
Towards Spotting and Recognition of Handwritten
Words in Indic Scripts

Kartik Dutta, Praveen Krishnan, Minesh Mathew and C.V. Jawahar
CVIT, IIIT Hyderabad, India

{kartik.dutta, praveen.krishnan, minesh.mathew}@research.iiit.ac.in and jawahar@iiit.ac.in

Abstract—Handwriting recognition (HWR) in Indic scripts
is a challenging problem due to the inherent subtleties in the
scripts, cursive nature of the handwriting and similar shape of
the characters. Lack of publicly available handwriting datasets
in Indic scripts has affected the development of handwritten
word recognizers, and made direct comparisons across different
methods an impossible task in the field. In this paper, we propose
a framework for annotating large scale of handwritten word
images with ease and speed. We also release a new handwritten
word dataset for Telugu, which is collected and annotated using
the proposed framework. We also benchmark major Indic scripts
such as Devanagari, Bangla and Telugu for the tasks of word
spotting and handwriting recognition using state of the art deep
neural architectures. Finally, we evaluate the proposed pipeline
on RoyDB, a public dataset, and achieve significant reduction in
error rates.

Index Terms—Indic scripts, Handwritten word spotting, Hand-
written word recognition, Off-line handwritten documents.

I. INTRODUCTION

Understanding text written in handwritten documents enable
access to the vast information present in the scanned historical
manuscripts. It also provides an efficient organization and in-
dexing of the handwritten content in numerous domains where
either the digital technologies are yet to be fully adopted (e.g.
court proceedings, medical transcripts, business transaction
etc.) and the places where the medium of handwriting is still
pervasive (e.g. writing personal notes, content managed in
schools and educational institutions etc). Content level access
of scanned handwritten documents written in native scripts has
a profound value of interests for both historians and the local
people. There are numerous handwritten manuscripts [1], notes
and essays [2] with high literary content which are scanned
as part of digital archives [3]. Fig. 1 shows two examples of
handwritten Telugu script. Although there are many methods
in the literature for recognizing handwritten content for Latin
scripts [4], [5], the field is relatively new for Indic scripts.

Handwritten word recognition (HWR) [4] and spotting
(HWS) [6] are the two broad approaches to achieve content
level access to the individual words written in a document
image. In HWR, given an word image, the task of the recog-
nizer is to predict the character string either in a constrained
setting using a lexicon or in an unconstrained setting. While
in the case of spotting, given a word image, we project it
to an appropriate feature space where nearby feature samples
refer to the same lexical word irrespective to its style. Here
the problem is formulated in a retrieval setting where given a

Fig. 1. Examples of handwritten Telugu manuscripts taken from (a) palm
leaf text [1] and (b) contemporary writing.

query word image/string we retrieve all similar word images
in a ranked order. Under both scenarios, the major challenges
comes from the inherent variability in data. Each individual
has a different style of writing and moreover, depending on the
various underlying factors, even the style of a single person
also changes in different instances of writings.

There are 22 official languages in India, with many more
used for communication. Among these languages, Hindi (writ-
ten in Devanagari script), Bangla and Telugu are the top three
languages in terms of the percentage of native speakers [7].
In general there are some inherent features of Indic scripts
that makes HWR more challenging as compared to Latin
scripts. The number of possible distinct modified and conjunct
characters which can be generated by all possible compositions
of consonants and vowels is very large, unlike say English
where there is no concept of modifiers or conjuncts. Compared
to the 52 unique characters present in English, most Indic
scripts have over 100 unique basic Unicode characters. For
further details on Indic scripts the reader can refer [8].

Motivated by Dutta et. al. [9], in this work we propose a
general scheme for gathering and annotating large scale hand-
written data from multiple writers for low resource languages
such as Indic scripts. We also release a large scale annotated
handwritten word level dataset for Telugu and benchmark
major Indic scripts for both text spotting and HWR using state
of the art deep neural architectures. In our work, we also
validate the role of using synthetic data and real handwriting
data in an unrelated script (here Latin) in improving word
recognition results for Indic scripts.



TABLE I
PUBLIC HANDWRITTEN DOCUMENT BENCHMARKS FOR INDIC SCRIPTS.

HERE GT LEVEL REFERS TO THE MODALITY AT WHICH SEGMENTED
LABELS WERE PROVIDED FOR THE DATASET.

Name Language GT Level #Writers #Words

PBOK [19]
Bangla Page 199 21K
Oriya Page 140 27K

Kannada Page 57 29K
CMATER [20] Bangla Line 40 30K

RoyDB [13] Bangla Word 60 17K
Devanagari Word 60 16K

LAW [21] Devanagari Word 10 27K
Tamil-DB [22] Tamil Word 50 25K

IIIT-HW-Dev [9] Devanagari Word 12 95K
IIIT-HW-Telugu (This Work) Telugu Word 11 120K

A. Related Works

Most of the earlier methods in the field of Indic script
recognition were focused to the domain of printed documents.
Various methods involving the k-nearest neighbors classifier,
multi-layer perceptrons were tried out for the task. A summary
of these works can be found in [8]. In this paper, we focus
on handwritten word images which are more challenging to
recognize than printed word images.

There are three popular ways of building handwriting
word recognizers for Indic scripts. The first one is to use
segmentation-free but lexicon dependent methods which train
on recognizing or representing the whole word [10], [11].
Another approach is based on segmenting out the characters
within the word image and then use an isolated symbol classi-
fier such as SVM [12]. In [13], the authors segment Bangla and
Devanagari word image into upper, middle and lower zones,
using morphology and shape matching. The symbols present
in the upper and lower zone are recognized using a SVM
while a HMM was used to recognize the characters present
in the middle zone. Finally, the results from all the three
zones are combined. This approach suffers from the drawback
that we have to use a script dependent character segmentation
algorithm. The third approach treats word recognition as a seq-
2-seq prediction problem where both the input and output are
treated as a sequence of vectors and we have to maximize the
probability of predicting the output label sequence given the
input feature sequence [14], [15]. These methods don’t require
character level segmentation and are not bound to recognizing
a limited set of words. In this work we formulate a similar
seq-2-seq formulation for word recognition and present results
under both a lexicon free (unconstrained) and lexicon based
setting.

Similar to text recognition, most of the works in the domain
of word spotting for Indic scripts also focused on printed
documents [16] which used handcrafted features to represent
word images. More recently CNN based features [17] are found
to be highly effective for word spotting in Indic scripts. These
features are taken from the penultimate layer of the deep
CNN network which was trained to perform word classification
task. For a general survey on word spotting in handwritten
documents, the reader could refer to [18].

Fig. 2. An example of the filled and scanned A4 form used for creating the
IIIT-HW-Telugu dataset.

II. INDIC HANDWRITTEN SCRIPTS DATASET

In the domain of off-line handwriting recognition for Indic
scripts, there is a severe lack of publicly available datasets that
are annotated at the word or line level. Table I lists different
publicly available off-line handwritten Indic script datasets, to
the best of our knowledge. We have ignored the datasets that
only contain isolated characters or do not contain any ground
truth. Compared to any standard Latin off-line handwriting
recognition dataset like IAM [23], which have more than 100K
annotated word images and are written by more than 500
writers, Indic scripts datasets are much smaller in size. Due
to lack of standard datasets for any Indic scripts, it is hard to
directly compare different methods.

A. IIIT-HW-Telugu Dataset 1

In continuation to our ongoing efforts to create datasets for
Indic scripts in handwritten domain, in this work we release a
word level handwritten Telugu dataset which contains word
images and its corresponding ground truth. The dataset is
annotated using UTF-8, which is the dominant text encoding
scheme across the Internet. We used a list of roughly 15K
isolated Telugu words scraped from the Internet, courtesy [24].
After pruning out words with non Telugu UTF-8 characters,
we have a vocabulary of 12,945 words. On an average each
word consists of 9 basic Unicode characters. Each word in
our vocabulary was given an unique id. We ensured that every
character present in the Telugu UTF-8 range is present in our
dataset.

Usually, most handwritten dataset are collected by methods
similar to the one followed by [23], where annotators write
paragraphs extracted from the text corpus on pages. While
this approach is necessary for creating line level recognition
datasets, it is sub-optimal for creating a word level dataset,
as we have to perform first line and then word segmentation
on the filled pages. Also, manual processing has to be done

1https://cvit.iiit.ac.in/research/projects/cvit-projects/indic-hw-data



Fig. 3. Sample word images for IIIT-HW-Telugu dataset. The first two rows
shows different words that have been written by the same writer. The last two
rows shows examples of the same word that has been written by different
writers. One can notice both the inter and intra class variability in writing in
collected samples.

for correction of labelling errors. Instead, since we were only
creating a dataset for word level recognition, we created
special forms for data collection, an example of which is
shown in Fig. 2.

The forms were generated by first randomly permuting our
vocabulary of words and using each word’s unique id we
generate a QR code corresponding to that word and adding
some whitespace at the bottom where the annotator could
provide his/her sample. A constraint was added that each word
in our vocabulary would occur exactly ten times across all
the forms that were generated. After the forms were filled
by human writers and scanned, the border outline of each
box (see Fig. 2) were extracted from the scanned forms by
using binarization followed by flood fill. Now, within each
such box, the QR code, reference image and sample had
equal width and were easy to segment. Thus, by using this
procedure we were able to automatically segment and label
the written word. However, the segmentation was not manually
corrected. Fig. 3 shows a few sample word images that were
collected as part of the dataset. We also manually performed
evaluation of our automatic segmentation procedure on a few
filled forms. Here we are able to obtain more than 99% word
segmentation accuracy with our method as compared to < 95%
word segmentation accuracy reported by [23]. Also, we did not
require any manual processing for labelling, unlike [23] which
required > 14 hours of human effort for label correction.

A total of 1,18,515 words samples were collected from
11 different individuals with different ages and educational
backgrounds. Here each writer has written nearly 10K words
on an average. The writers were free to write the words in
their natural style instead of copying the word image that was
shown to them. They were allowed to use any pens of their
interest. The forms were scanned using a HP flatbed scanner
in a resolution of 600 DPI in color. The train, validation and
test sets were created such that there is no overlap of writers
between any of the three sets. The training, validation and
testing set contains 80637, 19980 and 17898 annotated word
images respectively, roughly in the ratio of 70:15:15.

Feature Extraction

तैरना PHOC

Loss

Real 
Stream

Label
Stream

Handwritten

Synthetic

Embedding

Fig. 4. End2End embedding network for word spotting.

III. INDIC SCRIPT WORD SPOTTING AND RECOGNITION

A. Word Spotting using End2End Embedding Network

Word spotting [6] refers to locating a keyword (e.g word
image) given in the form of query from the underlying cor-
pus of document images (segmentation-free) or word images
(segmentation-based). Here the query could be either an exem-
plar word image or could be the corresponding text itself. The
basic intuition is to represent word images using an appropriate
feature space where the nearest neighbors belongs to same
lexical word irrespective of variations from handwritten style
and degradation.

We use the End2End deep network proposed in [25] for
jointly learning the image and textual feature space which
respects the lexical similarity across two modality. Fig. 4
presents the overall architecture. It consists of two streams
(real and label) and two major components (feature extraction
and embedding). The image stream consists of a deep residual
network wherein the real handwritten images are fed and
features are computed. While the label stream is further split
into two networks: a convolutional network and PHOC [26]
feature extractor. Here the convolutional network takes in the
synthetic image of the current label and computes its feature
representation which is later concatenated with the vectorial
representation computed using PHOC. The features computed
at both the streams are given to the label embedding layer
which projects the two modalities into a common subspace
where the similar word images and its corresponding text
lies close to each other. The embedding layer is designed in
a Siamese style architecture using a multi-layer perceptron.
Here the weights across the two modalities are shared. The
network uses a multi-task loss function which consists of three
losses. The first two loss functions are cross entropy based
classification losses for predicting the class of word from the
image and label stream by having a softmax layer as last
component of embedding layer. This constraints the features
to remain discriminative. The third loss function is a cosine
embedding loss function which is designed to maximize the
correlation among similarly paired data across two modalities.
This is computed from the features of the penultimate layer of
the embedding layer of size 2048. Given such a representation
space where both text and word images can be projected, the
word spotting using either query-by-string or exemplar can be
achieved using a nearest neighbor based search.



B. Word Recognition using CNN-RNN Hybrid Network

Word recognition [4] is the problem of converting the
handwritten content present in an image into machine un-
derstandable text. In this work we use a CNN-RNN hybrid
architecture, first proposed by [27]. The architecture that we
use consists of a spatial transformer layer (STN) [28], followed
by a set of residual convolutional blocks, proceeded by a
stacked BLSTM (bidirectional LSTM) and ends with a linear
layer for transcribing the labels. The role of the STN layer is to
perform geometric transformation on the input, so as to correct
the distortions that are present in handwriting due to variable
hand movements [9]. The convolutional layers here are used
for learning a sequence of feature maps, which are then passed
on as input to the stacked BLSTMs. We use the CTC [29]
loss function to train our network. It converts the predictions
generated by the recurrent layers as a maximum probable
sequence for the input. In Indic language, similar to syllables
in Latin, there exists a basic unit of word called akshara
which is made up of C*V, where C is a consonant and V is a
vowel. Here we decided to use the output space as a series of
unicode characters that are present in that dataset that we are
currently using for training, instead of using akshara’s [7].
Using akshara’s we would have been unable to predict any
unseen akshara, which is something likely to occur given the
small vocabulary encompassed by any Indic datasets.

C. Use of Real Latin and Synthetic Data for Pre-Training

Deep learning architectures contains millions of parameters
and in order to avoid over-fitting, availability of huge amounts
of training data is crucial. Also as per [30] BLSTMs learn an
implicit language model and with Indic scripts having a high
number of basic characters, the need for training data is even
more acute. We follow the pipeline used by [9] for rendering
word images in our synthetic data. We use 60+ publicly
available Unicode fonts for Bangla, Telugu and Devanagari
to create our synthetic data. We used the same vocabulary
that was used for the train set of any particular dataset. Here
we render the word image in three different ways: without
distortion, with a horizontal line at it’s bottom or with a
curved baseline. A varying amount of Gaussian noise and
kerning were applied to the rendered images. In addition a
small amount of rotation, shearing and padding were randomly
applied to the generated images. Fig. 5 shows a few examples
of synthetically generated Telugu word images. Over 1M such
synthetically generated word images were used for pre-training
for all experiments. In addition to synthetic data, we also use
real data from an un-related script which in our case is Latin
where there exists large annotated datasets (e.g. IAM [23]).
Similar to works such as [9], [31], we pre-train our model on
the IAM train set and present our analysis in Section IV-C for
Indic word recognition.

IV. EXPERIMENTS

A. Datasets

In addition to the IIIT-HW-Telugu dataset which is intro-
duced as part of this work, we use the following public datasets

Fig. 5. Few word images that were used in the Telugu synthetic dataset. The
first two rows shows variations for the same word. The last two rows shows
variations across different words.

in our work:
• IAM Handwriting Database [23]: It includes contributions

from over six hundred writers and comprises of 115,320
words in English. It is only used for pre-training purposes.

• Indic Word Database / RoyDB [13]: It contains samples
from over sixty writers and consists of two tracks: Bengali
and Devanagari. The Bengali track compromises of 17,901
binarized handwritten word images and the Devanagari track
comprises of 16,128 handwritten gray-scale word images.
On an average, the label corresponding to a word image in
either track consists of 4 characters.

• IIIT-HW-Dev [9]: It contains samples from twelve writers
and contains of 95,381 handwritten word image samples.
On an average each word in the dataset consists of 8 basic
Unicode characters. Unlike RoyDB this database is labeled
using the UTF-8 encoding.
We follow the standard partition for training, validation and
testing for all datasets and use the standard lexicon for
lexicon-based decoding.

B. Word Spotting Results

We follow the evaluation protocol for word spotting as
presented in [26] using the train/val/test splits created for
the Indic datasets. We conduct both query-by-string (QBS)
and query-by-example (QBE) on the test corpus. For QBE
setting, the queries are the subset of words taken from the test
corpus which has a frequency of more than 1. However all
the words were kept in the retrieval set. We also removed
the top-1 retrieval since it is query image itself. For QBS
scenario, we take the unique set of strings in the test set as
queries. In both cases, we report the mean average precision
value (mAP) which is standard measure for a retrieval task
such as word spotting. Table II presents the results of word
spotting on Hindi (Devanagari script), Telugu and RoyDB
handwritten datasets. Here we observe quite high performance
above 95% mAP which is better than the similar sized corpus
in English. We believe this is because of the agglutinative
nature of Indic languages which increases the vocabulary size
by making longer words. These words gives larger context
which is typically found better for word spotting systems to
capture feature representation effectively. The above property
is quite complementary to word recognition systems where
with longer words the probability of making a mistake also



TABLE II
WORD SPOTTING PERFORMANCE USING END2END EMBEDDING

ARCHITECTURE ON THE HINDI, TELUGU AND BANGLA DATASETS.

Dataset Script QBE QBS

RoyDB [13] Devanagari 0.9439 -
Bangla 0.9627 -

IIIT-HW-Dev [9] Devanagari 0.9626 0.9690
IIIT-HW-Telugu (This Work) Telugu 0.9826 0.9843

TABLE III
HWR PERFORMANCE OF THE CNN-RNN HYBRID ARCHITECTURE ON THE

IIIT-HW-TELUGU DATASET.

Method WER CER
CNN-BLSTM 37.92 9.15
SCNN-BLSTM 34.52 7.83
Synth-SCNN-BLSTM 27.61 5.22
IAM-SCNN-BLSTM 23.98 4.58
IAM-SCNN-BLSTM-Lexi 1.07 0.3

grows. We also evaluated the out-of-vocabulary (OOV) per-
formance of our word spotting system. Here we obtained in
an OOV mAP of 0.9767 for IIIT-HW-Telugu dataset. The
comparable performance of OOV rate shows the robustness
of the embedding.

C. Indic Word Recognition Results

For word recognition, in all experiments we report the word
and character error rate value (WER & CER respectively),
which are the standard metrics for the HWR task. Table III
shows the recognition results of various variants of the CNN-
RNN hybrid architecture on the IIIT-HW-Telugu dataset. All
entries except the last one show results in a lexicon free
decoding setting, where decoding is not restricted to any set of
chosen words. The various models and their training strategies
are mentioned below:
• CNN-BLSTM uses the architecture mentioned in Sec-

tion III-B, without the STN module. It is trained only on
the IIIT-HW-Telugu train set.

• SCNN-BLSTM uses the architecture mentioned in Sec-
tion III-B (including the STN module). It is also trained only
on the IIIT-HW-Telugu train set.

• Synth-SCNN-BLSTM uses the same architecture as above.
It is first pre-trained on Telugu synthetic data and then fine-
tuned on the IIIT-HW-Telugu train set.

• IAM-SCNN-BLSTM uses the same architecture as above.
It is first pre-trained on the IAM train data, then fine-tuned
on Telugu synthetic data and finally fine-tuned again on the
IIIT-HW-Telugu train set.

• IAM-SCNN-BLSTM-Lexi has the same architecture and
training pipeline as above but uses lexicon based decoding.
Here the lexicon consists of the entire vocabulary used in
the dataset.

From Table III we see the effectiveness of our architectural
choice, the STN module and performing pre-training with both
synthetic and IAM data.

We also conducted experiments on publicly available
RoyDB [13] and IIIT-HW-Dev [9] datasets, using the data split

TABLE IV
HWR RESULTS ON THE ROYDB DATASET USING THE CNN-RNN HYBRID

NETWORK. WE USED THE LEXICON THAT WAS RELEASED AS PART OF THE
DATASET.

Method Seg. Lexicon Track WER CER
Dutta et al. [15]

Word

Free

Bangla 10.71 3.49
This Work 7.04 2.55
Dutta et al. [9]

Devanagari
9.57 3.24

Dutta et al. [15] 12.23 5.17
This Work 8.91 3.14
Dutta et al. [15]

Based

Bangla

4.30 2.05
Adak et al. [14] 14.57 -
Roy et al. [13] 16.61 -
This Work 2.85 1.39
Dutta et al. [9]

Devanagari

4.32 2.07
Dutta et al. [15] 5.13 2.72
Roy et al. [13] 16.61 -
This Work 3.78 2.01

TABLE V
HWR ON THE IIIT-HW-DEV DATASET USING THE CNN-RNN HYBRID

NETWORK. HERE WE USED THE LEXICON RELEASED AS PART OF THE
DATASET.

Method Seg. Lexicon WER CER
Dutta et al. [9]

Word
Free 26.22 8.64

This Work 19.52 6.41
Dutta et al. [9] Based 11.27 4.90
This Work 3.40 1.52

mentioned in the respective dataset. Here we used the same
pipeline as IAM-SCNN-BLSTM, just using the appropriate
synthetic and real train data for each dataset. Table IV and V
report the results for the RoyDB and IIIT-HW-Dev dataset
respectively. As we can see, our method achieves the state
of the art results. For all of the datasets, if we use a lexicon
for decoding, we achieve far better results than the current
state of the art in various Latin datasets such as IAM. This
observation is most clear in Table III. One reason is that using
a lexicon corrects a lot of errors caused due to confusion
between modifiers and conjunct characters. To justify this,
we take the lexicon of the IAM and IIIT-HW-Telugu dataset
respectively and Fig. 7 shows the percentage of valid words
that can be converted from one valid word to another, at certain
edit distance values, for both datasets. It clearly shows that
words in the lexicon of our Telugu dataset are further apart
than the words in English. The avg. edit distance to convert
a random valid word from the IAM dataset to another valid
word is 7.32 while it’s 9.41 for the IIIT-HW-Telugu dataset.

Fig. 6 shows the recognized outputs for a few sample word
images, from all the 4 datasets used in the paper, using the
IAM-SCNN-BLSTM-Lexi model in an unconstrained setting.
As we can see, most of the errors were caused by ambiguities
in the original word image, due to the subtle differences in
the shape of characters.

V. CONCLUSION AND FUTURE WORKS

This work is in effort of streamlining the HWR and HWS
methods for major Indic scripts. In this direction, we are
currently working to release newer datasets in different scripts
and also increase the number of writers. In future, we would



Fig. 6. Qualitative results of the cnn-rnn hybrid architecture on the IIIT-HW-Dev (1st row), iiit-hw-telugu (2nd row), RoyDB-Bangla (3rd row) and RoyDB-
Devanagari (last row) datasets. Here GT refers to the ground truth.

Fig. 7. Percentage of words that get converted to another valid word in
Telugu and English. Here Telugu words are from the vocabulary of the IIIT-
HW-Telugu dataset, while the English words are from the vocabulary of the
IAM dataset.

also like to integrate language model based decoding to further
enhance the recognition performance.

REFERENCES

[1] T. V. Lakshmi, P. N. Sastry, and T. Rajinikanth, “A novel 3d approach
to recognize telugu palm leaf text,” EST, 2017.

[2] C. Adak and B. B. Chaudhuri, “Extraction of doodles and drawings from
manuscripts,” in ICPRMI, 2013.

[3] N. Balakrishnan, R. Reddy, M. Ganapathiraju, and V. Ambati, “Digital
library of India: a testbed for Indian language research,” TCDL, 2006.

[4] A. Graves, M. Liwicki, S. Fernández, R. Bertolami, H. Bunke, and
J. Schmidhuber, “A novel connectionist system for unconstrained hand-
writing recognition,” PAMI, 2009.

[5] R. J. Milewski, V. Govindaraju, and A. Bhardwaj, “Automatic recogni-
tion of handwritten medical forms for search engines,” IJDAR, 2009.

[6] T. M. Rath and R. Manmatha, “Word spotting for historical documents,”
IJDAR, 2007.

[7] V. Vinitha, “Error detection and correction in Indic OCRs,” Master’s
thesis, International Institute of Information Technology Hyderabad,
2017.

[8] U. Pal and B. Chaudhuri, “Indian script character recognition: a survey,”
PR, 2004.

[9] K. Dutta, P. Krishnan, M. Mathew, and C. V. Jawahar, “Unconstrained
handwriting recognition on devanagari script using a new benchmark
dataset,” in DAS, 2018.

[10] B. Shaw, U. Bhattacharya, and S. K. Parui, “Combination of features
for efficient recognition of offline handwritten devanagari words,” in
ICFHR, 2014.

[11] B. Shaw, S. K. Parui, and M. Shridhar, “Offline handwritten devanagari
word recognition: A holistic approach based on directional chain code
feature and HMM,” in ICIT, 2008.

[12] S. Arora, D. Bhattacharjee, M. Nasipuri, L. Malik, M. Kundu, and
D. K. Basu, “Performance comparison of svm and ann for handwritten
devnagari character recognition,” arXiv preprint arXiv:1006.5902, 2010.

[13] P. P. Roy, A. K. Bhunia, A. Das, P. Dey, and U. Pal, “HMM-based Indic
handwritten word recognition using zone segmentation,” PR, 2016.

[14] C. Adak, B. B. Chaudhuri, and M. Blumenstein, “Offline cursive Bengali
word recognition using CNNs with a recurrent model,” in ICFHR, 2016.

[15] K. Dutta, P. Krishnan, M. Mathew, and C. V. Jawahar, “Towards accurate
handwritten word recognition for Hindi and Bangla,” in NCVPRIPG,
2017.

[16] R. Shekhar and C. V. Jawahar, “Word image retrieval using bag of visual
words,” in DAS, 2012.

[17] P. Krishnan and C. V. Jawahar, “HWNet v2: An efficient word
image representation for handwritten documents,” arXiv preprint
arXiv:1802.06194, 2018.

[18] R. Ahmed, W. G. Al-Khatib, and S. Mahmoud, “A survey on handwritten
documents word spotting,” IJMIR, 2017.

[19] A. Alaei, U. Pal, and P. Nagabhushan, “Dataset and ground truth for
handwritten text in four different scripts,” IJPRAI, 2012.

[20] R. Sarkar, N. Das, S. Basu, M. Kundu, M. Nasipuri, and D. K.
Basu, “Cmaterdb1: a database of unconstrained handwritten bangla and
bangla–english mixed script document image,” IJDAR, 2012.

[21] R. Jayadevan, S. R. Kolhe, P. M. Patil, and U. Pal, “Database develop-
ment and recognition of handwritten devanagari legal amount words,”
in ICDAR, 2011.

[22] S. Thadchanamoorthy, N. Kodikara, H. Premaretne, U. Pal, and
F. Kimura, “Tamil handwritten city name database development and
recognition for postal automation,” in ICDAR, 2013.

[23] U.-V. Marti and H. Bunke, “The iam-database: an english sentence
database for offline handwriting recognition,” IJDAR, 2002.

[24] D. Goldhahn, T. Eckart, and U. Quasthoff, “Building large monolin-
gual dictionaries at the leipzig corpora collection: From 100 to 200
languages.” in LREC, 2012.

[25] P. Krishnan, K. Dutta, and C. V. Jawahar, “Word spotting and recognition
using deep embedding,” in DAS, 2018.

[26] J. Almazán, A. Gordo, A. Fornés, and E. Valveny, “Word spotting and
recognition with embedded attributes,” PAMI, 2014.

[27] B. Shi, X. Bai, and C. Yao, “An end-to-end trainable neural network
for image-based sequence recognition and its application to scene text
recognition,” PAMI, 2016.

[28] M. Jaderberg, K. Simonyan, A. Zisserman et al., “Spatial transformer
networks,” in NIPS, 2015.

[29] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Connection-
ist temporal classification: labelling unsegmented sequence data with
recurrent neural networks,” in ICML, 2006.

[30] E. Sabir, S. Rawls, and P. Natarajan, “Implicit language model in LSTM
for OCR,” in ICDAR, 2017.

[31] T. Bluche and R. Messina, “Gated convolutional recurrent neural net-
works for multilingual handwriting recognition,” in ICDAR, 2017.


