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ABSTRACT
The current Document Image Quality Assessment (DIQA)
algorithms directly relate the Optical Character Recognition
(OCR) accuracies with the quality of the document to build
supervised learning frameworks. This direct correlation has
two major limitations: (a) OCR may be affected by factors
independent of the quality of the capture and (b) it cannot
account for blur variations within an image. An alternate
possibility is to quantify the quality of capture using human
judgement, however, it is subjective and prone to error. In
this work, we build upon the idea of Spatial Frequency Re-
sponse (SFR) to reliably quantify the quality of a document
image. We present through quantitative and qualitative exper-
iments that the proposed metric leads to significant improve-
ment in document quality prediction in contrast to using OCR
as ground truth.

Index Terms— Document image; Image quality; Image
capture; Image analysis; Spatial resolution

1. INTRODUCTION

Phone cameras are becoming the default choice for document
image capture due to: (a) the improvement in the quality of
phone cameras and (b) the portability and ease of sharing.
However, the casual nature of capture using phone cameras
(as compared to controlled capture using scanners) may lead
to instability and in turn degrade the image quality. These
degradations may lead to challenges in automated document
workflows, often employing OCR algorithms. DIQA algo-
rithms can resolve this problem by either reducing manual in-
tervention (by identifying poorly captured images) or by giv-
ing real-time feedback during the capture.

A major obstacle in DIQA is to generate a ground truth
value to quantify the image quality. Most state-of-the-art al-
gorithms make use of OCR accuracies as ground truth for
document images. It is true, that there is a broad correlation
between OCR accuracies and quality of the capture i.e. poorly
captured document lead to low OCR accuracy and sharp cap-
ture results in higher OCR accuracy. However, a careful ob-
servation unearths a number of issues associated with using
OCR accuracies as ground truth for document images. For
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example, OCR accuracies may degrade with factors indepen-
dent of capture quality like presence of figures/graphs, vary-
ing layouts and fonts, spacing between letters, language etc.
It fails to address the issue of intra-image variations (i.e. part
of the image is blurred, and part is sharp). It is also sen-
sitive to the direction of motion of the hand during capture
(equal motion blur in different directions may lead to different
OCR accuracies). Additionally, a considerable difference in
accuracies is observed while using different OCR algorithms,
which makes the metric algorithm dependent.

We propose a solution to this problem by exploiting sig-
nal processing concept of SFR, which has been commonly
used for measuring the sharpness of a photographic imaging
system[1, 2]. SFR is often computed by capturing an image
of a slanted edge, which is included in specialized imaging
charts. Our idea is to capture four extra slanted edges around
a document (as illustrated in Fig. 1), which are then used to
compute the sharpness at each spatial position (patch-wise)
in the document. This provides an accurate measure of qual-
ity (assuming blur as the main degrading factor) which is ag-
nostic to the content of the document (type of font, layout
etc.) and also takes into account the intra-document varia-
tions. Moreover, creating such ground truth does not require
any specialized setup and can be captured in natural settings.

We then train a patch-wise neural network to regress the
corresponding SFR values i.e. a network which takes image
patch as input and predicts its quality as output. Once the
network is trained, testing can be performed without using
slanted edges. We perform extensive quantitative and quali-
tative experiments to demonstrate that using SFR brings sig-
nificant improvement in predicting the quality of a document
image, compared to using OCR as ground truth. The work
also exhibits how signal processing concepts can help in cre-
ating accurate datasets (which is difficult otherwise), and in
turn be used for learning more accurate prediction networks.

2. RELATED WORK

The problem of image quality estimation was initially focused
on natural images [3, 4, 5, 6]. Early methods proposed low-
level image processing concepts like Just Noticeable Blur [3]
and phase coherence [4]. Learning based approaches apply-
ing inference on natural scene statistics [6, 5] were then ex-



plored. These algorithms, however, do not generalize well
over document images, which led to specific efforts towards
DIQA.

Early efforts in DIQA were also based on low-level fea-
ture extraction and analysis. Kumar et al. [7] quantified the
sharpness of an image by taking a ratio of sharp and non-
sharp pixels. Rusinol et al. [8] combined several features like
gradient energy, histograms etc. on individual image patches
to quantify their quality. A more recent effort exploits the
edge profile statistics [9] highlighting the aspect that the tran-
sition from text to non-text areas are strong indicators of
amount of blur.
Recently, learning based approaches have proven to be more
successful for DIQA. The algorithms proposed by Ye et
al.[10, 11] extract raw patches randomly from images to build
a codebook. The codebook and the features are then used to
estimate the quality using a Support Vector Regression. The
computational load and inability to handle intra-document
variations, however, limits the applicability of this approach.

Recently, deep learning based approaches have shown fur-
ther improvements. Kang et al. [12] suggested a novel max-
min pooling based CNN architecture for patch-wise predic-
tion, using OCR accuracies as ground truth. Since OCR ac-
curacy is computed over the entire document, it fails to ad-
dress the intra-document variations which adversely affects
the training. Recent efforts have been made to address this is-
sue, however, it is limited to the case of out of focus blur [13].
We propose a more generalized approach which benefits from
the concept of SFR and overcomes the limitations of either
using OCR accuracies or computationally controlled camera
setup.

3. SFR AS GROUND TRUTH

The motivation behind proposal of a new dataset is to accu-
rately quantify the quality of an image and assign patch level
ground truth to account for intra-image variations. We use the
concept of SFR for this task. In this section, we first provide
a brief overview of standard SFR calculation technique. We
then give a detailed explanation as to how we combine multi-
ple SFR values to generate a ground truth value for patches at
varying spatial locations in a document image.

3.1. SFR and its Calculation

An ideal camera, which generates an image of the object with-
out any distortion, must have an ‘infinite’ resolution in terms
of sharpness. Such cameras, obviously do not exist. There-
fore, the notion of SFR is used to calculate the ‘resolution
power’ of a camera.

The idea is to measure maximum input frequency the sys-
tem is able to discern. The ideal ‘one-shot’ algorithm for
this requires an input with all frequencies. This input can be
a step-function which has all the frequencies uniformly dis-

Fig. 1. The figure shows a typical image and the slanted
edge arrangement used to create the SFR dataset. The slanted
edges are placed on all sides of the document. We use four
slanted edges to capture the motion and out-of-focus effects
robustly. The degradations in slanted edges due to these fac-
tors lead to a low SFR score, which in turn results in a lower
ground truth value for all the affected patches.

tributed. The analog for a step-function in the spatial domain
is a sharp edge between a dark and a bright region. However,
we also want the frequencies from the sensor array beyond it’s
pitch which is not possible with a vertical edge. Therefore, we
utilize the notion of slanted edges [14].

The intensities in an image corresponding to line seg-
ments parallel to edges tend to be equal. However, the in-
tensities change as we move away from the zero-crossing of
the edge. The slanted edge is beneficial in capturing these
intensity variations as the difference is effectively lesser then
sensor dimensions. Therefore, if we take Fourier Transform
of the intensity values along the gradient axis, we get the
spatial frequencies well-above the Nyquist limit of the sensor
array. The fraction of frequencies of the image obtained with
its DC component gives us the resolution ratio at a particular
frequency. The frequency corresponding to a certain pre-
defined resolution ratio (typically being equal to 0.5) can now
be taken as a measure of the resolution power of a camera
assembly.

The conventional use case of SFR is to give the camera
a score using a sharp slanted edge. The transition between
dark and bright regions, in this case, is abrupt. We propose an
alternate use case of the SFR in this work. Our main insight
is that if the frequency value corresponding to the pre-defined
resolution ratio changes for each image for identical slanted
edge input and the same camera, then other factors such as
motion or improper focus during the capture process is the
reason for this change. Therefore, we conclude that the SFR
can be used as a metric representing the image quality, with a
higher value corresponding to a sharper image.



Fig. 2. The figure is an illustrative representation of the cap-
ture process. The document is shown in light-gray color,
while the slanted edges placed are represented by a darker
shade. A selected patch (C0) and its coresponding RoI’s for
each slanted edge (C1, C2, C3, C4) are also visualized.

3.2. SFR based Ground Truth Calculation

We select a set of documents of varying types (in terms of
fonts, layout, presence of figures and tables, amount of text
present etc). For each document, we place four slanted edges
around its sides as seen in Fig. 1 and capture images using a
hand-held phone camera. We deliberately shake the hand dur-
ing capture process to introduce a combination of both out-of-
focus and motion blur of varying degrees.

The SFR values around slanted edges are then used to
quantify the spatially varying blur in a document image. A
score indicating its quality is assigned to each patch using the
following procedure (illustrated in (Fig. 2):

1. For every patch in consideration, we move in four di-
rections from the centre of the patch (C0). The two
lines l1 and l2 pass through the centre of the patch and
are parallel to the directions of the document boundary.

2. The lines l1 and l2 intersect the slanted edges at the
points C1, C2, C3 and C4 at distances d1, d2, d3 and d4.
We now consider four Region of Interest (RoI)s at the
four slanted edges, centred around the corresponding
intersection points.

3. For each RoI, we calculate frequency at which the reso-
lution ratio equals 0.5. We denote this value by s. Thus,
we get four scores s1, s2, s3 and s4 corresponding to
the RoIs.

4. We pick two RoIs with minimum scores si, sj for a
conservative assignment of ground truth values to the
patches, i.e. we consider those values that indicate
the highest degradation, which has regularly been used

for DIQA [8]. The final ground truth score (g) is a
weighted mean of si and sj , weighed according to the
distance, as defined in Eqn. 1.

g =

si
di

+
sj
dj

1
di

+ 1
dj

(1)

4. BLUR ESTIMATION PIPELINE

We now provide a brief overview of the pipeline used for
the quality estimation in this section. We first use a simple
preprocessing step to exclude regions which are not a part of
the document using the concept of connected components as
in [8]. After this, instead of a simple binarization, which is
itself affected by blur, we select patches from the transition
regions between textual and non-textual regions [9, 13]. This
step avoids selecting non-informative homogeneous patches
and helps in achieving scale invariance. The patches of size
48×48 centred are then used to train a CNN based regression
network [12] with ground truth being the score calculated for
each patch. We modify the back-propagation from Stochastic
Gradient Descent (SGD) used in [12] to Adaptive Gradient
(AdaGrad) in our implementation for faster and better conver-
gence.

5. EXPERIMENTS

In this section, we present the results obtained for various al-
gorithms against the novel ground truth proposed in this work
and the typically used OCR ground truth.

5.1. SFR Dataset Details

The previously proposed datasets [15] were limited in many
ways such as lack of inclusion of all types of degradations
(both focus and motion blur), images taken in a controlled
environment etc. However, the biggest inconsistency affect-
ing performance of various DIQA algorithms is a single and
incorrect ground truth in form of OCR accuracies. We have
therefore proposed a new dataset which is a true manifestation
of the local and global variation of image quality. Our dataset
contains 8 images each from 25 documents, i.e. a total of 200
images, varying in blur (motion and focus), scale, orientation
etc.

In order to maintain consistency with the previous dataset,
we also provide OCR accuracy for each image. The OCR is
computed using ABBYY Finereader and ISRI-OCR evalua-
tion tool [16] to compute OCR ground truth for the images.

5.2. Metric Evaluation

We evaluate the predicted score by various algorithms against
the two ground truths described above. The quantitative eval-
uation is traditionally done by computing the Linear Cross



LCC SROCC
∆DOM 0.64 0.65
Focus Measure 0.69 0.80
CORNIA 0.89 0.87
EPM 0.79 0.82
DCNN 0.85 0.82

Table 1. Results of different approaches on SFR Dataset with
OCR accuracies as ground truth.

Correlation (LCC) and Spearman Rank Order Cross Corre-
lation (SROCC) between predicted and ground truth values.
Additionally, we also present qualitative examples comparing
the proposed pipeline trained over SFR based ground truths
and state-of-the-art deep networks.
For all the non-learning approaches [7, 8, 9], we evalu-
ate the scores on the entire dataset. For learning based
approaches [10, 12], we partition the dataset into training
(60%), validation (20%) and testing (20%) sets. The corre-
lations are, therefore, computed only on 20% of the dataset.
We run 100 such iterations for testing images, selecting the
three sets randomly each time and report the median of all the
scores as the final correlation values.
The quantitative results using traditional ground truth of
OCR values are presented in Table 1. The learning based
approaches clearly outperform the non-learning ones. The
correlation values using the SFR generated ground truth
values is presented in Table 2. We can see a significant im-
provement for all the algorithms on using these ground truth
values. The results over all non-learning metrics improved
by at least 10% for LCC and 7% for SROCC. The scores
on learning-based approaches have also increased by 7% on
CORNIA and around 10% for DCNN.
We also provide a quantitative measure of local estimation
for the CNN based regression network in form of patch-level
correlations. We have calculated LCC and SROCC between
the predicted and the respective ground truth values. The me-
dian LCC and SROCC values of the predicted scores with the
SFR based scores comes out to be 0.90 and 0.83 respectively.
These values are substantially lower (0.74 and 0.73) when the
network is trained using OCR accuracies as ground truth.

5.3. Qualitative Evaluation

In this section, we present a qualitative comparison of the
DCNN pipeline [12] with OCR accuracies as ground truth
and the proposed pipeline with SFR based ground truths.
Fig. 3 shows an image with both focus and motion blurs
and corresponding patch-level ‘blur maps’. We observe that
the DCNN network using OCR accuracies is biased towards
a sharper score. Conversely, training the network with the
proposed metric as ground truth results in a more accurate
blur map. This demonstrates that the proposed ground truth

(a)

(b)

(c)

Fig. 3. Blur maps obtained using DCNN network and pro-
posed pipeline. Red indicates a high score i.e. high quality
while blue indicates a low score, i.e. low quality for a patch.
Part (a) shows an image with both motion and focus blur. Part
(b) shows the obtained blur map with DCNN network using
OCR accuracies as ground truth. Part (c) shows the blur map
generated using the pipeline and ground truth values proposed
in this work.

LCC SROCC
∆DOM 0.80 0.74
Focus Measure 0.70 0.89
CORNIA 0.96 0.87
EPM 0.94 0.89
Proposed Approach 0.97 0.89

Table 2. Comparison of different approaches on SFR Dataset
with proposed ground truth.

handles intra-document variations more accurately than OCR
accuracies. This improved local estimation can be useful for
important applications such as selective denoising.

6. CONCLUSIONS

In this work we use the concept of Spatial Frequency Re-
sponse of a slanted edge to quantify the quality of an image
with patch-wise accuracy. This is a step ahead of previous
datasets which either use OCR accuracies as ground truth or
capture images using computationally controlled setup. We
also perform extensive experiments over multiple DIQA algo-
rithms and demonstrate that the proposed ground truth leads
to a more accurate training of deep neural networks. In fu-
ture work, we plan to explore this dataset for the application
of deblurring document images. As the current algorithm can
generate localized (patch-wise) degradation maps, it can help
achieve an adaptive deblurring kernel estimation, in contrast
to currently prevalent single kernel estimation approaches.
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