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Abstract

In this paper, we propose a fully automatic method to
register football broadcast video frames on the static top
view model of the playing surface. Automatic registration
has been difficult due to the difficulty of finding sufficient
point correspondences. We investigate an alternate ap-
proach exploiting the edge information from the line mark-
ings on the field. We formulate the registration problem as
a nearest neighbour search over a synthetically generated
dictionary of edge map and homography pairs. The syn-
thetic dictionary generation allows us to exhaustively cover
a wide variety of camera angles and positions and reduces
this problem to a minimal per-frame edge map matching
problem. We show that the per-frame results can be fur-
ther improved in videos using an optimization framework
for temporal camera stabilization. We demonstrate the ef-
ficacy of our approach by presenting extensive results on a
dataset collected from matches of the football World Cup
2014 and show significant improvement over the current
state of the art.

1. Introduction

Advent of tracking systems by companies like Pro-
zone [1] and Tracab [2] has revolutionized the area of foot-
ball analytics. Such systems stitch the feed from six to ten
elevated cameras to record the entire football field, which
is then manually labelled with player positions and identity
to obtain the top view data over a static model as shown in
Figure 1. Majority of recent research efforts [14, 24, 23, 7]
and commercial systems for football analytics have been
based on such top view data (according to prozone web-
site, more than 350 professional clubs now use their sys-
tem). There are three major issues with such commercial
tracking systems and associated data. First, it is highly
labour and time intensive to collect such a data. Second, it is
not freely available and has a large price associated with it.
Third, such data can not be obtained for analyzing matches
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where the customized camera installations were not used.
It is also difficult for most research groups to collect their
own data due to the challenges of installing and maintaining
such systems and the need of specific collaborations with
the clubs/stadiums.

All the above problems can be addressed, if we can ob-
tain such data using the readily available broadcast videos.
However, this is a non trivial task since the available broad-
cast videos are already edited and only show the match from
a particular viewpoint/angle at a given time. Hence, obtain-
ing the top view data first requires the registration of the
given viewpoint with the static model of the playing sur-
face. This registration problem is challenging because of
the movement of players and the camera; zoom variations;
textureless field; symmetries and highly similar regions etc.
Due to these reasons, this problem has interested several
computer vision researchers [26, 16, 22, 17], however most
of the existing solutions are based on computation of point
correspondences or/and require some form of manual ini-
tialization. Not just that the manual initialization for each
video sequence is an impractical task (as shot changes occur
quite frequently), such approaches are also not applicable in
the presented scenario due to absence of good point corre-
spondences (the football playing surface is almost texture-
less in contrast to the cases like American football [16]).

Motivated by the above reasons, we take an alternate
approach based on edge based features and formulate the
problem as a nearest neighbour search to the closest edge
map in a precomputed dictionary with known projective
transforms. Since, manual labelling of a sufficiently large
dictionary of edge maps with known correspondences is
an extremely difficult and tedious task, we employ a semi
supervised approach, where a large dictionary of ‘camera-
view edge maps to projective transform pairs’ are simulated
from a small set of manually annotated examples (the pro-
cess is illustrated in Figure 3). The simulated dictionary
generation allows us to cover edge maps corresponding to
various degrees of movement of the camera from different
viewpoints (which is an infeasible task manually). More
importantly, this idea reduces the accurate homography es-
timation problem to a minimal dictionary search using the



(a) (b)
Figure 1. (a) A snapshot from prozone tracking system. (b) An example result from the proposed method, which takes as input a broadcast
image and outputs its registration over the static top view model with the corresponding player positions. The yellow, red and cyan circles
denote the players from different teams and referee respectively.

edge based features computed over the query image. The
tracking data can then be simply obtained by projecting the
player detections performed over broadcast video frames,
using the same projective transform. An example of our ap-
proach over a frame from Australia vs Netherlands world
cup match is illustrated in Figure 1.

Since the camera follows most of the relevant events
happening in the game, it can be fairly assumed that the
partial tracking data (only considering the players visible
in the current camera view) obtained using the proposed
approach is applicable to most of the work on football play
style analytics [14]. Furthermore, the knowledge of camera
position and movement can work as an additional cue for
applications like summarization and event detection (goals.
corners etc.), as the camera movement and editing is highly
correlated with the events happening in the game. It is
also useful for content retrieval applications, for instance
it can allow queries like “give me all the counter attack
shots” or “give me all the events occurring on the top left
corner” etc. The proposed approach can also be beneficial
in several other interesting research topics like motion
fields for predicting the evolution of the game [19], social
saliency for optimized camera selection [28] or automated
commentary generation [4].

More formally this work makes following contributions:

1. We propose a novel framework to obtain the registra-
tion of football broadcast videos with a static model.
We demonstrate that the proposed nearest neighbour
search based approach makes it possible to robustly
compute the homography in challenging cases, where
even manually labelling the minimum four point based
correspondences is difficult.

2. We propose a semi-supervised approach to syntheti-
cally generate a dictionary of ‘camera-view to projec-
tive transform pairs’ and present a novel dataset with
over a hundred thousand pairs.

3. We propose a mechanism to further enhance the results
on video sequences using a Markov Random Field

(MRF) optimization and a convex optimization frame-
work for removing camera jitter .

4. We present extensive qualitative and quantitative re-
sults on two datasets and show significant improve-
ment over the state of the art (using considerably less
manually labelled training data)

The proceeding section briefly explains the related work.
The semi-supervised dictionary learning approach is de-
scribed in Section 3.1, followed by the explanation of the
proposed matching algorithms. Section 3.3 covers the op-
timization techniques followed by the experimental results
and concluding discussion.

2. Related work
Top view data for sports analytics has been extensively

used in previous works. Bialkowski et al. [6] uses 8 fixed
high-definition (HD) cameras to detect the players in field
hockey matches. They demonstrated that event recognition
(goal, penalty corner etc.) can be performed robustly even
with noisy player tracks. Lucey et al. [23] used the same
setup to highlight that a role based assignment of players
can eliminate the need of actual player identities in several
applications. In basketball, a fixed set of six small cam-
eras are now used for player tracking as a standard in all
NBA matches, and the data has been used for extensive an-
alytics [11]. Football certainly has gained the most atten-
tion [14] and the commercially available data has been uti-
lized for variety of applications from estimating the likeli-
hood of a shot to be a goal [24] or to learn a team’s defensive
weaknesses and strengths [7].

The idea of obtaining top view data from broadcast
videos has also been explored in previous works, Okuma et
al. [26] used KLT [27] tracks on manually annotated inter-
est points (with known correspondences) and used them in
RANSAC [10] based approach to obtain the homographies
in presence of camera pan/tilt/zoom in NHL hockey games.
Gupta et al. [15] showed improvement over this work by us-
ing SIFT features [21] augmented with line and ellipse in-
formation. Similar idea of manually annotating initial frame



Figure 2. Overview of the proposed approach. The input to the system is a broadcast image (a) and the output is the registration over the
static model (f). The image (e) shows the corresponding nearest neighbour edge map from the synthetic dictionary.

and then propagating the matches has also been explored
in [22]. Li and Chellapa [20] projected player tracking data
from small broadcast clips of American football in top view
form to segment group motion patterns. The homographies
in their work were also obtained using manually annotated
landmarks.

Hess and Fern [16] build upon [26] to eliminate the need
of manual initialization of correspondences and proposed
an automated method based on SIFT correspondences. Al-
though their approach proposes an improved matching pro-
cedure, it may not apply in case of normal football games
due to lack of ground visual features. Due to this reason,
instead of relying on interest point matches, we move to a
more robust edge based approach. Moreover, we use stroke
width transforms(SWT) [9] instead of usual edge detectors
for filtering out the desired edges. Another drawback of the
work in [16] is that the static reference image in their case
is manually created, and the process needs to be repeated
for each match again. On the other hand, our method is
applicable in more generic scenario and we have tested it
on data from 16 different matches. The work by Agarwal
et al. [3] posed the camera transformation prediction be-
tween pair of images as a classification problem by binning
possible camera movements, assuming that there is a rea-
sonable overlap between the two input images. However,
such an approach is not feasible for predicting exact pro-
jective transforms. More recently, Homayounfar et. al [17]
presented an algorithm for soccer registration from a single
image as a MRF minimization. Their approach relies on
vanishing point estimation, which is highly unreliable (in
difficult viewpoints, sparse edge detections and shadows).
On the other hand, our method is robust is term of pre-
processing, just using the pix2pix conditional adversarial
network [18] and also extends the automation to video se-
quences. We further propose a more diverse testing dataset
and a more compact training set.

Our work is also related to camera stabilization method
of Grundmann et al. [13] which demonstrates that the sta-
bilized camera motion can be represented as combination
of distinct constant, linear and parabolic segments. We ex-

tend their idea for smoothing the computed homographies
over a video. We also benefit from the work of Muja and
Lowe [25] for efficient nearest neighbour search.

3. Method
The aim of our method is to register a video sequence

with a predefined top view static model. The overall frame-
work of our approach is illustrated in Figure 2. The input
image is first pre-processed to remove undesired areas such
as crowd and extract visible field lines and obtain a binary
edge map. The computed features over this edge map are
then used for k-NN search in a pre-built dictionary of im-
ages with synthetic edge maps and corresponding homo-
graphies. Two different stages of smoothing are then per-
formed to improve the video results. We now describe, each
of these steps with detail:

3.1. Semi supervised dictionary generation

Two images of the same planar surface in space are re-
lated by a homography (H). In our case, this relates a given
arbitrary image from the football broadcast to the static
model of the playing surface. Given a point x = (u, v, 1)
in one image and the corresponding point x′ = (u′, v′, 1),
the homography is a 3× 3 matrix, which relates these pixel
coordinates x′ = Hx. The homography matrix has eight
degrees of freedom and can ideally be estimated using 4
pairs of perfect correspondences (giving eight equations).
In practice, it is estimated using a RANSAC based approach
on a large number of partially noisy point correspondences.

However, finding a sufficient set of suitable non-
collinear candidate point correspondences is difficult in the
case of football fields. And manual labelling each frame
is not just tedious, it is also challenging task in several im-
ages. Due to these reasons, we take an alternate approach:
we first hand label the four correspondences in small set
of images (where it can be done accurately) and then use
them to simulate a large dictionary of ‘field line images
(synthetic edge maps) and related homography pairs’. An
example of the process is illustrated in Figure 3. Given a
training image (Figure 3(a)), we manually label four points



Figure 3. Illustration of synthetic dictionary generation. First column shows the input image and second column shows the corresponding
registration obtained using manual annotations of point correspondences. The pan, tilt and zoom simulation process is illustrated in third,
fourth and fifth column respectively.

to compute homography (H1) and register it with the static
top view of the ground (Figure 3(b)). We can observe that
after applying homography to entire image and warping,
the boundary coordinates (p0, p1, p2, p3) gets projected to
points (q0, q1, q2, q3) respectively. We can now use this to
obtain the simulated field edge map (Figure 3(c)) by apply-
ing (H−11 ) on the static model (top view). This simulated
edge map paired with H1 forms an entry in the dictionary.

We simulate pan by rotating the quadrilateral
(q0, q1, q2, q3) around the point of convergence of
lines q0q3 and q1q2 to obtain the modified quadrilat-
eral (r0, r1, r2, r3), as illustrated in Figure 3(d). Using
(r0, r1, r2, r3) and (p0, p1, p2, p3) as respective point corre-
spondences, we can compute the inverse transform (H−12 )
to obtain Figure 3(e). This simulated image along with
H2 forms another entry in the dictionary. Similarly, we
simulate tilt by moving the points q0q3 and q1q2 along their
respective directions and we simulate zoom by expanding
(zoom out) or shinking (zoom-in) the quadrilateral about
its center. Now, by using different permutations of pan,
tilt and zoom over a set of manually annotated images,
we learn a large dictionary D = {Ij , Hj} where Ij is the
simulated edge map, Hj is corresponding homography
and j ∈ [0 : N − 1] (we use N ≈ 100K). We select
these images from a larger set of manually annotated
images, using a weighted sampling from a hierarchical
cluster (using the H matrix as feature for clustering). The
permutations of pan, tilt, zoom were chosen carefully to
comprehensively cover the different field of views. We
can observe that the proposed algorithm is able to generate
viewpoint homography pair like Figure 3(i)), which may
be infeasible to get using manual annotation (due to lack of
distinctive points).

3.2. Nearest neighbour search algorithms

We pose the homography estimation problem as the
nearest neighbour search over the synthetic edge map dic-
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Figure 4. Illustration of chamfer matching. The first column shows
the input image x and its distance transform T (x). The second and
third column show two different edge maps and their multiplica-
tion with T (x). We can observe that image (c) is a closer match
and gives a lower chamfer distance.

tionary. Given a preprocessed input image and its edge map
x, we find the best matching edge map Ij (or k best match-
ing edge maps) from the dictionary and output the corre-
sponding homography Hj (or set of k homographies). In
this section, we present two different approaches we an-
layzed for computing the nearest neighbours. We specifi-
cally choose a direct contour matching approach (chamfer
matching) and an image gradient based approach (HOG).

3.2.1 Chamfer matching based approach

The first method we propose is based on chamfer match-
ing [5], which is a popular technique to find the best align-
ment between two edge maps. Although proposed decades
ago, it remains a preferred method for several reasons like
speed and accuracy, as discussed in [29]. Given two edge
maps x and Ij , the chamfer distance quantifies the match-
ing between them. The chamfer distance is the mean of the
distances between each edge pixel in x and its closest edge
pixel in Ij . It can be efficiently computed using the distance
transform function T (.), which takes a binary edge image as
input and assigns to each pixel in the image the distance to
its nearest edge pixel. The chamfer matching then reduces



to a simple multiplication of the distance transform on one
image with the other binary edge image. The process is il-
lustrated in Figure 4. We use the chamfer distance for the
nearest neighbour search. Given an input image x and its
distance transform T (x) we search for index j∗ in the dic-
tionary, such that

j∗ = argmin
j

T (x).Ij
‖Ij‖1

, (1)

where ‖‖1 is the `1 norm and the index j∗ gives the index
of the true nearest neighbour. Given an epsilon ε > 0, the
approximate nearest neighbours are given by list of indices
j, such that T (x).Ij

‖Ij‖1 ≤ (1 + ε)
T (x).Ij∗

‖Ij∗‖1
.

3.2.2 HOG based approach

The second method is based on HOG features [8], where the
nearest neighbour search is performed using the euclidean
distance on the HOG features computed over both the dic-
tionary edge maps and the input edge map. So, given the in-
put edge map x and its corresponding HOG features φh(x)
we search for j∗ in the dictionary, such that

j∗ = argmin
j
‖φh(x)− φh(Ij)‖2 , (2)

where ‖‖2 is the `2 norm.

3.3. Smoothing and Stabilization

For a given input video sequence, we compute k homog-
raphy candidates independently for each frame using the
nearest neighbour search algorithms described above. Just
taking the true nearest neighbour for each frame indepen-
dently may not always be temporally coherent. To remove
outliers and to obtain a jerk free and stabilized camera pro-
jections, we use two different optimization stages. The first
stage uses a markov random field (MRF) based optimiza-
tion, which selects one of the k predicted homographies for
each frame to remove the outliers and discontinuities. The
second stage further optimizes these discrete choices, to ob-
tain a more smooth and stabilized camera motion.

3.3.1 MRF optimization

The algorithm takes as input the k predicted homogra-
phies for each frame with their corresponding nearest neigh-
bour distances and outputs a sequence of ξ = {st} states
st ∈ [1 : k], for all frames t = [1 : N ]. It minimizes the
following global cost function:

E(ξ) =

N∑
t=1

Ed(st) +

N∑
t=2

Es(st−1, st). (3)

The cost function consists of a data term Ed that measures
the evidence of the object state using the nearest neighbour

distances and a smoothness term Es which penalizes sud-
den changes. The data term and the smoothness term are
defined as follows:

Ed(st) = log(P (st, t)) . (4)

Here, P (st, t) is the nearest neighbour distance for state st
at frame t. And

Es(st−1, st) = ‖Hst −Hst−1‖2, (5)

is the Euclidean distance between the two (3× 3) homogra-
phy matrices, normalized so that each of the eight parame-
ters lie in a similar range. Finally, we use dynamic program-
ming (DP) to solve the optimization problem presented in
Equation 3.

3.3.2 Camera stabilization

The MRF optimization removes the outliers and the large
jerks, however a small camera jitter still remains because
its output is a discrete selection at each frame. We solve
this problem using a solution inspired by the previous work
on camera stabilization [13]. The idea is to break the cam-
era trajectory into distinct constant (no camera movement),
linear (camera moves with constant velocity) and parabolic
(camera moves with constant acceleration or deceleration)
segments. We found that this idea also correlates with the
camera work by professional cinematographers, who tend
to keep the camera constant as much as possible, and when
the movement is motivated they constantly accelerate, fol-
low the subject (constant velocity) and then decelerate to
static state [30]. The work in [13] shows that this can be
formalized as a L1-norm optimization problem.

However the idea of [13] cannot be directly applied in
our case, as we can not rely on interest point features for
the optimization, because we are already in projected top
view space. We parametrize the projected polygon (for
example the quadrilateral q0q1q2q3 in Figure 3) using six
parameters, the center of the camera (cx, cy), the pan an-
gle θ, the zoom angle φ and two intercepts (r1, r2) (for
near clipping plane and far clipping plane respectively).
Given a video of N frames, we formulate the stabiliza-
tion as convex optimization over the projected plane Pt =
{cxt, cyt, θt, φt, r1t, r2t} at each frame t ∈ [0 : N−1]. We
solve for P ∗t which minimizes the following energy func-
tion:

Ec =
N∑
t=1

(P ∗
t − Pt)

2 + λ1

N−1∑
t=1

‖P ∗
t+1 − P ∗

t ‖1

+λ2

N−2∑
t=1

‖P ∗
t+2 − 2P ∗

t+1 + P ∗
t ‖1

+λ3

N−3∑
t=1

‖P ∗
t+3 − 3P ∗

t+2 + 3P ∗
t+1 − P ∗

t ‖1.

(6)



Figure 5. We classify the camera viewpoints from a usual football broadcast into five different categories namely (from left to right) top
zoom-out, top zoom-in, ground zoom-out, ground zoom-in and miscellaneous (covering mainly the crowd view).

Accuracy comparison
Mean

DSM 83
Ours 91.4

Run time comparison
Mean Time (s)

DSM 0.44
Ours 0.21

Table 1. Comparison of our algorithm (using HOG features for
matching) with DSM. Both training and testing was done using
their soccer dataset [17].

DSM dataset for training
Mean Median

DSM test data 91.4 92.7
Our test data 76.3 85.6

Our dataset for training
Mean Median

DSM test data 88.8 90.8
Our test data 88.4 90.6

Table 2. Results of our algorithm (using HOG features for match-
ing) trained and tested on the two different datasets.

The energy function Ec comprises of a data term and three
L1-norm terms over the first order, second order and the
third order derivatives and λ1, λ2 and λ3 are parameters.
As Ec is convex, it can be efficiently solved using any off
the shelf solver, we use cvx [12].

4. Experimental Results
We compare our results with the recent state of the art

[17] on their dataset (209 training images and 186 test
images). To further demonstrate the efficacy of our ap-
proach, we perform experiments on a more diverse testing
dataset taken from the matches of entire FIFA 2014 world
cup (80 training images and 300 testing images). The di-
versity is in both the viewpoints and the playing condi-
tions (grass color, lighting etc.). We further show results
on broadcast video sequences, comparing with previous
methods [26, 22], highlighting the benefits of the camera
smoothing and stabilization.

4.1. Results over broadcast images

A football broadcast consists of different kind of camera
viewpoints (illustrated in Figure 5) and the field lines are
only properly visible in the far top zoom-out view (which
though covers nearly seventy five percent of the broadcast
video frames). Moreover, The nearest neighbour search
takes as input the features over edge maps, hence we need to
pre-process the RGB images to obtain the edge maps (only
containing the field lines). Henceforth, we propose a two
stage pre-processing algorithm:

Figure 6. Illustration of the pre-processing using pix2pix condi-
tional adversarial network . (a) denotes the given RGB image,(b)
denotes the output of the adversarial network, and (c) denotes and
ground truth segmentation

4.1.1 Pre-processing

The first pre-processing step selects the top zoom-out
frames from a given video sequence. We employ the classi-
cal Bag of Words (BoW) representation on SIFT features to
classify each frame into one of the five classes illustrated in
Figure 5. We use a linear SVM to perform per frame clas-
sification (taking features from a temporal window of 40
frames centred around it), followed by a temporal smooth-
ing. Even using this simple approach, we achieve an accu-
racy of 98 percent, for the top zoom-out class label (trained
over 45 minutes of video and tested over 45 minutes of
video from another match).

Now, given the top zoom-out images from the video, sec-
ond pre-processing step is to extract the edge map with field
lines. For this we use Pix2Pix [18] for image translation
where we give the original RGB image as Input image and
field line image as the translated image and train a condi-
tional adversarial network to perform the image translation.
An example output is illustrated in Figure 6.

4.1.2 Quantitative evaluation

The results over the DSM dataset [17] are presented in ta-
ble 1. The proposed method significantly improves upon the
DSM approach both in term of prediction accuracy and the
run time speeds. The accuracy is measured using mean IOU
of the projected image on the static model with the ground
truth projections and our approach brings an improvement
of more than 8% over DSM. Our approach is also signifi-
cantly faster while testing.

To further analyze the performance of our method, we
propose a new dataset covering all matches from FIFA 2014
world cup. Our training set is more compact (only using
80 images) and the testing set is more diverse, including
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Figure 7. Original images and registered static model pairs com-
puted using the HOG based approach. Covering shadows {(a),(b),
(e),(f)}, motion blur {(d)}, varying zoom {(a),(c)}, varying cam-
era viewpoints {(g),(h)}, varying positions {(e),(f)} etc.

varying lighting conditions with prominent shadows, mo-
tion blur, varying viewpoints thoroughly covering the play-
ing field. We train two different models, one using DSM
training data and one using our training data. We then test
their performance on both DSM test data and our test data,
We report the results in table 2. The accuracy significantly
deteriorate when we use the DSM training data for testing
on our data, which highlights the added challenges in our
test data. On the other hand, when using our training data,
the accuracies are consistent across both the test sets. This
demonstrates that the semi supervised dictionary generation
is able to cover a significant portion of search space, even
when generated from a compact training set of 80 images.

As baseline experiment, we also compared the chamfer
matching and HOG matching on our dataset. The HOG
based approach outperformed the chamfer matching by a
margin of about 6% in mean IOU accuracy and it was sig-
nificantly faster while testing (due to shorter feature vector
and the search speed up using kd trees).

4.1.3 Qualitative evaluation

Results over a small set of images using HOG based ap-
proach are shown in Figure 7. We can observe that the pre-
dictions are quite accurate over diverse scenarios and the
method works perfectly even in cases where manual an-
notation of point correspondences is challenging in itself
(Figure 7(d)). The robustness of our approach over ex-
treme variations in camera angle (Figure 7 (g) and (h)) and
challenges like shadows (Figure 7 (a),(b),(e),(f)) and mo-
tion blur (Figure 7 (d)) can be observed. The applicability
over varying zoom and field coverage is also evident. The
reader can refer to the supplementary material for more de-
tails, where we provide the results over the entire dataset.

4.2. Results over broadcast videos

Existing video based methods [26, 22] for registration
are inapplicable for individual frames as they require user
to initialize the homography on the first frame with respect
to the model, which is then propogated by tracking points
in subsequent frames. This requires manual re-initialization
of homography at every shot change, in a typical football
video of 45 minutes this happens about 400 times. Clearly
our method is superior because it is fully automatic. How-
ever, we still perform quantitative comparison with the ap-
proach in [26, 22] using two long video sequences by man-
ually labelling 200 frames in them (labelling two frames per
second) to compute the mean IOU measure. An approach
similar to [26] which has originally been applied on hockey
videos based on KLT tracker gave a IOU measure of 35%
of the football sequences. This low performance can be at-
tributed to drift and lack of features (on the football field
as compared to the hockey rink), due to which the tracking
fails after few frames. We implemented a more robust vari-
ant using SIFT features instead, which gives a mean IOU
measure of 70%. On the other hand, our approach gave a
mean IOU measure of 87% when the registration is com-
puted individually on each frame.

MRF evaluation: Using the above mentioned sequences,
we then perform MRF optimization by computing k near-
est neigbours estimated on the individual frames. We chose
k=5 in our experiments. We found that the mean IOU mea-
sure improved from 87% to 89% by employing the MRF
based optimization over the per frame results.

Convex optimization evaluation: Qualitative results of
the camera stabilization are shown in Figure 8 over a video
sequence from Chile vs Australia world cup match. The
video starts at midfield, pans to left goal post, stays static
for few frames and quickly pans back to midfield following
a goalkeeper kick. The figure shows the pan angle trajec-
tory of the per frame predictions with and without camera
stabilization. We can observe that the optimization clearly
removes jitter and replicates a professional cameraman be-
haviour. The actual and the stabilized video are provided in
the supplementary material.

5. Summary

We have presented a method to compute projective trans-
formation between a static model and a broadcast image as a
nearest neighbour search and have shown that the presented
approach outperforms the current state of the art by about
8% in mean IOU accuracy. Our method can be easily ex-
tended to videos without requiring any manual initialization
as in previous approaches [26, 22]. Once the dictionary



Figure 8. Illustration of stabilization using convex optimization. The blue curve shows the pan angle predicted by the proposed approach
on each frame individually. The red curve shows the stabilized pan angle after the convex optimization. We can observe the the smoothed
pan angle composes of distinct static, linear and quadratic segments. The black dots denote the frames at respective locations.

is learnt, our method can be directly applied to any stan-
dard football broadcast and in fact can be easily extended to
any sport where such field lines are available (like basket-
ball, ice hockey etc.). Moreover, the semi supervised dic-
tionary generation allows us to adapt the algorithm even if
new camera angles are used in future. The proposed method
opens up a window for variety of applications which could
be realized using the projected data. One limitation of our
approach is that it is only applicable to top zoom-out views
and it would be an interesting problem to register other kind
of shots (ground zoom-in, top zoom-in shots) using the pre-
dictions over top zoom out views, player tracks and other
temporal cues.
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