem
challenging. More recently, there has been a significant
progress in this field with the adoption of newer deep
learning frameworks such as [1]–[8] for addressing the
challenges associated with handwritten images. In terms
of performance, these methods report a significant error
reduction of more than 50% as compared to previous non-
deep methods for the task of word spotting on popular
datasets such as IAM [9] and George Washington (GW)
pages [10]. Under recognition, similar trends have been
observed where the methods [5]–[7] report a significantly
low word error rates of around 10% on IAM dataset.

In the domain of word spotting, the concept of word
attributes [11], [12] using the pyramidal histogram of
characters (PHOC) has been a key contribution to the
community which enabled label embedding techniques to
learn robust and discriminative features. PHOC attributes
are calculated by dividing the word into multiple pyramid
levels and at each level, the histogram of characters and
bi-grams are computed and concatenated for the final
representation. Here each attribute or the dimension de-
notes the presence/absence of a character at a particular
spatial position. The concept of learning word attributes
has been recently demonstrated successfully using convo-
lutional neural networks [4], [13], [14] which validates the
generality of this representation. In this work, we further
improve the attribute-based representation using robust

Figure 1. Few sample qualitative results for word recognition using the
proposed method along with its ground truth.

image level features extracted from the HWNet v2 [15]
architecture.

In the domain of word recognition, convolutional re-
current neural networks (CRNN) [16] is the most popular
architecture used in many methods. The basic idea is
to formulate a sequence-to-sequence transcription task
where the input sequence of features is calculated using a
deep CNN architecture and is further given to a recurrent
network such as LSTM [17] or MDLSTM [7], [18].

One of the greatest advantages while training deep
architectures for learning word image representation is the
availability of huge synthetic data such as IIIT-HWS [19]
with practically no additional cost. Although there exists
a significant domain gap between synthetic and real-
world images, the rendered images still play an important
role in pre-training huge CNN networks with millions of
parameters. In addition to pre-training, in this work, we
present novel ways in which synthetic data can be used
for word embedding tasks which gives a significant boost
in the performance by enriching the holistic representation
of both image and its textual labels.

The major contributions of this work are built on top
of HWNet v2 network [15] for learning efficient word
image representation. In this work, we use these learned
features for word attribute embedding which enables both
word spotting and recognition. We also present a novel
End2End embedding framework which learns a common
subspace of image and text representation using a multi-
task loss function. Finally, we also validate the role of
synthetic data for improving word recognition at both
line and word levels using a CRNN based architecture.
In almost all cases, we report the state of the results on
standard handwritten datasets. On the challenging IAM and
GW handwritten datasets, we report an mAP of 0.9509
and 0.9898 respectively for query-by-string based retrieval
task. Under lexicon based word recognition, our proposed



method report a 2.66 and 5.10 CER and WER respectively.
We now briefly present some prominent related works
using deep learning based methods for building word
image representation.

With the advancements in deep learning, there is a
paradigm shift in feature engineering where features are
learned on the fly while training. In [20], Jaderberg et
al. proposed three different architecture models (char,
nGram and dictionary words) for scene text recognition.
In [4], Poznanski et al. adapted VGGNet [21] for the
recognition of PHOC attributes by having multiple parallel
fully connected layers, each one predicting PHOC attributes
at a particular level. In similar directions, different archi-
tectures [2], [3], [14] were proposed using CNN networks
which embeds features into different textual embedding
spaces. In [3], Sudholt et al. propose an architecture
to directly embed image features to PHOC attributes by
having sigmoid activation in the final layer and avoiding
multiple fully connected layers. It is referred as PHOCNet,
which uses the final layer activation to derive a holistic
representation for word spotting. In [14], the deep CNN
features obtained from the penultimate layer of HWNet
architecture are embedded into word attribute space by
training attribute based SVM classifiers and projecting both
image and textual attributes to a common subspace. In [2],
the authors propose a two stage architecture where a triplet
CNN network is trained using SoftPN loss function. The
learned image representation is embedded into a word
embedding space (either PHOC, DCTOW, ngram etc) using
a fully connected neural network and finally, the loss is
defined using a cosine based embedding function. Most
of the above works use the output activation from the
penultimate layer of the CNN network as the word features
to perform spotting and retrieval. More recently, Sudholt
et. al. [13] extended the PHOCNet network by adding
temporal pooling layer (TPP-PHOCNet) and evaluated
different textual embedding and loss functions. An another
recently published work which is close to ours is from
Gomez et. al. [22] which learns an embedding space which
respects Levenshtein distance between the samples.

II. HWNET EMBEDDING

Label embedding [11], [12] for text images presents
a generic framework to recast a recognition problem as
retrieval. The basic idea is to embed both images and
its labels (text) into a common subspace which respects
lexical similarity across domains/modalities (image and
text) and, finding the nearest neighbors in this space,
enables both word spotting and recognition. The key ques-
tion for optimum label embedding lies in three parts:- (i)
finding a good representation of images and (ii) deriving a
similar representation for text and (iii) finding the common
subspace to learn the similarity metric across modality. In
this section, we present the embedding scheme adapted
from [11], [14] using robust word image features obtained
from the improved version of HWNet architecture origi-
nally proposed in [1].

A. Image Embedding

We use the improved HWNet architecture (HWNet
v2 [15]) as our image level features for the label em-
bedding task. It consists of a ResNet34 network with four
blocks where each block contains multiple resnet modules,
an ROI pooling layer and two fully connected networks.
Here each ResNet module consists of two convolutional
layers and a shortcut connection to enable residual learn-
ing. We also use two layers of fully connected networks
towards the end instead of global average pooling (as
originally proposed for ResNets) in order to better capture
the features learned in the penultimate layer. To improve
generalization and also converge faster, we use batch
normalization after each convolutional and fully connected
layer (FC) except the last one. The key distinction of
HWNet v2 architectures with other deep word embedding
networks is that it uses multi-scale training which is en-
abled using an ROI pooling layer before its FC layers. The
input word images are resized at random multiple scales
on a padded image of size 128 × 384. While placing the
image, we tend to avoid distorting the aspect ratio of word
images except in few rare cases where the image width is
greater than 384. This scheme enables the ability to train
at multiple scales which is typically observed for multiple
writers scenario and thereby the network remains invariant
to different scales while testing. The use of ROI pooling
after the last convolutional network preserves only the
valid activations coming from the region where the input
word image is rendered and extracts a fixed dimensional
representation which is further given to the FC layers.
The training objective is formulated as word classifica-
tion problem using a multinomial logistic regression loss
and the weights are updated using a mini-batch gradient
descent with momentum. To improve generalization, we
train the network from scratch using IIIT-HWS synthetic
dataset [19] and later fine tune it on a real dataset to reduce
the domain gap between synthetic and real-world data. The
activations from the penultimate layer of the network are
taken as word image embedding after performing the L2

normalization.

B. Synthetic Attribute Embedding

In [14], it was shown that deep features can be used
for word attribute embedding [11], which projects both
image and text into a common Euclidean space where
spotting and recognition tasks are treated as a nearest
neighbor search. For attribute embedding, we use the
Pyramidal Histogram of Characters (PHOC) where a word
is divided into multiple levels and at each level, the
histogram of characters and bigrams are computed and
concatenated. For more details on PHOC representation,
the authors can refer to [11]. The PHOC based attribute
representation for a word label (text) can be computed
directly, while for a word image, it can be learned by
building attribute level binary classifiers using the training
data as demonstrated in [11], [14]. Given the attribute
representation for both images and text, we project them
into a common subspace using subspace regression (CSR),



to capture the correlation between the attributes present in
both modalities. In the common subspace where image and
its corresponding labels lie close to each other, one can
search using text (QBS) or images (QBE), to perform word
spotting and recognition. In this work, we propose to use
an additional synthetic modality to enrich the attribute em-
bedding process and observe that it gives complementary
information. Synthetic data for word images [19] is easy
to generate and is available for most of the languages.
In this particular setting, we only demand word images
rendered in one synthetic font for each language. The
basic idea is to compose the query representation using
both textual and visual modality, and thereby exploiting
the complementary information. Therefore while testing,
the textual embedding computed using PHOC, is fused
with its corresponding synthetic image embedding in a
weighted manner. We refer to this as synthetic attribute
embedding which we found to be much better for query-
by-string retrieval.

III. END2END EMBEDDING

The idea of synthetic attribute embedding, discussed
in the previous section is a two-stage approach where
the image embedding is learned in the first pass while
the projection into the attribute space happens in the
second pass. We now propose an End2End trainable deep
word embedding network with two main motivations:- (i)
replacing the attribute classifiers using multi-layer fully
connected networks and (ii) to validate the learning of
attribute space rather than fixing it to be PHOC. Note
that, although PHOC has been shown the optimum attribute
representation of word images and text, in this work, we
investigate the possibility of automatic learning of such
representation.

Figure 2 presents the proposed End2End deep convo-
lutional network for simultaneous learning of both textual
and image embeddings. It consists of three streams of
feature extraction layers: one for the real word images and
two for the label associated with it. The label information
is given in two streams, which includes the synthetic
image rendered in one single font and the textual stream
which is given using PHOC representation. The features of
both real images and synthetic images are captured using
convolutional layers, where we use ResNet34 architecture
for real images and a simpler network similar to AlexNet
is used for synthetic image stream. The choice is made by
understanding the complexity level of data variations of
individual streams. Both these streams are given variable
sized input images placed in a fixed padded image of
size 128 × 384. Here also, we use ROI pooling after the
last convolutional layer similar to the network described
in the previous section. The textual stream consists of
the network comprising of a PHOC extractor which is
appended to the synthetic stream and is treated as a
conditional label. This is achieved by concatenating the
vectorized features activation of (batchSize×#features)
last convolutional layer of the synthetic stream and the
PHOC based textual representation. After concatenation,

Figure 2. End2End convolutional network for learning both image and
textual embedding using a multi-task loss function.

we use a fully connected network to merge both informa-
tion which should optimize to preserve valid information
from both modalities. Note that the weights of individual
streams are not shared because of two main reasons:-
(i) we need both real and synthetic (along with its text)
stream to learn complementary features and (ii) to learn
real stream without any conditional label information.

Finally, we have two sets of features, one from the real
stream and another from label stream (synth+text). We
now perform label embedding by projecting both these
features into a common subspace. We achieve this using
the embedding layer as shown in the figure, which is
a typical Siamese style network implemented as multi-
layer perceptron. The weights are shared since we want
to identify the common subspace where the correlation
among similarly paired data is maximized. We use a multi-
task loss function as given below:-

L(X,Y, X̄, Ȳ ) = L1(X̂, X̄)+L2(Ŷ , Ȳ )+L3(X,Y ) (1)

Here, X,Y are the features obtained from real and label
stream respectively while X̄, Ȳ are the ground truths
represented using one hot representation. The first two
components of the loss function are the classification loss
(X̂, Ŷ are the soft-max scores for real and label embedding
respectively) which is a cross entropy based loss function
while the third component is similarity loss function,
which is defined using the cosine embedding between the
pairs of features belonging to the same label. The loss is
given as:-

L3(X,Y ) = 1− cos(E(X), E(Y )) (2)

Here E(.) denotes the embedding function. The choice of
multi-task loss was done following our experience with
learning HWNet, which convinced us that the features
learned while training a word classification network are
robust enough to perform word spotting. Secondly, we
chose a simpler cosine based loss function instead of
contrastive loss [23], because in our experiments, we found
such a network slow to train and the selection of pairs
(positive and negative) is extremely crucial for optimum
training. Note that using cosine loss, we achieved slightly
better performance than contrastive loss, however, we
believe with careful selection of hard negative samples,
one can have better learning using the contrastive loss
itself. More details on the implementation are discussed
in Section V-D.
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Figure 3. A CRNN style network pre-trained using synthetic data for
performing word recognition.

IV. WORD RECOGNITION USING CRNN NETWORK

To perform word recognition, we use a CRNN [16] style
architecture with a spatial transformer layer (STN) [24]
as shown in Figure 3. The role of the STN layer is to
correct geometric transformations, while the convolutional
layers (ResNet18 [25]) is used for learning a sequence
of feature maps. These feature maps are then used as
input to the recurrent layers, which consist of stacked
bi-directional LSTM’s (BLSTM) [17]. It takes each frame
from the feature sequence generated by the convolutional
layers and provides probability distribution over the class
labels. Finally, the CTC layer [26] decodes target label
sequence from the set of probabilities computed from all
the frames. In our experiments, we pre-train the network
using IIIT-HWS dataset [19] for better generalization. Once
the model converges on the synthetic dataset, we fine-
tune the network on real handwritten images. We refer
this model as CRNN-STNsynth.

V. EXPERIMENTS

We evaluate the proposed embedding schemes for the
task of word spotting and recognition. In word spotting,
we design the protocol similar to [11] and also follow
the train-val-test splits given along with each dataset. We
perform our evaluation in a case-insensitive manner and
also remove stopwords from the test query set, however,
stopwords are kept in retrieval set to act as outliers.
For query-by-example (QBE) setting, we test with each
exemplar image from the test query set while for query-
by-string (QBS) scenario, we take the unique strings in the
test set as queries. We evaluate word spotting using mean
average precision (mAP), which is the standard evaluation
method under retrieval problems.

The second major experiment is on word recognition,
which is evaluated using mean character error rate (CER)
and mean word error rate (WER). Both CER and WER
are computed using the Levenshtein distance between the
predicted sequence of characters/words with actual ground
truth respectively. To compare a wide spectrum of existing
methods, we present our recognition results under two
different scenarios:- (i) lexicon-based and lexicon-free and
(ii) recognition at the line and word levels.

A. Datasets

The IAM Handwriting Database [9]: It contains a
total of 1,539 handwritten forms written by 657 writers
and is categorized as part of a modern collection. The
database is labeled at the sentence, line and word levels.

Table I
THE LIST OF DATASETS USED IN THIS WORK. HERE GW, BOTANY AND

KONZILSPROTOKOLLE DATASETS ARE HISTORICAL DOCUMENTS
WRITTEN PRIMARILY BY A SINGLE AUTHOR AND PROBABLY ALONG

WITH A FEW ASSISTANTS(*).

Dataset Historical #Words #Writers
IAM No 1,15,320 657
GW Yes 4,894 1*

Bentham Yes 1,54,470 1*
Botany Yes 20,004 1*

Konzilsprotokolle Yes 12,993 1*

We use the official partition for writer independent text line
recognition that splits the pages into training, validation,
and testing sets, which are writer independent.
George Washington (GW) [10]: It contains 20 pages of
letters written by George Washington and his associates in
1755 and thereby categorized into a historical collection.
The images are annotated at the word level and contain
approximately 5,000 words. Since there is no official
partition, we use a random set (similar to [11]) of 75%
for training and validation, and the remaining 25% for
testing.
Botany and Konzilsprotokolle [27]: These two datasets
are part of ICFHR 2016 Handwritten Keyword Spotting
Competition [27]. We considered only the segmentation
based track data which contained cropped word images
split into training and test sets. There were also three
partitions of training sets: small, medium, and large. Here
we took only the largest partition which contains 16,
686 training images for Botany and 9,102 for Konzil-
sprotokolle. And the test set contains 3,318 word images
for Botany and 3,891 for Konzilsprotokolle. These two
datasets are also categorized under historical document
collection.

B. Word Spotting Results

Table II presents the results of word spotting under
various proposed embedding methods and comparisons
made with other recent state of the art methods. Most of
the compared methods are based on deep neural networks
except the first method KSCR [11], which uses Fisher
based representation for attribute embedding. As one can
observe, the introduction of deep features as presented in
HWNet [1], gave a significant push in the performance on
all handwritten datasets. Further to it, with the introduction
of attribute based label embedding [3], [4], [14], one can
now perform both QBE and QBS seamlessly. In terms of
performance, we observe that the embedded image and
text attributes preserve the notion of distance similarity
between image and its corresponding labels. Methods
shown from row 2-7 presents the mAP of some prominent
methods in this space.

We first compare the performance of HWNet v2 net-
work, which is used as a base network for learning image
features in the proposed methods. Here we observe a
significant boost in terms performance where we now
report an mAP above 0.90 for IAM which is the largest
collection of dataset in terms of writers. Here we improve



Table II
QUANTITATIVE EVALUATION OF WORD SPOTTING ON STANDARD HANDWRITTEN DATASETS. WHILE EVALUATING [13], WE USED THE BEST

PERFORMING SCHEMES AMONG THE VARIOUS LOSS FUNCTIONS AND TEXTUAL DESCRIPTORS THAT WERE TESTED BY THE ORIGINAL AUTHORS.

Method IAM GW Botany Konzilsprotokolle
QBE QBS QBE QBS QBE QBS QBE QBS

KCSR [11] 0.5573 0.7372 0.9304 0.9129 0.7577 0.6569 0.7791 0.8291
HWNet [1] 0.8061 - 0.9484 - 0.8416 - 0.7913 -
PHOCNet [3] 0.7251 0.8297 0.9671 0.9264 0.8969 0.7447 0.9605 0.9420
Triplet-CNN [2] 0.8158 0.8949 0.9800 0.9369 0.5495 0.0340 0.8215 0.1219
DeepEmbed [14] 0.8425 0.9158 0.9441 0.9284 - - - -
LSDE [22] - - - 0.9131 - - - -
TPP-PHOCNET [13] 0.8274 0.9342 0.9778 0.9802 0.9123 0.9506 0.9770 0.9728
HWNet v2 [15] 0.9065 - 0.9601 - 0.9401 - 0.9427 -
DeepEmbed 0.9038 0.9404 0.9801 0.9886 0.9546 0.9717 0.9411 0.9065
Synth+DeepEmbed - 0.9509 - 0.9898 - 0.9718 - 0.9143
End2End Embed 0.8907 0.9126 0.9814 0.9742 0.9482 0.886 0.9296 0.7100

our results by a good margin as compared to the most
recent state of the art method [13], which uses PHOC as the
target embedding space along with spatial pyramid pooling
layers. We see a similar pattern in other datasets except
for Konzilsprotokolle where we get comparable results.

The proposed embedding schemes as described in this
work are shown in the last three rows of the table. Here we
first validate the features of HWNet v2 for attribute level
embedding using the framework proposed in [14]. We
refer this as DeepEmbed (using HWNet v2). As expected,
with better features the performance has improved from
previous attribute based methods in both QBE and QBS
setting across all datasets. The mAP performance for
query-by-string in IAM and Botany datasets is reported
at 0.9404 and 0.9717 respectively. We now describe the
results from synthetic embedding scheme as presented in
Section II-B for QBS setting which combines both PHOC
based representation with its corresponding synthetic im-
age attributes computed from HWNet v2 for preparing the
query representation. This results in further improvement
of the performance, where we report state of the art results
on IAM and GW at 0.9509 and 0.9898 respectively. Note
that the previous state of the art result [2] on GW uses
external real world CVL database for pre-training the
network whereas the current method only uses synthetic
data which is available almost free of cost.

Finally, we compare the proposed End2End embedding
scheme which directly learns the attribute space using
the network shown in Section III. Here we notice that,
although we improve our results with respect to previous
methods, we perform just comparable with our other pro-
posed methods which use synthetic embedding on HWNet
v2 features. We believe that this could be because of the
increased number of parameters in the overall network
which demands more data to generalize well. We further
believe that the performance could be further improved
with careful selection of hyper-parameters.

C. Word Recognition Results

Table III presents the word recognition results across
various methods and compare it with the proposed method
CRNN-STNsynth under different settings. The popular set-
tings are:- (i) level of segmentation (words/lines), (ii)

Table III
WORD RECOGNITION RESULTS ON IAM DATASET UNDER DIFFERENT

SETTING OF EVALUATION SUCH AS LEVEL OF SEGMENTATION, USE OF
LEXICON AND LANGUAGE MODEL FOR MAKING THE PREDICTIONS.

Method Seg. Lexicon WER CER
Almazán et al. [11]

Word Based

20.01 11.27
Arik et al. [4] 6.45 3.44
DeepEmbed (HWNet) [14] 6.69 3.72
DeepEmbed (HWNet v2) 5.46 3.00
CRNN-STNsynth 5.10 2.66
CRNN-STNsynth Free 16.19 6.34
Method Seg. Lang. Model WER CER
Bluche et al. [5]

Line
Yes

11.90 4.90
Doetsch et al. [6] 12.2 4.70
Voigtlaender et al. [28] 12.7 4.8
Pham et al. [8] 13.6 5.1
Voigtlaender et al. [7] 9.3 3.5
Pham et al. [8] Free 35.1 10.8
CRNN-STNsynth 32.89 9.78

use of test lexicon for recognition and (iii) use of lan-
guage models while decoding the output. The first block
of experiments compare the results under first setting.
Here we observe the proposed DeepEmbed method using
HWNet v2 features, to improve both WER and CER as
compared to other deep features presented in [4], [14].
The use of CRNN-STNsynth architecture gives the state
of the art results under the setting of lexicon based word
level segmentation which validates the importance of pre-
training with synthetic data and the STN layer. Figure 4
shows qualitative results from CRNN-STNsynth based word
recognition network along with few failure cases. Notice
the complexity of different handwriting and the prediction
performance.

The second block of experiments in the table focuses
mostly on the line level segmentation and the use of
language model while prediction. In this work, we didn’t
use any language model which resulted in an inferior
prediction, however, we still compare our method with the
other popular methods in this space. The true comparison
of our method in this setting is with [8], which shows
results on both line level and without a language model.
In this setting, we report our method at 9.78 CER which is
better than [8]. The other observation one could directly
make from the table is that, using language model signif-
icantly boosts the performance of line level prediction.



Figure 4. Qualitative results of word recognition on IAM dataset.

D. Implementation Details

We use extensive data augmentation while training our
networks. In addition to usual data jittering techniques
such as translation, shear, and resizing the images, we also
perform elastic distortion [29] which is found to be very
beneficial for handwriting modality. In our experiments
using PHOC, we extract unigrams at 10 levels and the
bigrams are extracted upto 6 levels. We use NVIDIA
GeForce GTX 1080 Ti GPUs for all our experimentation
and the codes are written in PyTorch and Torch libraries.

VI. CONCLUSION

In this work, we presented HWNet v2 architecture
for efficient word image representation which enabled
state of the art attribute embedding. We demonstrated
an End2End embedding framework which efficiently uses
synthetic image and textual representation to jointly learn
complementary information for embedding of images and
text. We further improved the performance of word recog-
nition using a CRNN architecture, utilizing the STN layer
and synthetic data. As part of future work, we plan to
work with language models for line level recognition and
carefully select the hyper-parameters of End2End network
for learning much better models.
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