Human Shape Capture and Tracking at Home

Gaurav Mishra¹, Saurabh Saini¹, Kiran Varanasi², P J Narayanan¹

¹Center for Visual Information Technology, IIIT Hyderabad
²DFKI - Kaiserslautern

Abstract

Human body tracking typically requires specialized capture set-ups. Although pose tracking is available in consumer devices like Microsoft Kinect, it is restricted to stick figures visualizing body part detection. In this paper, we propose a method for full 3D human body shape and motion capture of arbitrary movements from the depth channel of a single Kinect, when the subject wears casual clothes. We do not use the RGB channel or an initialization procedure that requires the subject to move around in front of the camera. This makes our method applicable for arbitrary clothing textures and lighting environments, with minimal subject intervention. Our method consists of 3D surface feature detection and articulated motion tracking, which is regularized by a statistical human body model [26]. We also propose the idea of a Consensus Mesh (CMesh) which is the 3D template of a person created from a single viewpoint. We demonstrate tracking results on challenging poses and argue that using CMesh along with statistical body models can improve tracking accuracies. Quantitative evaluation of our dense body tracking shows that our method has very little drift which is improved by the usage of CMesh.

1. Introduction

Human shape and motion capture has been a largely studied topic in the field of computer vision. Recently, computer vision systems achieved 2D and 3D human body tracking from a simple capture setup e.g. convolutional neural network (CNN) models can detect body parts in RGB images [37]. However, these methods are not yet applicable for full body shape and motion visualization. Many applications in today’s scenario like biomechanical analysis, medical rehabilitation etc. require motion tracking that is broadly accurate not only with respect to the position of the bone joints, but also on the surface of the skin.

Recently Bogo et al. [5] showed results on monocular RGB-D Kinect sequences of freely moving subjects to construct a detailed 3D reconstruction by doing coarse-to-fine processing. Such methods work with subjects wearing tight fitting clothes. Models like Loper et al. [26] and Anguelov et al. [2] have been created from a large pool of real-world 3D scans of people to address the problem of human shape and motion capture. These models are accurate but they can only be fitted to a person wearing extremely tight clothes. It is challenging to track people in everyday clothing.

To this end we propose a novel pipeline for tracking people in everyday clothing. Unlike prior methods, we take only the depth channel as input, for the sake of simplicity and independence to illumination conditions and clothing texture. An important distinctive element of our method is that we do not rely on 3D body part detection e.g. using the Microsoft Kinect API or a deep neural-network model trained for this purpose. This makes our method a useful baseline method, which can be improved by such features or from alternative information channels such as RGB data.
Figure 2: Block Diagram of our proposed method. First we process depth maps to generate triangulated meshes. We use these along with SMPL [26] model for manual initialization for first frame. After that we iterate between the Mesh Alignment and SMPL Registration stages for each frame. The final tracked, pose aligned and shape adjusted SMPL mesh S_{t+1} is generated as output. We also generate consensus mesh of the person from a 360° sequence which is then reposed using ARAP.

In addition to above we also propose a novel Consensus Mesh (CMesh) generation pipeline which refers to creating a 3D template mesh of a subject from 360° sequences captured using a single Kinect. Readers please note that our idea is not to create a high fidelity mesh, but a template mesh which captures the topology of the subject in consideration. Along with qualitative evaluation, we show quantitative evaluation by treating output sequences of De Aguiar et al. [14] and Vlasic et al. [35] as our ground truth. We show that we achieve comparable tracking from just a monocular depth input, with very little drift. We have also shown that using the concept of a CMesh we can greatly improve the tracking accuracy w.r.t. naked body models based tracking, simply because of the fact that CMesh has a better adherence to topology of the person. We have made several novel contributions:

1. We propose a novel tracking pipeline which consists of 3D HKS (heat-kernel signature) driven non-rigid ICP, articulated skeleton tracking and regularization by a statistical human body model, for fitting a 3D mesh template to a point cloud sequence.
2. We propose a body pose refinement step that uses statistical human body model for correspondence computation, and produces smooth trajectories over time.
3. We believe that we are the first to do temporal tracking on monocular depth input for subjects wearing casual clothes, using a statistical body model. We show tracking results for a variety of clothing styles and challenging poses.
4. We propose a pipeline to create a Consensus mesh (CMesh) using a single Kinect. Repositioning of the CMesh is shown to reduce quantitative drift and geometric errors in clothed models.

2. Related Work

As our goal is towards building a framework enabling a low-cost, easily-deployable pose tracking system without any restriction on clothing, we will focus only on markerless methods. We also want to estimate unrestricted body motion, so we exclude methods that recognize specific movements or track specific motion cycles from our review. Based on the complexity of data acquisition process, we can split human body motion capture methods into two groups. The first group consists of methods which require complex 3D data capturing setup such as laser scanners, inertial sensors or several multi-view, stereo pairs, depth cameras etc. [14, 18, 32, 42, 36, 17]. The second group consists of methods which use only a monocular RGB camera or a single depth sensor [38, 3, 13, 30, 23, 5]. In this case, as the data is limited and from one perspective only, most of the methods restrict themselves by defining system specific input constraints and priors. The output of this latter group is generally inferior compared to the former but the cost of the system, ease of capturing and setup, makes them applicable for the general public. An important factor in enabling the success of monocular methods is the availability of statistical human body models and datasets. So we first review them.
Human Body Models/Datasets: Several methods used for human body shape modeling, pose estimation and motion tracking use learned parametric human body models for regularization. The data for learning such models is obtained from 3D scans of humans in varying body shapes and poses, that are captured with a high quality multi-camera set-up and registered with each other to a common mesh template. These parametric models can generate new plausible body shapes and poses by interpolating between the data. The SCAPE model was introduced by Anguelov et al. [2] and was learned using several registered scans. It required shape and pose transformation to be applied separately on mesh triangles which sometimes lead to inaccuracies near joints. BlendSCAPE by Hirshberg et al. [19] addressed this issue by approximating triangle rotations as a linear combination of parts' rotations weighted using blend weights. Unlike the previous two models, Skinned Multi Person Linear (SMPL) [26] is a vertex based model of body shape and pose-dependent shape variations, which uses joint locations of kinematic chain of body parts. Although other complex models which can capture dynamic soft-tissue deformations and give textured outputs also exist (e.g. [29, 12, 5]), we choose to use publicly available SMPL for our framework as our main goal is not highly accurate shape reconstruction but motion tracking in complex clothing feasible for a common user. Several datasets associated with the models mentioned above exists for learning and benchmarking. Most of these are static [2, 8, 7, 4] but recently a few large dynamic datasets have also been introduced with captured motion [29, 6]. Although the recent datasets like [29, 4, 6] are better at emulating challenges of the real-world than synthetic datasets like [8, 7], they can not yet be used to represent the output from an inexpensive commodity depth sensor like Kinect which has relatively high noise and low resolution.

Multi-view Systems: Some earlier methods rely on static contours or silhouettes for estimating the topology of the shape but they either assume multi-view acquisition [34, 14] or process binary silhouettes as inputs [24, 16, 31]. Methods like [14, 18, 27, 40, 42, 17] depend on specialized data acquisition stage and hence inaccessible for a common user. Tong et al. [33] generate good quality 3D meshes but use three kinects, and require the person to stand on a rotating turntable while holding the pose. We differ from all of them as our system requires simple set-up of just one Kinect.

Monocular Systems - Dense Surface Reconstruction: Monocular pose estimation, owing to its under-constrained nature, is generally solved using strong priors and multi-stage optimization frameworks. A class of such methods aim specifically at building detailed user model assuming static or little motion in the input sequence [20, 27]. In [23], authors present a method for building watertight models of static scenes using only a single Kinect aimed for 3D printing, which requires the subject to rotate around while roughly holding the pose. Recent methods are able to achieve dynamic 3D surface reconstruction, also in real-time for virtual reality and teleconferencing applications [44]. These methods typically require the surface topology to be preserved during motion, such that shape regularization can be applied. Newcombe et al. [28] is able to reason about the canonical shape topology while reconstructing dense motion. Though their method result in a high fidelity surface reconstruction of arbitrary shapes, they show results on slow moving subjects and are not concerned with pose of the person or connecting them with a human body shape.

Monocular Systems - Shape and Motion Capture: If we do not require full surface reconstruction, but only human body shape estimation, certain additional assumptions can be placed. Weiss et al. [38] use a single Kinect and SCAPE body model [2] to recover human shape and pose in different configurations. They show results on minimally clothed people and do not attempt tracking. In [39] authors focus on fitting a minimally clothed shape (MCS) under complex clothing using motion cues. Baak et al. [3] use a generative-discriminative hybrid framework, in which they combine inferences from skinned kinematic chain model and retrieved pose from a curated dataset to decide the final pose in each frame. Their solution is data driven and limited by the number of poses in the dataset. Cui et al. [13] build a full 3D human model using a single Kinect for scanning but require the user to maintain a specific pose. In [30] authors focus on virtual avatar creation of a person in any pose using four static images from a commodity depth sensor but they do not explicitly model human motion. Efficient human body shape estimation and tracking is demonstrated by [43, 41] on MCS subjects.

Bogo et al. [5] is most similar to ours in motivation as they use dynamic monocular RGB-D Kinect sequences of a freely moving object to construct a detailed 3D reconstruction. They do coarse-to-fine processing involving several optimization stages and introduce a new multi-resolution body model based on BlendSCAPE [19]. Although their results have fine details, they do not tackle clothed subjects. Our method differs from theirs in that we do not use the color channel, and rely entirely on non-rigid surface matching on point clouds which is regularized by the statistical human body model. We show good model fitting irrespective of clothing type, additionally we have shown that tracking accuracy can be improved by using a subject specific consensus mesh along with statistical human body model.
3. Subsystem Description

Block diagram of our proposed system is depicted in Figure 2. Our system is divided into two parts. First part focuses on developing a tracking framework for subjects performing challenging actions in everyday clothing. This framework consists of various subsystems like 3D surface feature (SIHKS) driven Non-rigid ICP, Inverse Kinematics and pose refinement based on local energy minimization. Second framework focuses on generating a subject specific consensus mesh which is further used to improve tracking. Before explaining our full pipeline we first explain the major subsystems comprising our framework.

3.1. Dataset Acquisition

We used one Kinect V2 sensor for dataset capture, keeping depth and RGB resolution at 512 × 424 and 1920 × 1080 respectively. Human segmentation on depth stream was done using Kinect SDK 2.0. The input to our algorithm are segmented depth maps; we have used RGB images for visualization purpose only.

3.2. SMPL Model

As mentioned earlier we use the standard SMPL model [26] for regularizing shape in each frame. The model consists of 6890 vertices and its underlying skeleton contains 24 joints. The parameters for this model are 24 × 3 joint angles (θτ, τ ∈ {1, 2, ..., 72}); 10 shape parameters (η ∈ {1, 2, ..., 10}) and additional 3 translation parameter of the root (Λ ∈ {1, 2, 3}). We concatenate all the parameters to build a 85 dimensional vector Θ. Using these we can generate SMPL mesh S(Θ) at any pose for a particular shape.

3.3. Non Rigid ICP

We adapt the registration algorithm by Amberg et al. [1] for non-rigid alignment in our framework by estimating landmarks using Scale Invariant Heat Kernel Signatures (SIHKS [9]). We register meshes by computing the full mesh transformation matrix X4n×3 (where n = number of vertices in input mesh). X is formed by vertically concatenating per vertex 4 × 3 transformation matrices and is computed by minimizing the following equation:

\[E(X) = E_d(X) + \alpha E_s(X) + \beta E_l(X) \]

Here \(E_d, E_s, E_l \) stand for the distance, stiffness and landmark energies respectively, regulated by \(\alpha \), \(\beta \) weight parameters. Both \(E_d \) and \(E_l \) are of the form \(E(X) = \sum w_i ||X_i u_i - v_i||^2 \), where \((u_i, v_i)\) represent initial correspondence pair. For \(E_d \), \(v_i \) is computed using nearest neighbor for all vertices of input mesh. For \(E_l \), \((u_i, v_i)\) represents sparse SIHKS correspondences.

Here \(w_i \) is the indicator function, which is 0 for invalid correspondences. We use two constraints to check for the validity of \(u_i, v_i \) pairs. First constraint is that the angle between normals at \(u_i \) and \(v_i \) should be less than 45° and second constraint states that \(u_i \) must be visible to the camera. We decrease the contribution of the landmark energy term \(E_l \) by varying \(\beta \) from 1 to 0 as the algorithm proceeds. This is to capture the increasing confidence of ICP based correspondences compared to SIHKS, over the course of iterations.

Similar to Amberg et al. [1] we define \(E_s \) based on differences between transformation matrices assigned to neighboring vertices. To this end we build a node-arc incident matrix (Dekker [15]) by converting the input mesh into a directed graph and following the same process as in Amberg et al. [1]. Just like \(\beta \) we gradually decrease the stiffness factor \(\alpha \) from 10 to 0.1 over the course of non-rigid ICP iterations. This models motion over various stiffness scales and hence capture the overall body part movement better.

3.4. Inverse Kinematics

Inverse Kinematics (IK) generates angular updates (\(\Delta \theta \)) of a kinematic chain given the parameterized initial (\(\epsilon_i \)) and the final position (\(\epsilon_f \)) of the end-effectors. Mathematically this can be written in matrix form involving Jacobian, \(J(\theta) \) of joint angles [21]:

\[\Delta \theta = J'(JJ' + \lambda^2 I)^{-1} \bar{\epsilon} \]

Here \(\bar{\epsilon} = \bar{\epsilon}_f - \bar{\epsilon}_i \) and \(\lambda \) is the damping constant. We use Pseudo-Inverse Damped Least Squares (PI-DLS [10]) for solving this as it provides well behaved solutions near singularities.

It is known that for an IK problem there are multiple solutions possible when the number of end effectors are sparse e.g. a few sensors attached to the free end of a robotic arm. In our case there are multiple such 'end-effectors' which are a few set of points attached to every bone of SMPL's

Figure 3: An example initialization. Top left: Depth image from Kinect. Top right: Markers placed on SMPL mesh and point cloud. Bottom left: IK solution. Bottom right: Fine tuned estimate.
skeleton (∼ 7-8 markers per bone). This introduces additional constraints in an otherwise under constrained system thereby restricting the search space of incorrect and trivial solutions. We run this algorithm for 50 iterations, ignoring a solution whenever upper (θ^\text{max}) or lower (θ^\text{min}) angular bounds of a joint (τ) are breached. These bounds are chosen for each joint in order to restrict the solutions to naturally feasible joint angles, e.g. sideways head rotation (along the vertical Y axis) θ^\text{min} = −90° and θ^\text{max} = 90°. Please see supplementary material for all such joint limits.

3.5. Pose Refinement

This is a crucial and novel part of our proposed framework. It enables us to fine-tune a coarse SMPL estimate by minimizing a local energy term (E) defined as :

\[E = \alpha E_1 + \beta E_2 + \gamma E_3 \] (2)

The intuition behind the various energy terms is explained below. \(E_1 \) penalizes the difference in the visible SMPL mesh vertices and the target point cloud. Let \(V_t \) be vertices of point cloud and \(V_f \) be its nearest neighbor in visible subset of SMPL mesh, then :

\[E_1 = \sum_i ||V_f - V_i||^2 \]

Using \(E_1 \) alone can lead to unnatural human poses. We resolve this issue by defining \(E_2 \) using \(\theta^\text{min} \) and \(\theta^\text{max} \) for each \(\theta \) in SMPL model s.t. \(E_2 = \sum_j ||\theta_j - f(\theta_j)||^2 \) where

\[f(\theta) = \begin{cases} \theta^\text{min}, & \theta < \theta^\text{min} \\ \theta, & \theta^\text{min} \leq \theta \leq \theta^\text{max} \\ \theta^\text{max}, & \theta > \theta^\text{max} \end{cases} \]

For temporal smoothing we add \(E_3 \) which restricts the current solution \(\theta_{t-1} \) to be in close vicinity to the solution \(\theta_{t-1} \) from the previous frame. \(E_3 = \sum_k ||\theta_{t-1} - \theta_{t-1}||^2 \). It also helps in penalizing abrupt movements and limits jerk perturbations in the results. Hence the final energy can be defined by rewriting Equation 2 as a sum of \(L_2 \) terms :

\[E(\theta) = \alpha \sum_i ||V_f - V_i||^2 + \beta \sum_j ||\theta_j - f(\theta_j)||^2 + \gamma \sum_k ||\theta_{t-1} - \theta_{t-1}||^2 \] (3)

For minimizing \(E \) we use quasi newton gradient descent algorithm (BFGS). During implementation we have used auto differentiation toolbox [25] for computing gradients.

4. Tracking Framework

Here we discuss step-by-step details for our iterative coarse-to-fine tracking framework as shown in Figure 2. Note again that we are only using segmented depth maps from Kinect as input. Before proceeding further, we define some common mathematical notations: Subscript \(t \) refers to a time instance in the sequence from 1 to number of frames in the sequence. Each depth map is denoted by \(F_t \). The corresponding triangulated mesh is denoted as \(M_t \) and the SMPL mesh as \(S_t \). The neighbors of a vertex \(v_i \) in 3D space are denoted by \(N_{v_i} \) which are estimated using approximate nearest neighbor algorithm.

Depth Map Triangulation (\(F_t \rightarrow M_t \)): Given segmented depth maps, we convert them into triangulated meshes. For this we iterate row wise over the depth maps. We connect a pixel to its right and bottom neighbors if the edge length between them in point cloud space is less then a certain threshold (< 5cm). This generates a good initialization mesh suitable for our purpose.

Initialization (\(S_0 \rightarrow S_1 \)): For initialization (refer Figure 3) we manually associate 24 markers on the default SMPL mesh \(S_0 \) with the corresponding points on \(M_1 \). We apply IK to give us a coarse alignment between \(S_0 \) and \(M_1 \) (subsection 3.4). To further refine the initialization we fine-tune this coarse alignment using Equation 3 which yields the final MCS denoted by \(S_t \). This is the only manual step in our entire framework and needs to be performed only once for a sequence. Although there are no strict restriction regarding the starting pose of the subject but we use a common ‘T’ pose for our experiments. For a random shape and pose, automatic initialization is a hard problem but can be solved to a certain extent using techniques mentioned in Bogo et al. [5]. However such an initialization is not the focus of our current work.

Mesh alignment (\(M_t \rightarrow M'_t \)): For mesh alignment between consecutive frames we use non-rigid ICP (subsection 3.3). We define landmarks as randomly sampled vertices near each joint in \(M_t \). We use SIHKS as mesh features which are quite robust but cannot differentiate between symmetric body parts. Furthermore in our case topological difference between \(M_t \) and \(M_{t+1} \) (which might arise due to unrestricted motion and loose clothing) also aggravate the problem. In order to deal with this, we match the landmarks \(l_i \subset M_t \) within a small neighborhood \(N_{l_i} \subset M_{t+1} \), which yields less noisy correspondences. We denote the resultant aligned mesh as \(M'_t \).

SMPL registration (\(S_t \rightarrow S_{t+1} \)): We register the SMPL mesh \(S_t \) with the point cloud mesh \(M_{t+1} \) using a coarse-fine alignment strategy described below :

1. Coarse pose registration (\(S_t \rightarrow \rho_t \)): We apply IK on \(S_t \) using initial end-effectors from \(M_t \) and final from \(M'_t \) using sampling strategy defined in (subsection 3.4).

2. Fine pose registration (\(\rho_t \rightarrow \rho'_t \)): As the meshes \(\rho_t \) and \(M_{t+1} \) are relatively close, we use non-rigid ICP without landmarks for fine-tuning the alignment between these two meshes.
3. **Final pose registration** ($\rho'_t \rightarrow \rho''_t$): The result from the last step is pose correct but shape deformed. We perform IK again by choosing initial end effectors from ρ_t and final from ρ'_t which gives ρ''_t which is a refined estimate.

4. **Shape and pose refinement** ($\rho''_t \rightarrow S_{t+1}$): Finally we apply pose-refinement Equation 3 for fine-tuning the alignment of ρ''_t to give the pose and shape corrected S_{t+1}.

We perform our automatic mesh alignment and SMPL registration steps for all pairs of consecutive frames. We require approximately 3-4 minutes per frame on a 3rd generation Intel processor with 8 GB memory. As we are not aiming for a real time scenario, our framework is currently implemented in Matlab and C++ as a prototype code, which can be improved significantly for computational efficiency.

5. **Consensus mesh generation**

Following paragraphs explain the second major contribution of our work, which is creating a subject specific template mesh (C_p) from a 360° sequence of the person, to assist tracking.

Retrieving candidate frames: We run tracking framework (section 4) on the sequence to get SMPL model parameters (Θ_t). We treat $\Theta_f = \Theta_1$ as our front canonical frame. Rotating the root of Θ_f by 180° we get Θ_b, which gives us back canonical frame. We retrieve μ_F and μ_b as the set of closest matching frames based on 3D positions of skeletal joints of Θ_f and Θ_b using nearest neighbor search. During implementation we have kept $|\mu_F| = |\mu_b| = 5$.

Pose alignment: In order to align meshes in μ_F and μ_b with their respective canonical frames Θ_f and Θ_b we do pose cancellation w.r.t. frame zero. For this we perform a reverse transformation for each point cloud mesh $M_i \in \mu_F$ to M_0 (which represents the virtual point cloud mesh corresponding to rest pose of SMPL model (S_0)). We then repose M_0 to M_F using Θ_f. We perform same operations on $M_i \in \mu_b$. This gives us pose aligned nearest neighbor set μ_F' and μ_b'.

Approximating front and back surfaces: Using μ_F' and μ_b' as static sequence inputs we execute Kinect fusion to obtain P_F and P_b as an approximation of front and back surfaces of the person. This step helps us in removing structured and real world noise due to Kinect, while simultaneously enriching the topology. Pose alignment in the previous step was necessary to remove noise caused due to movement of the person, which is essential for Kinect fusion. We substitute hands and feet from SMPL mesh (S_f) owing to the low resolution of Kinect depth maps in these regions.

Stitching everything together: In order to merge all estimated surfaces, we repose P_b to P_F using Θ_f and fill in the missing regions on the left and right profiles by interpolating vertices of SMPL mesh (S_f). Finally we run Poisson reconstruction ([22]) in Meshlab ([11]) to generate the final consensus mesh (C_p) Figure 4.

Repositioning of Consensus Mesh: In order to re pose the Consensus mesh in each frame according to the tracking, we use a set of highly aligned (as per a certain threshold) vertices between the SMPL and Consensus meshes and perform ARAP. This animates the movements using the Consensus mesh and reduces the tracking error due to better adherence to the true geometry.

Discussion about Consensus Mesh: As explained above, the CMesh (C_p) is a clothed 3D mesh of a person, with a corresponding parametric SMPL model. C_p adheres better
Figure 5: Qualitative results of our framework on our dataset. Each figure shows the input point cloud (color coded), pose refined SMPL mesh and reposed CMesh. In inset figure we also show corresponding RGB image. Please refer to the supplementary video to notice the various challenging poses, actions, hairstyles and clothing worn by the subjects (Best viewed in color).

6. Results and Discussion

For the purpose of evaluating the performance of our algorithm we captured several RGB-D sequences. Our subjects included 4 males and 4 females. Subjects wore challenging everyday clothes like Hoodie, Jeans, T-shirt, Loose top, different hairstyles etc. We recorded 11 sequences per subject (7 common and 4 different actions). Recorded actions included simple exercises, athletic action, Yoga poses etc. To emulate real world setting all sequences were recorded without any special background or body markers. Please refer supplementary for a detailed description of collected dataset. We will be releasing our implementation and the entire dataset to help research in this area.

Qualitative Results: We show qualitative performance of our system in Figure 5. We show color coded point cloud (blue = near, red = far), corresponding tracked SMPL mesh and reposed consensus mesh for a few key-frames for some of the captured sequences. Even with a very minimal input, our system is able to tackle challenging cases. Note how our results show correct tracked shape and pose for the following cases: (i) complex and fast motion (2c subject turning around, 3c kicking) (ii) challenging hairstyles (1b long tied hair, 3a pony tail) (iii) loose clothing and complex poses (1c, 2c and 3b Hoodie, 1b and 2b loose top ...) (iv) significant self-occlusion (2c, 3a). This highlights the robustness and generality of our framework.

Quantitative Results: Contemporary methods that are based on monocular input do not tackle ‘temporal tracking’ with ‘statistical body model’ fitting specifically for subjects in ‘casual clothes’. Lack of implementation resources (codes, complete datasets etc.) make comparisons hard to do. Hence to show objective effectiveness of our system we ran our algorithm on the dataset by De Aguiar et al. [14] and Vlasic et al. [35]. We use their results as our ground truth. To test our system we generate synthetic depth maps from a singular point of view using OpenGL. We additionally created a virtual 360° sequence of the person by rotating few ground truth meshes. We created consensus mesh using this sequence.

For quantifying the error of our SMPL tracking w.r.t. ground truth meshes (G_t) we compute mean absolute drift error ϵ_t, as follows: We find correspondences between vertices $a \in S_t$ and $b \in G_t$ by nearest neighbor search to get an ordered set $(a, b) \in C$. Consider a time step $F_t \rightarrow F_{t+1}$ during which $(a_t, b_t) \rightarrow (a_{t+1}, b_{t+1})$. For this transition we define ϵ_t as: $\epsilon_t = d(a_{t+1}, b_{t+1}) - d(a_t, b_t)$. Here $d(x, y)$ is the euclidean distance. ϵ_t measures error w.r.t. motion...
Figure 6: Quantitative results on De Aguiar et al. [14] and Vlasic et al. [35]. Top row shows graphs for mean drift error (ϵ_t) for various frames in the sequence (S31 [14] and Isquat [35]). The color coded CMesh and SMPL mesh represents average (ϵ_t) per vertex over all frames. Bottom row shows percentile based Hausdorff distance (d_l) per frame (for various $l = 95\%$ (red), 75% (blue), 50% (magenta)). In the graph S stands for SMPL (dotted line) and C stands for CMesh (solid lines) based errors. Color coded ground truth mesh based on nearest neighbor found w.r.t SMPL and CMesh is also shown. (Best viewed in colors on screen)

over time but does not tell us anything about how close the geometry of our solution is to the ground truth mesh.

Hausdorff distance d_H is one way to measure the same but since it gives worst possible distance, it is sensitive to outliers. Hence we compute percentile based Hausdorff distance $d_l(P,Q) = \max \left\{ \text{max}_j \min_i ||y^P_i - y^Q_j||, \text{max}_i \min_j ||y^P_i - y^Q_j|| \right\}$, e.g. when $l = 50\%$ we are taking max over medians. We computed the same error metrics for CMesh w.r.t. ground truth Figure 6. Notice how errors for CMesh are low as compared to SMPL even for $l = 95\%$. Notice the significant percentage error reduction of repositioned CMesh w.r.t. SMPL tracking computed on average of ϵ_t and d_l for all frames (ϵ_t and d_l) in Table 1.

Table 1: Percentage error reduction of repositioned CMesh w.r.t. SMPL tracking computed over (ϵ_t and d_l). Top two sequences are from [14] and bottom four from [35]

<table>
<thead>
<tr>
<th>Sequence</th>
<th>ϵ_t</th>
<th>d_{25}</th>
<th>d_{75}</th>
<th>d_{50}</th>
</tr>
</thead>
<tbody>
<tr>
<td>S08</td>
<td>2.40%</td>
<td>5.25%</td>
<td>10.58%</td>
<td>19.55%</td>
</tr>
<tr>
<td>S31</td>
<td>16.67%</td>
<td>14.96%</td>
<td>4.56%</td>
<td>17.06%</td>
</tr>
<tr>
<td>I_crane</td>
<td>15.45%</td>
<td>9.21%</td>
<td>12.50%</td>
<td>23.78%</td>
</tr>
<tr>
<td>I_jumping</td>
<td>12.88%</td>
<td>5.33%</td>
<td>8.04%</td>
<td>14.18%</td>
</tr>
<tr>
<td>I_march</td>
<td>16.08%</td>
<td>5.51%</td>
<td>10.25%</td>
<td>20.44%</td>
</tr>
<tr>
<td>I_squat</td>
<td>3.07%</td>
<td>12.97%</td>
<td>9.13%</td>
<td>17.97%</td>
</tr>
</tbody>
</table>

Limitations: As we do not explicitly restrict the range of possible human poses, our system sometimes generate unnatural poses. Although our system is capable of handling fairly fast actions, it faces issues in highly challenging cases e.g. when fast actions are in conjunction with prominent self-occlusion or profile view. We have also observed that such cases can be corrected if the rate of capturing is fast. We are able to handle large range of casual clothing styles Figure 5 but our method can face issues in extremely challenging cases (e.g. Wedding dresses, Saree, Kimono, etc.), which might require explicit cloth modeling.

7. Conclusions

In this paper, we demonstrated a method for full 3D human body shape and motion capture for subjects wearing everyday clothes. Our method has the simple capture set-up of just one depth camera. We show effective articulated motion tracking, by iterating between computation of surface features and performing inverse kinematics regularized by a statistical human body model. Despite the simplicity of the method, our evaluation shows that it can track challenging poses. We also proposed a method for creating Consensus mesh of a person which can assist in tracking. In our current work we have shown that animating such a CMesh using tracked SMPL models improves tracking accuracy. In future we would like to use CMesh in our tracking pipeline itself to improve tracking further.
References

